首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sheep or guinea pig antisera against the purified Ca++ transport ATPase of sarcoplasmic reticulum inhibit Ca++ transport due to a complement-dependent damage of the membrane, which causes massive leakage of Ca++. The Ca++-activated ATPase activity is only slightly affected even at ten times higher antibody concentration than that required for inhibition of Ca++ transport. Antibodies prepared against the Ca++ binding protein (C1 protein) have no influence upon either ATPase activity or Ca++ transport and ferritin-labeled anti-C1 antibodies do not bind to microsomes.  相似文献   

2.
ATPase Activity of Myosin Correlated with Speed of Muscle Shortening   总被引:32,自引:6,他引:26  
Myosin was isolated from 14 different muscles (mammals, lower vertebrates, and invertebrates) of known maximal speed of shortening. These myosin preparations were homogeneous in the analytical ultracentrifuge or, in a few cases, showed, in addition to the main myosin peak, part of the myosin in aggregated form. Actin- and Ca++-activated ATPase activities of the myosins were generally proportional to the speed of shortening of their respective muscles; i.e. the greater the intrinsic speed, the higher the ATPase activity. This relation was found when the speed of shortening ranged from 0.1 to 24 muscle lengths/sec. The temperature coefficient of the Ca++-activated myosin ATPase was the same as that of the speed of shortening, Q10 about 2. Higher Q10 values were found for the actin-activated myosin ATPase, especially below 10°C. By using myofibrils instead of reconstituted actomyosin, Q10 values close to 2 could be obtained for the Mg++-activated myofibrillar ATPase at ionic strength of 0.014. In another series of experiments, myosin was isolated from 11 different muscles of known isometric twitch contraction time. The ATPase activity of these myosins was inversely proportional to the contraction time of the muscles. These results suggest a role for the ATPase activity of myosin in determining the speed of muscle contraction. In contrast to the ATPase activity of myosin, which varied according to the speed of contraction, the F-actin-binding ability of myosin from various muscles was rather constant.  相似文献   

3.
H.Linton Wray  R.Richard Gray 《BBA》1977,461(3):441-459
Ca2+-activated ATPase (EC 3.6.1.15) in canine cardiac sarcoplasmic reticulum was stimulated 50–80% by cyclic adenosine 3′ : 5′-monophosphate. The relationship of this stimulation to cyclic AMP-dependent membrane phosphorylation with phosphoester bands was studied. Cyclic AMP stimulation of ATPase activity was specific for Ca2+-activated ATPase and was half-maximal at about 0.1 μM which is similar to the concentration required for half-maximal stimulation of membrane phosphorylation by endogenous cyclic AMP-stimulated protein kinase (EC 2.7.1.37). Cyclic AMP stimulation of Ca2+-activated ATPase was calcium dependent and maximal at calculated Ca2+ concentrations of 2.0 μM. Cyclic AMP-dependent Ca2+-activated ATPase correlated well with the cyclic AMP-dependent membrane phosphorylation of which 80% was 20 000 molecular weight protein identified by sodium dodecyl sulfate discontinuous polyacrylamide gel electrophoresis. In trypsin-treated microsomes, cyclic AMP did not stimulate Ca2+-activated ATPase or phosphorylation of the 20 000 molecular weight membrane protein. An endogenous calcium-stimulated protein kinase (probably phosphorylase b kinase) with an apparent Km for ATP of 0.21–0.32 mM was present and appeared to be involved in the cyclic AMP-dependent phosphorylation of the 20 000 molecular weight protein which was calcium dependent. Cyclic guanosine 3′ : 5′-monophosphate did not inhibit any of the stimulatory effects of cyclic AMP. These data suggest that the cyclic AMP stimulation of Ca2+-activated ATPase in cardiac sarcoplasmic reticulum is mediated by the 20 000 molecular weight phosphoprotein product of a series of kinase reactions similar to those activating phosphorylase b.  相似文献   

4.
The membrane bound coupling factor-latent ATPase was solubilized from the membrane vesicles of Mycobacterium phlei by using 0.25 M sucrose or low ionic strength buffer. Purification of the solubilized enzyme by use of Sepharose-ADP conjugate gel yielded a homogenous preparation of latent ATPase which was purified about 216-fold in a single step with an 84% yield. The enzyme exhibits a specific activity of 39 μmoles of ATP hydrolyzed per min per mg protein. The purified enzyme exhibits coupling factor activity. Electrophoresis in two dissociating solvent systems indicates that the enzyme contains at least three major polypeptides of molecular weights 56,000, 51,000 and 46,000 daltons, and two minor polypeptides of 30,000 and 17,000 daltons. Equilibrium binding studies of ADP with purified coupling factor-latent ATPase reveal the presence of two nucleotide binding sites per molecule with an apparent Ka of 8.1 × 10−5 M. By use of affinity chromatography, another latent ATPase has been isolated from the solubilized enzyme, which does not exhibit coupling factor activity.  相似文献   

5.
Crosslinking of membrane proteins of Escherichia coli with dithiobis (succinimidyl propionate) (DSP) resulted in loss of several enzyme activities including the Ca2+, Mg2+-activated ATPase. This enzyme was crosslinked by DSP to the membrane and was not released by dialysis at low ionic strength in the absence of dithiothreitol which could cleave the crosslinking group. DSP inactivated both phosphohydrolase and coupling activities of the solubilized ATPase. Loss of hydrolytic activity could be correlated with the extent of reaction of the α and/or β subunits of the enzyme. The loss of coupling activity appeared to be associated with modification of the γ and/or δ subunits.  相似文献   

6.
Summary Lateral (L) cilia ofMytilus gill are activated by serotonin which, in molluscan systems, is known to activate adenylate cyclase. Triton-extracted models of L-cells, arrested at >10–6 M Ca++, are stimulated to beat by the addition of 10–5 M cAMP while still under Ca++ arrest conditions, suggesting that cAMP-activation is not mediated by alterations of Ca++ levels. Using isolated, permeabilized cilia, we find, independent of [Ca++], that cAMP-dependent protein phosphorylation in L-cilia occurs uniquely and reversibly on three low molecular weight polypeptides of 23,000, 18,000, and 14,000 daltons. Phosphorylation is maximal at cAMP concentrations above 0.5 M. The phosphorylated chains partially coextract at high salt with a 14S dynein fraction and have approximately the same molecular weights as reported for dynein light chains. Such conditions mainly extract the outer dynein arm, about 40% of the Mg++-ATPase activity, and a corresponding amount of the cAMP phosphorylated chains. However, the three polypeptides sediment together at 10–11S, clearly separable from the 14S dynein ATPase. Using a gel-overlay technique, we find that calmodulin binds to axonemal polypeptides of L-cilia with molecular weights of 18,000 and 13,000, independent of Ca++, while in mixed-population cilia, only a 12,000 dalton chain binds calmodulin, in a Ca++ dependent manner. In neither case are calmodulin binding proteins found in the high salt fraction containing the cAMP-dependent phosphorylated chains, indicating that, in spite of some similarity in molecular weight, the cAMP-phosphorylated and calmodulin binding polypeptides are different. Also, double-labeling indicates that only the 18,000 dalton chains co-migrate. These data suggest that serotonin may activate lateral cilia through a cAMP-dependent phosphorylation of a dynein-associated regulatory protein complex, while Ca++ may inhibit ciliary movement, independently, by binding to calmodulin associated with a different class of regulatory protein.  相似文献   

7.
M G Luthra  H D Kim 《Life sciences》1979,24(26):2441-2448
A highly purified cytoplasmic activator protein of human red cell membrane Ca++ + Mg++ ATPase was prepared by two step purification scheme utilizing Diethylaminoethyl cellulose (DE-52) and sephadex (G-100) column chromatography. This purified protein can elicit a maximum activation of membrane Ca++ + Mg++ ATPase at low calcium concentrations. The stimulatory effect of this protein can be rendered totally ineffective by chemical modification with N-bromosuccinimide. The results suggest a possible role of methionine oxidation in the regulation of the Ca++ + Mg++ ATPase activator activity.  相似文献   

8.
Isolated human red blood cell membrane fragments (RBCMF) were found to take up Ca++ in the presence of ATP.1 This ATP-dependent Ca++ uptake by RBCMF appears to be the manifestation of an active Ca++ transport mechanism in the red cell membrane reported previously (Schatzmann, 1966; Lee and Shin, 1969). The influences of altering experimental conditions on Ca++-stimulated Mg++ ATPase (Ca++ ATPase) and Ca++ uptake of RBCMF were studied. It was found that pretreatment of RBCMF at 50°C abolished both Ca++ ATPase and Ca++ uptake. Pretreatment of RBCMF with phospholipases A and C decreased both Ca++ ATPase and Ca++ uptake, whereas pretreatment with phospholipase D did not significantly alter either Ca++ ATPase or Ca++ uptake. Both Ca++ ATPase and Ca++ uptake had ATP specificity, similar optimum pH's, and optimum incubation temperatures. From these results, it was concluded that Ca++ uptake is intimately linked to Ca++ ATPase.  相似文献   

9.
Summary In the mammalian distal colon, the surface epithelium is responsible for electrolyte absorption, while the crypts are the site of secretion. This study examines the properties of electrical potential-driven86Rb+ fluxes through K+ channels in basolateral membrane vesicles of surface and crypt cells of the rabbit distal colon epithelium. We show that Ba2+-sensitive, Ca2+-activated K+ channels are present in both surface and crypt cell derived vesicles with half-maximal activation at 5×10–7 m free Ca2+. This suggests an important role of cytoplasmic Ca2+ in the regulation of the bidirectional ion fluxes in the colon epithelium.The properties of K+ channels in the surface cell membrane fraction differ from those of the channels in the crypt cell derived membranes. The peptide toxin apamin inhibits Ca2+-activated K+ channels exclusively in surface cell vesicles, while charybdotoxin inhibits predominantely in the crypt cell membrane fraction. Titrations with H+ and tetraethylammonium show that both high-and low-sensitive86Rb+ flux components are present in surface cell vesicles, while the high-sensitive component is absent in the crypt cell membrane fraction. The Ba2+-sensitive, Ca2+-activated K+ channels can be solubilized in CHAPS and reconstituted into phospholipid vesicles. This is an essential step for further characterization of channel properties and for identification of the channel proteins in purification procedures.  相似文献   

10.
Sugar beet leaf homogenate contains Mg2+-stimulated ATPase activity with the highest specific activity in the 25,000–30,000 ×g-fraction. This fraction also has (Na++ K+)-activated ATPase activity. Both activities have two pH optima, one stable at pH 7.9 and one variable at lower pH. When optimal conditions of Na+ and K+ were tested with 64 combinations of these ions, at least two mountains of activity were revealed. The (Na++ K+)-ATPase had a high specificity for ATP. It had lost about 50% of its original activity after 56 days of storage at ?85°C. The activity drop was most pronounced at high ionic concentrations in the test medium. The (Na++ K+)-ATPase shows four peaks of activity when tested at constant ionic strength. The idea is put forward that the four peaks reflect two ATPases, one in the tonoplast and one in the plasmalemma, which undergo conformational changes in relation to the ionic milieu.  相似文献   

11.
The proteins of Sarcoplasmic reticulum membranes were resolved by polyacrylamide gel electrophoresis into several fractions ranging in mol wt from 300,000 to about 30,000. The ATPase enzyme involved in Ca2+ transport is associated with a major protein fraction and its molecular weight based on its electrophoretic mobility on polyacrylamide gels in the presence of sodium dodecylsulfate is about 106,000. Reducing agents (β-mercaptoethanol or dithiothreitol) cause the dissociation of membrane proteins into subunits of 20,000–60,000 mol wt, which can be separated by electrophoresis or Sephadex G-150 chromatography.  相似文献   

12.
Compound R 24571 (1-[bis(p-chlorophenyl)methyl]-3-[2,4-dichloro-β-(2,4-dichlorobenzyloxy)phenethyl]imidazoliniumchloride) is found to be a powerful inhibitor of red blood cell Ca++-ATPase as well as Ca++ transport into inside-out red blood cell vesicles with an IC50-value of 0.5 and 2 μM, respectively. The inhibitory action of R 24571 is more specific on the calmodulin-dependent fraction of Ca++-transport ATPase as compared to the basal Ca++-transport ATPase (determined in the absence of calmodulin) and can be antagonized by increasing concentrations of calmodulin in an apparently competitive manner. With respect to other ATPases the action of R 24571 is relatively specific for red blood cell Ca++-transport ATPase. Mg++-ATPase requires a 40 times higher concentration for halfmaximal inhibition (IC50 = 20 μM) whereas (Na+ + K+)-transport ATPase is only slightly affected in the investigated concentration range (≤20 μM).  相似文献   

13.
Summary We have shown that a Ca++-ionophore activity is present in the (Ca+++Mg++)-ATPase of rabbit skeletal muscle sarcoplasmic reticulum (A.E. Shamoo & D.H. MacLennan, 1974.Proc. Nat. Acad. Sci. USA 71:3522). Methylmercuric chloride inhibited the (Ca+++Mg++)-ATPase and Ca++ transport, but had no effect on the activity of the Ca++ ionophore. Mercuric chloride inhibited ATPase, transport and ionophore activity. The ATPase and transport functions were more sensitive to methylmercuric chloride than to mercuric chloride. The two functions were inhibited concomitantly by methylmercuric chloride but slightly lower concentrations of mercuric chloride were required to inhibit Ca++ transport than were required to inhibit ATPase. Methylmercuric chloride and mercuric chloride probably inhibited ATPase and Ca++ transport by blocking essential-SH groups. However, it appears that there are no essential-SH groups in the Ca++ ionophore and that mercuric chloride inhibited the Ca++ ionophore activity by competition with Ca++ for the ionophoric site. Blockage of Ca++ transport by mercuric chloride probably occurs both at sites of essential-SH groups and at sites of ionophoric activity. These data suggest the separate identity of the sites of ATP hydrolysis and of Ca++ ionophoric activity.  相似文献   

14.
Summary Na+, K+, Mg++-activated adenosine triphosphatase and K+, Mg++-activatedp-nitrophenyl phosphatase prepared from a membrane fraction of bovine cerebral cortex were studied with regard to the manner of their activation by phospholipids, using phosphatidyl serine, lysolecithin, monodecyl and didecyl phosphates. The kinetic and chromatographic studies suggested the following. (1) When the enzyme proteins bind the phospholipids in a proper ratio, they attain the optimum activation. (2) The binding causes a simple conversion of the enzymes from an inactive form to a fully activated form. (3) The lipids in both micellar form and molecular dispersion activate the enzymes. (4) Of the proteins contained in the enzyme preparation, only a group of proteins possessing the ATPase and the phosphatase activities bind phospholipids, and the amount of the bound lipids is limited.  相似文献   

15.
An actomyosin-like protein has been extracted from amoebae of Dictyostelium discoideum, V-12. The purified protein exhibited a reversible change in viscosity upon addition of ATP, indicating an ATP sensitivity of 75–85% and a specific viscosity of 0.1. At low ionic strength in the presence of Mg++ and ATP the amoeba protein displayed the phenomenon of superprecipitation. The protein extract was found to be an adenosinetriphosphatase (ATP'ase) hydrolyzing ATP to ADP and inorganic phosphate. Both Mg++ and Ca++ at low ionic strength accelerated the ATP ase activity whereas at high ionic strength only Ca++ stimulated ATP hydrolysis. The ATP'ase activity was inhibited by ethylene-diamine-tetraacetic-acid, Mersayl and p-chloromercuribenzoate. The physico-chemical and enzymatic properties of the extracted amoeba protein are qualitatively comparable to those of muscle actomyosin, and very similar in quantitative properties to smooth muscle actomyosin and the actomyosin-like proteins of blood platelets, leucocytes and slime mold plasmodia. The significance of the presence of this actomyosin-like protein in Dictyostelium amoebae is discussed in relation to amoeboid form and movement.  相似文献   

16.
2,4-D mediated induction of somatic embryogenesis in wheat is enhanced in the presence of Ca++ and its removal by EGTA reduces the response significantly. Changes that occur at the polypeptide level following 2,4-D treatment were analysed. Intense cell division activity was discernable in the leaf base explants within an hour of treatment. Changes in protein profiles were prominent in the membrane fraction as compared to the soluble fraction. The protein profile of the leaf base culture with somatic embryos was distinct from the calli induced from mature embryos on a 2,4-D containing medium. The role of Ca2+ in the induction of somatic embryogenesis was demonstrated by the use of EGTA (a calcium chelator), verapamil, nifedipine (calcium channel blockers), W7 (calmodulin antagonist) and Li (PI inhibitor). In vitro protein phosphorylation studies showed that 2,4-D, calcium and related treatments inhibit phosphorylation of proteins. In the membrane fraction proteins, accumulation of polypeptides at the low molecular weight range was seen in samples treated with verapamil and W7, and a 30 kO polypeptide in the samples treated with calmodulin antagonist, W7. Autoradiography of membrane fraction proteins displayed the presence of a 16 kO protein phosphorylated in samples treated with verapamil, nifedipine and W7. It thus appears that 2,4-D and Ca++ prevent the phosphorylation of this phosphoprotein. These results thus indicate the action of 2,4-D via the Ca2+-CaM signaling pathway in triggering the induction of somatic embryogenesis.  相似文献   

17.
Myosin reacted at low ionic strength with NEM forms an actomyosin which is Ca++ insensitive. With HMM S-1 the reaction with NEM causes a marked loss of the actin activated ATPase activity and the Ca++ sensitivity is reduced but not eliminated. The presence of actin during the sulfhydryl reaction does not significantly alter this result. HMM S-1 prepared from myosin previously desensitized by NEM regains Ca++ sensitivity. These results indicate that the conformations of myosin and HMM S-1 are different and could reflect a difference between insoluble (filamentous) myosin and myosin, or its fragments, in solution.  相似文献   

18.
Treatment of the inner membrane matrix fraction of rat liver mitochondria with the nonionic detergent Lubrol WX solubilized about 70% of the total protein and 90% or more of the following matrix activities: malate dehydrogenase, glutamate dehydrogenase, and isocitrate dehydrogenase (NADP). The Lubrol-insoluble fraction was enriched in cytochromes, phospholipids, and a Mg++-stimulated ATPase activity. Less than 2% of the total mitochondrial activity of monoamine oxidase, an outer membrane marker, or adenylate kinase, an intracristal space marker could be detected in this inner membrane fraction. Electron micrographs of negatively stained preparations showed vesicles (≤0.4 µ diameter) literally saturated on the periphery with the 90 A ATPase particles. These inner membrane vesicles, which appeared for the most part to be inverted with respect to the normal inner membrane configuration in intact mitochondria, retained the succinicoxidase portion of the electron-transport chain, an intact phosphorylation site II with a high affinity for ADP, and the capacity to accumulate Ca++. A number of biochemical properties characteristic of intact mitochondria and the inner membrane matrix fraction, however, were either absent or markedly deficient in the inner membrane vesicles. These included stimulation of respiration by either ADP or 2,4-dinitrophenol, oligomycin-sensitive ADP-ATP exchange activity, atractyloside sensitivity of adenine nucleotide requiring reactions, and a stimulation of the Mg++-ATPase by 2,4-dinitrophenol.  相似文献   

19.
A myosin-like protein was purified from amoebae of the cellular slime mold Dictyostelium discoideum. The purification utilized newly discovered solubility properties of actomyosin in sucrose. The amoebae were extracted with a 30% sucrose solution containing 0.1 m-KCl, and actomyosin was selectively precipitated from this crude extract by removal of the sucrose. The myosin and actin were then solubilized in a buffer containing KI and separated by gel filtration.The purified Dictyostelium myosin bears a very close resemblance to muscle myosin. The amoeba protein contains two heavy chains, about 210,000 molecular weight each, and two classes of light chains, 16,000 and 18,000 molecular weight. Dictyostelium myosin is insoluble at low ionic strength and forms bipolar thick filaments. The myosin possesses ATPase activity that is activated by Ca2+ but not EDTA, and is inhibited by Mg2+; under optimal conditions the specific activity of the enzyme is 0.09 μmol P1/min per mg myosin.Dictyostelium myosin interacts with Dictyostelium actin or muscle actin, as shown by electron microscopy and by measurements of enzymatic activity. The ATPase activity of Dictyostelium myosin, in the presence of Mg2+ at low ionic strength, exhibits an average ninefold activation when actin is added.  相似文献   

20.
《Insect Biochemistry》1991,21(4):399-405
Na+,K+-activated ATPase activity in tick salivary glands increases during the rapid stage of tick feeding paralleling similar increases in dopamine and cAMP-stimulated fluid secretion. High concentrations of cyclic AMP increase Na+,K+-ATPase activity in a plasma membrane-enriched fraction from the salivary glands of rapidly feeding ticks. Cyclic AMP-dependent protein kinase inhibitor protein blocks activation of Na+,K+-ATPase activity at low but not high concentrations of cAMP indicating that both activator and inhibitor modulator phosphoproteins of Na+,K+-ATPase activity exist in the plasma membrane-enriched fraction.ATPase activity in the plasma membrane-enriched fraction is not measurable in the absence of Mg2+, Ca2+ and Na+. Ca-stimulated nucleotidase activity is highest with ATP serving as the preferred substrate in a series including CTP, UTP, GTP and ADP. Calcium, Mg2+ stimulated ATPase activity is activated further by calmodulin and partially inhibited by low concentration of vanadate, trifluoperazine and oligomycin. Results suggest that the plasma membrane-enriched fraction of tick salivary glands contains both Ca2+-ATPase activity and oligomycin-sensitive Ca2+, Mg2+-ATPase activities, the latter likely from a small amount of mitochondria in the partially purified organelle fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号