首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Phosphatidylinositol binding clathrin assembly protein (PICALM), also known as clathrin assembly lymphoid myeloid leukemia protein (CALM), was originally isolated as part of the fusion gene CALM/AF10, which results from the chromosomal translocation t(10;11)(p13;q14). CALM is sufficient to drive clathrin assembly in vitro on lipid monolayers and regulates clathrin-coated budding and the size and shape of the vesicles at the plasma membrane. However, the physiological role of CALM has yet to be elucidated. Here, the role of CALM in vivo was investigated using CALM-deficient mice. CALM-deficient mice exhibited retarded growth in utero and were dwarfed throughout their shortened life-spans. Moreover, CALM-deficient mice suffered from severe anemia, and the maturation and iron content in erythroid precursors were severely impaired. CALM-deficient erythroid cells and embryonic fibroblasts exhibited impaired clathrin-mediated endocytosis of transferrin. These results indicate that CALM is required for erythroid maturation and transferrin internalization in mice.  相似文献   

2.
3.
4.
5.
A human T-cell line, designated as MKB-1, was established by cloning procedures in a suspension culture from a peripheral blood of a 17-year-old female patient with acute myeloblastic leukemia. The immunological marker profile of MKB-1 indicated that unlike a myeloid phenotype of the original leukemic cells, the cells were positive for CD3 (both cell surface and cytoplasm), T cell receptor (TcR) alpha/beta heterodimer, CD4, CD5, CD7, CD10, CD57 (Leu7), SN-1 and the cytoplasmic TcR beta chain. These findings indicate the T cell nature of the established cells. Terminal deoxynucleotidyl transferase (TdT) was also detected in 60%. We did not detect markers of human myeloid and B cell associated antigens, HLA-class II or immunoglobulin chains. Cytogenetic study revealed that the MKB-1 cells had a female hypo-tetraploid karyotype with chromosomal abnormalities including a translocation between chromosomes 10 and 14. The breakpoint of chromosome 14 of this translocation, 14q11.2, is known to be the location of TcR alpha and delta genes; t(10; 14) (q26; q11.2) is a variant type of a T cell neoplasm-associated translocation, t (10; 14) (q24; q11.2). The MKB-1 cell line is unusual in that its T cell characteristics are phenotypically and cytogenetically distinct from the original myeloid leukemia cells.  相似文献   

6.
7.
8.
C Lavau  S J Szilvassy  R Slany    M L Cleary 《The EMBO journal》1997,16(14):4226-4237
A subset of chromosomal translocations in acute leukemias results in the fusion of the trithorax-related protein HRX with a variety of heterologous proteins. In particular, leukemias with the t(11;19)(q23;p13.3) translocation express HRX-ENL fusion proteins and display features which suggest the malignant transformation of myeloid and/or lymphoid progenitor(s). To characterize directly the potential transforming effects of HRX-ENL on primitive hematopoietic precursors, the fusion cDNA was transduced by retroviral gene transfer into cell populations enriched in hematopoietic stem cells. The infected cells had a dramatically enhanced potential to generate myeloid colonies with primitive morphology in vitro. Primary colonies could be replated for at least three generations in vitro and established primitive myelomonocytic cell lines upon transfer into suspension cultures supplemented with interleukin-3 and stem cell factor. Immortalized cells contained structurally intact HRX-ENL proviral DNA and expressed a low-level of HRX-ENL mRNA. In contrast, wild-type ENL or a deletion mutant of HRX-ENL lacking the ENL component did not demonstrate in vitro transforming capabilities. Immortalized cells or enriched primary hematopoietic stem cells transduced with HRX-ENL induced myeloid leukemias in syngeneic and SCID recipients. These studies demonstrate a direct role for HRX-ENL in the immortalization and leukemic transformation of a myeloid progenitor and support a gain-of-function mechanism for HRX-ENL-mediated leukemogenesis.  相似文献   

9.
Cell lines of human T-cell acute lymphoblastic leukemias (T-ALL) have gained high interest for study of mechanisms of cytostatic drug resistance. However, they should also be suited to examine the validity and reliability of molecular cytogenetic techniques in detecting genomic alterations in neoplastic cells. Therefore, comparative genomic hybridization (CGH) and 24-color-fluorescence-in-situ-hybridization (M-FISH) were applied to eight sublines of CCRF-CEM leukemia cells selected in vitro for drug resistance and to their drug-sensitive parental counterparts. All cell lines were characterized by altered chromosome numbers and by a variety of chromosomal structural aberrations as shown by M-FISH. The great majority of anomalies detected by this technique were confirmed by CGH. Interestingly, a considerable number of the rearrangements found were imbalanced. Amplifications of 5q13 in the six methotrexate-resistant cell lines, a del(9)(p21pter) in all lines examined, and a gain of chromosome 20 in 9 of the 10 lines examined were readily detected by both techniques. The same held true for losses of chromosomes 17 and 18 in the near tetraploid cell lines which could also be confirmed by CGH. Some imbalances of genomic material detected by CGH were, however, not observed by means of M-FISH, possibly due to the limited extension of the corresponding chromosomal segment involved or the small subpopulation of cells affected. On the other hand, reciprocal translocations, balanced isochromosomes, and small deletions remained mainly undetected by CGH. A comparison of chromosomal alterations in drug-resistant and parental cell lines showed not only amplifications of chromosomal segments harboring well-known drug resistance genes, e.g., the dihydrofolate reductase gene, but also chromosomal changes which may involve novel genes associated with drug resistance. Thus, the present study has clearly unveiled the strengths and weaknesses of both techniques which can excellently complement each other. Their combination allowed a distinct improvement of the definition of the complex karyotypes of drug-resistant cell lines.  相似文献   

10.
11.
Caspases are cysteine proteases essential to apoptosis. We have identified two families of caspase-like proteins, Paracaspases (found in metazoans and Dictyostelium) and metacaspases (found in plants, fungi, and protozoa). Metazoan paracaspase prodomains contain a death domain and immunoglobulin domains. Several plant metacaspase prodomains contain zinc finger motifs resembling those in the plant hypersensitive response/cell death protein Isd-1. The human paracaspase prodomain binds Bcl10, a protein involved in the t(1;14)(p22;q32) translocation of mucosa-associated lymphoid tissue (MALT) lymphoma. Another MALT lymphoma translocation, t(11;18)(q21;q21), fuses the IAP-2 gene to the MLT1/MALT1 locus, which encodes the human paracaspase. We find that this fusion activates NF-kappaB and that the caspase domain is required for this function, since mutation of the conserved catalytic cysteine attenuates NF-kappaB activation.  相似文献   

12.
To better define secondary aberrations that occur in addition to translocation t(11;14)(q13;q32) in mantle cell lymphomas (MCL) and in multiple myelomas (MM), seven t(11;14)-positive MCL cell lines and four t(11;14)-positive MM cell lines were analysed by fluorescence R-banding and spectral karyotyping (SKY). Compared with published data obtained by G-banding, most chromosome aberrations were redefined or further specified. Furthermore, several additional chromosome aberrations were identified. Thus, these cytogenetically well defined t(11;14)-positive MCL and MM cell lines may be useful tools for the identification and characterization of genes that might be involved in the pathogenesis of MCL and MM, respectively. Since MCL and MM were found to have different alterations of chromosome 1, these were investigated in more detail by fluorescence in situ hybridization (FISH) and multicolor banding (MCB) analyses. The most frequently altered and deletion-prone loci in MCL cell lines were regions 1p31 and 1p21. In contrast, breakpoints in MM cell lines most often involved the heterochromatic regions 1p12-->p11, and the subcentromeric regions 1q12 and 1q21. These data are in accordance with previously published data of primary lymphomas. Our findings may indicate that different pathways of clonal evolution are involved in these morphologically distinct lymphomas harboring an identical primary chromosome aberration, t(11;14).  相似文献   

13.
为了观察正常人骨髓成纤维样细胞系HFCL对急性单核细胞白血病U937细胞促分化作用,及其对经典诱导分化剂TPA诱导分化作用的影响,先建立U937细胞和HFCL细胞共培养体系,以细胞形态学改变、硝基四氦唑蓝(NBT)、流式细胞仪检测细胞周期和CD11b、CD13、CD14、CD33细胞表面抗原作为诱导分化指标;Western印迹检测P38蛋白的表达变化。结果发现,与HFCL细胞共培养后,U937细胞出现分化成熟的形态学改变,且与HFCL细胞直接接触组的诱导分化作用大于用transwell组。同时发现U937细胞与HFCL细胞共培养后,G1期细胞增高,S期细胞减少;CD11b、CD13、CD14和CD33表达增高;且NBT阳性细胞增高至46、3%。Western印迹检测结果显示,直接接触组总P38蛋白表达增加。而且HFCL细胞还能增强TPA对U937的诱导分化作用。  相似文献   

14.
The reciprocal t(11;22)(q23;q11) is the most common non-Robertsonian constitutional translocation in humans. The tumor-associated 11;22 rearrangement of Ewing sarcoma (ES) and peripheral neuroepithelioma (NE) is cytologically very similar to the 11;22 constitutional rearrangement. Using immunoglobulin light-chain constant region, ETS1 probes, and the technique of in situ hybridization, we previously were able to show that the constitutional and ES/NE breakpoints are different. As a first step toward isolating these translocation junctions and to further distinguish between them, we have made somatic cell hybrids. Cells from a constitutional 46,XX,inv(9),t(11;22) carrier and from an ES cell line with a t(11;22) were separately fused to a hypoxanthine-guanine phosphoribosyltransferase-deficient Chinese hamster cell line (RJK88). Resulting clones were screened with G-banding and Southern hybridization. Hybrid clones derived from the constitutional t(11;22) were established which contained the der(22) and both the der(22) and the der(11). Hybrid clones derived from the ES cell line containing the der(11) were isolated. Using the technique of Southern hybridization we have sublocalized the loci; ApoA1/C3, CD3D, ETS1, PBGD, THY1, D11S29, D11S34, and D11S147 to the region between the two breakpoints on chromosome 11 and V lambda I, V lambda VI, V lambda VII, and D22S10 to the region between the breakpoints on chromosome 22. Using anonymous DNA probes, we found that D22S9 and D22S24 map proximal to the constitutional breakpoint and that D22S15 and D22S32 map distal to the ES breakpoint on chromosome 22.  相似文献   

15.
Summary Chromosome in situ hybridization studies locate c-mos to chromosome band 8q11 in leukemic cells carrying the t(8;21) (q22;q22). This amends the previous assignment of c-mos to chromosome band 8q22 and conforms with its recent assignment to 8q11 in normal cells and in a cell line with a structurally abnormal chromosome 8. C-mos lies proximally to, and distant from, the breakpoint at 8q22 in the t(8;21) and is unlikely to have a role in the onset of acute myeloid leukemia characterized by this translocation.  相似文献   

16.
Supernumerary ring chromosomes and/or giant marker chromosomes are often seen in soft-tissue tumors of low-grade or borderline malignancy, such as well-differentiated liposarcomas or atypical lipomas. Classic cytogenetic banding techniques have proved insufficient to identify the genomic composition and structure of such rings and markers, but fluorescent in situ hybridization (FISH) studies have shown that they consist mainly of amplified material from chromosome 12, more specifically from bands 12q13-->q15. We have used the new FISH-based screening techniques comparative genomic hybridization (CGH) and multicolor-FISH (M-FISH) in combination with G-banding and analysis by chromosome- and locus-specific fluorescent in situ probes to examine in detail the karyotypic characteristics of 22 lipomatous tumors, most of them classified histologically as well-differentiated liposarcomas, selected because they had been shown to harbor rings and/or marker chromosomes. M-FISH, in contrast to G- banding, was found to be informative with regard to the chromosomal origin of the rings and other markers present, whereas CGH and hybridizations with locus-specific probes helped identify which subchromosomal regions were involved. We found that chromosome bands 12q15-->q21 were always gained, with 12q15-->q21 being amplified (i.e., a green-to-red ratio >2 by CGH) in 14 of 22 tumors. In three tumors, two distinct but close amplicons in 12q could be identified, corresponding to bands 12q13-->q15 and 12q21. The genomic segment 1q21-->q23 was gained in 12 cases, reaching the level of amplification in seven. Bands 6q24 and 7p15, whose pathogenetic involvement in liposarcomas has not been reported previously, were gained in three cases each. In addition, the rings and giant markers often contained interspersed sequences from several other chromosomes that did not give an equally clear impression of being nonrandomly involved.  相似文献   

17.
18.
19.
AML1-ETO, a fusion protein generated by the chromosomal translocation t(8;21), is frequently associated with acute myeloid leukemia (AML). In addition to blocking differentiation, AML1-ETO is also shown to induce growth arrest in AML cells, which is unfavorable for leukemogenesis harboring the t(8;21) translocation. However, its precise mechanism is still unclear. Here we provide the first demonstration that the conditional expression of AML1-ETO by the ecdysone-inducible system dramatically increases the expression of connexin 43 (CX43), together with growth arrest at G1 phase in leukemic U937 cells. We also show that the CX43 induction inhibits the proliferation of U937 cells at G1 phase, while the suppression of CX43 expression by small interfering RNA (siRNA) effectively overcomes the growth-inhibitory effect of AML1 -ETO in leukemic cells. Furthermore, either AML1-ETO or CX43 induction elevates cell-cycle negative regulator P27(kip1) protein by inhibiting its degradation, which is antagonized by siRNA against CX43. Taken together, our data indicate that CX43 plays a role in AML1-ETO-induced growth arrest possibly through the accumulation of P27(kip1) protein. The potential mutation or/and epigenetic alterations of CX43 and its related gene(s) deserve to be explored in AML1-ETO-positive AML patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号