首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Soluble fragments of the alpha-chain of FcepsilonRI, the high-affinity receptor for IgE, compete with membrane-bound receptors for IgE and may thus provide a means to combat allergic responses. Mutagenesis within FcepsilonRIalpha is used in this study, in conjunction with the crystal structure of the FcepsilonRIalpha/IgE complex, to define the relative importance of specific residues within human FcepsilonRIalpha for IgE binding. We have also compared the effects of these mutants on binding to both human and mouse IgE, with a view to evaluating the mouse as an appropriate model for the analysis of future agents designed to mimic the human FcepsilonRIalpha and attenuate allergic disease. Three residues within the C-C' region of the FcepsilonRIalpha2 domain and two residues within the alpha2 proximal loops of the alpha1 domain were selected for mutagenesis and tested in binding assays with human and mouse IgE. All three alpha2 mutations (K117D, W130A, and Y131A) reduced the affinity of human IgE binding to different extents, but K117D had a far more pronounced effect on mouse IgE binding, and although Y131A had little effect, W130A modestly enhanced binding to mouse IgE. The mutations in alpha1 (R15A and F17A) diminished binding to both human and mouse IgE, with these effects most likely caused by disruption of the alpha1/alpha2 interface. Our results demonstrate that the effects of mutations in human FcepsilonRIalpha on mouse IgE binding, and hence the inhibitory properties of human receptor-based peptides assayed in rodent models of allergy, may not necessarily reflect their activity in a human IgE-based system.  相似文献   

2.
The high affinity receptor for IgE (FcepsilonRI) plays an integral role in triggering IgE-mediated hypersensitivity reactions. The IgE-interactive site of human FcepsilonRI has previously been broadly mapped to several large regions in the second extracellular domain (D2) of the alpha-subunit (FcepsilonRIalpha). In this study, the IgE binding site of human FcepsilonRIalpha has been further localized to subregions of D2, and key residues putatively involved in the interaction with IgE have been identified. Chimeric receptors generated between FcepsilonRIalpha and the functionally distinct but structurally homologous low affinity receptor for IgG (FcgammaRIIa) have been used to localize two IgE binding regions of FcepsilonRIalpha to amino acid segments Tyr129-His134 and Lys154-Glu161. Both regions were capable of independently binding IgE upon placement into FcgammaRIIa. Molecular modeling of the three-dimensional structure of FcepsilonRIalpha-D2 has suggested that these binding regions correspond to the "exposed" C'-E and F-G loop regions at the membrane distal portion of the domain. A systematic site-directed mutagenesis strategy, whereby each residue in the Tyr129-His134 and Lys154-Glu161 regions of FcepsilonRIalpha was replaced with alanine, has identified key residues putatively involved in the interaction with IgE. Substitution of Tyr131, Glu132, Val155, and Asp159 decreased the binding of IgE, whereas substitution of Trp130, Trp156, Tyr160, and Glu161 increased binding. In addition, mutagenesis of residues Trp113, Val115, and Tyr116 in the B-C loop region, which lies adjacent to the C'-E and F-G loops, has suggested Trp113 also contributes to IgE binding, since the substitution of this residue with alanine dramatically reduces binding. This information should prove valuable in the design of strategies to intervene in the FcepsilonRIalpha-IgE interaction for the possible treatment of IgE-mediated allergic disease.  相似文献   

3.
Harwood NE  Price NC  McDonnell JM 《FEBS letters》2006,580(8):2129-2134
The interaction of immunoglobulin E (IgE) with its cellular receptor FcepsilonRIalpha is a central regulator of allergy. Structural studies have identified the third domain (Cepsilon3) of the constant region of epsilon heavy chain as the receptor binding region. The isolated Cepsilon3 domain is a "molten globule" that becomes structured upon binding of the FcepsilonRIalpha ligand. In this study, fluorescence and nuclear magnetic resonance spectroscopies are used to characterise the role of soluble FcepsilonRIalpha in the folding of the monomeric Cepsilon3 domain of IgE. Soluble FcepsilonRIalpha is shown to display characteristic properties of a catalyst for the folding of Cepsilon3, with the rate of Cepsilon3 folding being dependent on the concentration of the receptor.  相似文献   

4.
The interaction between human IgE and its high affinity receptor, FcepsilonRI, is a critical event in mediating the allergic response. Aggregation of the alpha-chain of FcepsilonRI (FcepsilonRIalpha) occurs via cross-linking of receptor-bound IgE by Ag, resulting in cell activation and the release of mediators of hypersensitivity. Recently, we mapped the epitopes of two anti-FcepsilonRIalpha mAbs, 15/1 and 5H5F8. In contrast to 15/1, mAb 5H5F8 does not inhibit IgE binding to FcepsilonRIalpha. Here we demonstrate both 5H5F8 binding to FcepsilonRI(+) cells as well as a high level of IgE binding to 5H5F8-saturated cells. At the same time 5H5F8 strongly inhibits hexosaminidase release and Ca(2+) flux after Ag triggering from human IgE-sensitized RBL-2H3 cells stably transfected with human FcepsilonRIalpha. Further, 5H5F8 and its Fab inhibit sulfidoleukotriene and histamine release from primary human peripheral blood leukocytes, including cells bearing endogenous IGE: Furthermore, we confirm that 5H5F8 maps to a linear peptide sequence in close proximity to the cell membrane. Two chemically synthesized peptides containing the 5H5F8 epitope sequence PREKY were selected for detailed analysis of 5H5F8 and 5H5F8 Fab binding and were found to produce K(d) values of similar magnitude to that observed for binding to recombinant FcepsilonRIalpha. These peptides may prove useful as targets for the identification of antagonists of FcepsilonRIalpha-mediated biological activity. Moreover, our data indicate that FcepsilonRIalpha-mediated activation may involve a novel alpha-chain epitope in an early step of the cell-triggering pathway leading to cellular activation.  相似文献   

5.
The structural analysis of monoclonal antibodies (mAbs) against the alpha subunit of the high affinity IgE receptor (FcepsilonRIalpha) is an alternative approach to obtaining information for the design of inhibitors that will block complementary interaction between IgE and FcepsilonRIalpha and to analyzing the various biological effects induced by anti-FcepsilonRIalpha autoantibodies in chronic urticaria. In this study, epitopes for mouse anti-human FcepsilonRIalpha mAbs and primary structures of variable regions of the mAbs were analyzed. Three mAbs inhibitory for IgE-binding reacted to the deletion mutants of FcepsilonRIalpha containing the whole second immunoglobulin-like domain as well as IgE did. On the other hand, two uninhibitory mAbs reacted to those containing the whole first immunoglobulin-like domain. The cDNAs for variable regions of the five mAbs were cloned and sequenced. Two inhibitory mouse/human chimeric antibodies were expressed in COS7 cells and bound to Chinese hamster ovary transfectant cells expressing FcepsilonRI (CHO/alphabetagamma), and these inhibited the binding of IgE to CHO/alphabetagamma cells.  相似文献   

6.
Natural Abs represent the indigenous immune repertoire and are thus present at birth and persist throughout life. Previously, human autoantibodies to the alpha domain of the high-affinity IgE receptor (FcepsilonRIalpha) have been isolated from Ab libraries derived from normal donors and patients with chronic urticaria. To investigate whether these anti-FcepsilonRIalpha Abs are present in the germline repertoire, we constructed a phage Fab display library from human cord blood, which represents the naive immune repertoire before exposure to exogenous Ags. All isolated clones specific to the FcepsilonRIalpha had the same sequence. This single IgM Ab, named CBMalpha8, was strictly in germline configuration and had high affinity and functional in vitro anaphylactogenic activity. Inhibition experiments indicated an overlapping epitope on the FcepsilonRIalpha recognized by both CBMalpha8 and the previously isolated anti-FcepsilonRIalpha Abs from autoimmune and healthy donors. This common epitope on FcepsilonRIalpha coincides with the binding site for IgE. Affinity measurements demonstrated the presence of Abs showing CBMalpha8-like specificity, but with a significantly lower affinity in i.v. Ig, a therapeutic multidonor IgG preparation. We propose a hypothesis of escape mutants, whereby the resulting lower affinity IgG anti-FcepsilonRIalpha Abs are rendered less likely to compete with IgE for binding to FcepsilonRIalpha.  相似文献   

7.
Previously, infusions of an anti-IgE mAb (rhumAb-E25) in subjects decreased serum IgE levels, basophil IgE and FcepsilonRIalpha surface density, and polyclonal anti-IgE and Ag-induced basophil histamine release responses. We hypothesized that these effects would be reversed in vivo by discontinuation of infusions and in vitro by exposing basophils to IgE. Subjects received rhumAb-E25 biweekly for 46 wk. Blood samples taken 0-52 wk after rhumAb-E25 were analyzed for serum IgE and basophil expression of IgE, FcepsilonRIalpha, and CD32. Basophil numbers were unaffected by infusions. Eight weeks after infusions, free IgE levels rose in vivo but did not reach baseline. Basophil IgE and FcepsilonRIalpha rose in parallel with free IgE while CD32 was stable. FcepsilonRI densities, measured by acid elution, returned to 80% of baseline, whereas histamine release responses returned to baseline. Basophils cultured with or without IgE or IgG were analyzed for expression of IgE, FcepsilonRIalpha, and CD32. By 7 days with IgE, expression of IgE and FcepsilonRIalpha rose significantly, whereas cultures without IgE declined. IgE culture did not effect CD32. IgG culture did not effect expression of any marker. The present results strongly suggest that free IgE levels regulate FcepsilonRIalpha expression on basophils.  相似文献   

8.
Immunoglobulin E (IgE) plays a central role in IgE-mediated immediate type hypersensitivity. Since production of IgE depends on Th2, efforts to block IgE production and control allergic reactions include tolerization of Th2 or deviating development of Th2. We hypothesized that cytotoxic T lymphocytes targeting natural IgE peptides/MHC I complexes can eliminate IgE-producing cells and inhibit centrally IgE production. CTL to self-IgE peptides were elicited in mice immunized with nonameric p109-117, p113-121, and p103-141 (CHepsilon2 domain), which encompass both peptides with an OVA helper peptide (OVAp restricted for H-2d/b) in liposomes and presented by dendritic cells (DC). CTL from BALB/c lysed IgE peptide-pulsed P815 target as well as IgE-producing 26.82 hybridomas (H-2d). Natural tolerance to self-IgE peptides was tested in IgE sufficient (IgE +/+) as well as IgE-deficient (IgE -/-) 129/SvEv mice (H-2b). Comparable magnitude of CTL responses was observed in both strains immunized with p109-117 or p103-141 concomitantly with CD4 T-cell costimulation. CTL from 129/SvEv lysed not only IgE peptide-pulsed EL-4 but also IgE-producing B4 hybridomas (H-2b). This observation strongly suggests a correspondence of epitope of immunogenic peptide to that of physiologically processed IgE peptides presented on IgE-producing cells. Moreover, CTL were generated in 129/SvEv, immunized with the recombinant antigenized antibody in liposomes encompassing p107-123, p109-117, and p113-121 expressed in CDR3 of VH62/human gamma1. Polyclonal IgE production was inhibited by coincubation with MHC I-restricted CTL in vitro. Furthermore, antigen-specific IgE responses were inhibited in mice, immunized with p109-117 and p103-141 while IgG responses were not suppressed. Since IgE peptide sequences of CHepsilon2 are ubiquitous to all murine IgE heavy chain, peptides made as such can serve as a universal IgE vaccine to prevent allergy for a myriad of allergens in rodents. This observation suggests that similar human IgE peptides should be identified and employed to downregulate human IgE production.  相似文献   

9.
The stability of the complex between IgE and its high-affinity receptor, FcepsilonRI, on mast cells is a critical factor in the allergic response. The long half-life of the complex of IgE bound to this receptor in situ ( approximately 2 weeks, compared with only hours for the comparable IgG complex) contributes to the permanent sensitization of these cells and, hence, to the immediate response to allergens. Here we show that the second constant domain of IgE, Cepsilon2, which takes the place of the flexible hinge in IgG, contributes to this long half-life. When the Cepsilon2 domain is deleted from the IgE Fc fragment, leaving only the Cepsilon3 and Cepsilon4 domains (Cepsilon3-4 fragment), the rate of dissociation from the receptor is increased by greater than 1 order of magnitude. We report the structure of the Cepsilon2 domain by heteronuclear NMR spectroscopy and show by chemical shift perturbation that it interacts with FcepsilonRIalpha. By sedimentation equilibrium we show that the Cepsilon2 domain binds to the Cepsilon3-4 fragment of IgE. These interactions of Cepsilon2 with both FcepsilonRIalpha and Cepsilon3-4 provide a structural explanation for the exceptionally slow dissociation of the IgE-FcepsilonRIalpha complex.  相似文献   

10.
Allergic inflammation is based on the cross-linking of mast cell and basophil-bound IgE Abs and requires at least two binding sites for IgE on allergens, which are difficult to characterize because they are often conformational in nature. We studied the IgE recognition of birch pollen allergen Bet v 1, a major allergen for >100 million allergic patients. Monoclonal and polyclonal Abs raised against Bet v 1-derived peptides were used to compete with allergic patients' IgE binding to Bet v 1 to search for sequences involved in IgE recognition. Strong inhibitions of patients' IgE binding to Bet v 1 (52-75%) were obtained with mAbs specific for two peptides comprising aa 29-58 (P2) and aa 73-103 (P6) of Bet v 1. As determined by surface plasmon resonance, mAb2 specific for P2 and mAb12 specific for P6 showed high affinity, but only polyclonal rabbit anti-P2 and anti-P6 Abs or a combination of mAbs inhibited allergen-induced basophil degranulation. Thus, P2 and P6 define a surface patch on the Bet v 1 allergen, which allows simultaneous binding of several different IgE Abs required for efficient basophil and mast cell activation. This finding explains the high allergenic activity of the Bet v 1 allergen. The approach of using peptide-specific Abs for the mapping of conformational IgE epitopes on allergens may be generally applicable. It may allow discriminating highly allergenic from less allergenic allergen molecules and facilitate the rational design of active and passive allergen-specific immunotherapy strategies.  相似文献   

11.
The high affinity receptor for IgE, FcepsilonRI, binds IgE through the second Ig-like domain of the alpha subunit. The role of the first Ig-like domain is not well understood, but it is required for optimal binding of IgE to FcepsilonRI, either through a minor contact interaction or in a supporting structural capacity. The results reported here demonstrate that domain one of FcepsilonRI plays a major structural role supporting the presentation of the ligand-binding site, by interactions generated within the interdomain interface. Analysis of a series of chimeric receptors and point mutants indicated that specific residues within the A' strand of domain one are crucial to the maintenance of the interdomain interface, and IgE binding. Mutation of the Arg(15) and Phe(17) residues caused loss in ligand binding, and utilizing a homology model of FcepsilonRI-alpha based on the solved structure of FcgammaRIIa, it appears likely that this decrease is brought about by collapse of the interface and consequently the IgE-binding site. In addition discrepancies in results of previous studies using chimeric IgE receptors comprising FcepsilonRIalpha with either FcgammaRIIa or FcgammaRIIIA can be explained by the presence or absence of Arg(15) and its influence on the IgE-binding site. The data presented here suggest that the second domain of FcepsilonRI-alpha is the only domain involved in direct contact with the IgE ligand and that domain one has a structural function of great importance in maintaining the integrity of the interdomain interface and, through it, the ligand-binding site.  相似文献   

12.
The extracellular portion of the alpha chain of the human high-affinity IgE receptor (FcepsilonRIalpha) was expressed as inclusion bodies in Escherichia coli. In immunoblot analysis, two bands were reactive to human IgE and mouse anti-human FcepsilonRIalpha monoclonal antibodies. N-terminal sequencing showed that the two bands were equivalent to the soluble FcepsilonRIalpha with a methionine residue at the N-terminus (Met-1-172) and 23-172, in which the N-terminal 22 residues of the soluble FcepsilonRIalpha have been removed, possibly by degradation in E. coli cells. IgE-binding to CHO cells expressing FcepsilonRI was inhibited by the addition of the recombinant products prepared by the refolding procedure from inclusion bodies. The system for the expression of soluble human FcepsilonRIalpha in E. coli presented in this study and its further improvement would be useful for the production of the protein as a potent therapeutic and for analysis of the IgE-FcepsilonRIalpha interaction.  相似文献   

13.
Two structurally distinct classes of peptides were recently identified by phage display that bind the high-affinity IgE receptor, FcepsilonRI, and block IgE binding and subsequent receptor activation. Both classes adopt highly stable structures in solution, one forming a beta hairpin, with the other forming a helical "zeta" structure. Despite these differences, the two classes bind competitively to the same site on the receptor. Structural analyses of both peptide-receptor complexes by NMR spectroscopy and/or X-ray crystallography reveal that the unrelated peptide scaffolds have nevertheless converged to present a similar three-dimensional surface to interact with FcepsilonRI and that their modes of interaction share a key feature of the IgE-FcepsilonRI complex, the proline/tryptophan sandwich.  相似文献   

14.
Large peptides expressed from cDNA fragments of a clone encoding the mite allergen Der p I were able to bind IgE and IgG in sera from allergic individuals. The binding was found for peptides from sequences throughout the molecule, with at least five regions, comprising residues 1-56, 53-99, 98-140, 166-194, and 188-222. The only limitation was that more than 30 amino acid residues were required for consistent binding. Each of seven sera examined showed a different profile of antibody binding to the peptides. For the most part the pattern of IgE and IgG binding to the peptides for each serum was similar, demonstrating a concordant repertoire. In 5/7 sera, however, IgG bound to some peptides which had little or no IgE binding activity, thus showing more diverse specificities. It is suggested that some divergence of repertoire can develop during the maturation of the B cell response.  相似文献   

15.
Plasmacytoid dendritic cells (pDC) express not only TLR9 molecules through which ligation with CpG DNA favors Th1 responses but also possess IgE receptors (FcepsilonRI) implicated in allergen presentation and induction of Th2 responses. This dichotomy prompted an investigation to determine whether TLR9- and IgE receptor-mediated responses oppose one another in pDC by affecting receptor expression and associated functional responses. Results showed that IgE cross-linking reduced TLR9 in pDC and inhibited the capacity of these cells to secrete IFN-alpha when stimulated with the CpG oligodeoxynucleotide (ODN)-2216. In contrast, an approximately 15-fold reduction in FcepsilonRIalpha mRNA and a loss in surface protein were seen in pDC first exposed to TLR9 ligation with ODN-2216. Results indicated that type I IFNs partly mediated this effect, as rIFN-alpha also caused a significant approximately 4-fold reduction in FcepsilonRIalpha mRNA. Finally, this reduction in FcepsilonRIalpha mediated by ODN-2216 correlated with a selective suppression of allergen-induced CD4+ T cell proliferation, but not of responses resulting from tetanus toxoid. Overall, these results imply mechanisms by which specific innate and IgE-dependent immune responses counterregulate one another at the dendritic cell level and may have significant impact on whether an ensuing response is either of Th1 or Th2 in nature.  相似文献   

16.
The present study investigated whether the sites on the FC region of the IgE molecule, recognized by different anti-IgE monoclonal antibodies (mAb), are identical to those recognized by the Fc receptor (Fc epsilon R). The anti-IgE mAb recognize different clusters of epitopes on the Fc region of IgE and could interfere to different degrees with the binding of IgE to mast cells and basophils, but still recognized cell-bound IgE. Analysis of the stoichiometry and affinity binding of 125I anti-IgE mAb Fab' to free IgE have revealed that anti-IgE mAb of one group (51.3) recognized three repetitive determinants on the IgE Fc portion, and another group (95.3) recognized only one determinant. When these stoichiometric studies were performed with cell-bound IgE, it was found that only one of the sites recognized by 51.3 mAb was involved in the Fc epsilon R binding site. On the other hand, the site recognized by 95.3 mAb was not the Fc epsilon R binding site. Such findings establish mAb 51.3 as a useful tool for isolating the IgE peptides involved in the binding site to the receptor.  相似文献   

17.
Comparison of the Fc receptors for IgE on human lymphocytes and monocytes   总被引:7,自引:0,他引:7  
Fc receptors for IgE (Fc epsilon R) on human peripheral blood lymphocytes and monocytes and cultured lymphoblastoid and macrophage-like cell lines were compared with respect to: 1) binding affinity for radiolabeled IgE, 2) inhibition of IgE-specific rosette formation and inhibition of binding of radiolabeled IgE by an antiserum raised against Fc epsilon R isolated from a lymphoblastoid cell line, and 3) m.w. of radiolabeled cell surface proteins precipitated with the anti-Fc epsilon R serum. Scatchard analysis of 125I-IgE binding to lymphocytes, monocytes, and their corresponding cell lines showed biphasic binding curves with all cell types, from which 2 binding affinities were calculated to be KA = 6.2 +/- 1.1 and 2.0 +/- 0.5 x 10(7) M-1. The anti-Fc epsilon R serum inhibited both IgE rosette formation and binding of radiolabeled IgE by lymphocytes and monocytes but did not inhibit IgE rosettes formed by basophils. The inhibitory activity of the anti-Fc epsilon R serum could be absorbed with Fc epsilon R(+) but not with Fc epsilon R(-) cell lines. The anti-Fc epsilon R serum precipitated 2 peptides having m.w. of approximately 47,000 and 23,000 daltons from lysates of both cell surface-labeled lymphocyte and macrophage cell lines. These data indicate that Fc epsilon R on normal lymphocytes and monocytes, as well as on cultured lymphoblastoid and macrophage-like cells, are related structurally, since they share antigenic determinants, bind IgE with a similar affinity, and have similar m.w. However, they differ in all 3 parameters from Fc epsilon R on basophilic granulocytes.  相似文献   

18.
Binding of allergen-IgE complexes to the high affinity IgE receptor (Fc epsilonRI) on mast cells and basophils leads to the release of various mediaters such as histamine. Fab fragments prepared by the papain digestion of humanized antibody against human Fc epsilonRI inhibited the release of histamine from human basophils. Here we established an expression system to directly produce Fab fragments of the humanized anti-human Fc epsilonRI antibody in methylotropic yeast, P. pastoris. Fab fragments were efficiently secreted into the medium at a concentration of 10-40 mg/L using a signal sequence from the P. pastoris phosphatase gene. They were consisted of disulfide-linked light and heavy chains correctly starting from the first amino acid residues by proper cleavage of the signal peptides. The obtained Fab fragments inhibited the binding between IgE and Fc epsilonRI as efficiently as the counterpart prepared by papain digestion of the whole antibody.  相似文献   

19.
A flow microfluorometric technique has been developed to analyze IgE receptors on splenic and mesenteric lymph node mononuclear cells from BALB/c mice. Our data show that 1) the binding of DIBADL cross-linked IgE dimers to IgE receptors is specific in that it is inhibited by monomeric rat and mouse IgE but not by mouse or rabbit IgG or by the monoclonal anti-Fc gamma R antibody 2.4G2, and conversely, the binding of DIBADL cross-linked IgG dimers is inhibited by monomeric IgG or 2.4G2 but not by rat or mouse IgE; 2) the binding of IgE dimers is saturable on cells from uninfected and Nippostrongylus brasiliensis (Nb)-infected mice; 3) IgE dimer binding is detectable on most splenic B lymphocytes from uninfected and Nb-infected mice, but not on T lymphocytes from uninfected mice, and on few, if any, T lymphocytes from Nb-infected mice; 4) Nb infection causes a parallel increase in the percentages of B lymphocytes and cells expressing IgE receptors and Fc gamma R; 5) Nb infection leads to a marked increase in B lymphocyte IgE receptor expression, has little if any effect on IgE receptor affinity, and causes only minor changes in Fc gamma R expression; and 6) in vivo activation of B lymphocytes by a goat antibody to mouse IgD decreases IgE receptor expression considerably, but has a minimal effect on Fc gamma R expression. Thus, there are separate receptors for IgE and IgG on murine B lymphocytes, and the effect of Nb infection or anti-IgD treatment on their expression is different.  相似文献   

20.
A variant of the high affinity IgE receptor FcepsilonRI, which is composed of alpha- and gamma-chains without the beta-chain, is expressed on human APC, such as dendritic cells, and has been suggested to facilitate Ag uptake through IgE and hence to facilitate Ag presentation to T cells. The level of FcepsilonRI on these cells is correlated with the serum IgE concentration, suggesting IgE mediates the up-regulation of the alphagamma2-type FcepsilonRI. The IgE-mediated FcepsilonRI up-regulation on mast cells and basophils has been shown to enhance the ability of these cells to release chemical mediators and cytokines that are responsible for allergic inflammatory reactions. Here, to elucidate the mechanism controlling FcepsilonRI expression, we compared two structurally related Ig receptors, human FcepsilonRI and FcgammaRIIIA, which carry different alpha-chains but the same gamma-chains. The half-life of FcepsilonRI on the cell surface was short unless it bound IgE, whereas FcgammaRIIIA was stably expressed without IgG binding. Shuffling of the non Ig-binding portions of the FcepsilonRIalpha and FcgammaRIIIAalpha chains revealed that the stalk region was critical in determining the difference in their stability and ligand-induced up-regulation. Unexpectedly, analyses with added or deleted amino acids in the stalk region strongly suggested that the length rather than the amino acid sequence of the stalk region was of major importance in determining the different stabilities of FcepsilonRI and FcgammaRIIIA on the cell surface. This finding provides new insights into the mechanism regulating surface FcepsilonRI expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号