首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to understand the detailed architectural properties of the human hamstring muscles. The long (BFlh) and short (BFsh) head of biceps femoris, semimembranosus (SM) and semitendinosus (ST) muscles were dissected and removed from their origins in eight cadaveric specimens (age 67.8±4.3 years). Mean fiber length, sarcomere length, physiological cross-section area and pennation angle were measured. These data were then used to calculate a similarity index (δ) between pairs of muscles. The results indicated moderate similarity between BFlh and BFsh (δ=0.54) and between BFlh and SM (δ=0.35). In contrast, similarity was low between SM and ST (δ=0.98) and between BFlh and SM (δ=1.17). The fascicle length/muscle length ratio was higher for the ST (0.58) and BFsh (0.50) compared with the BFlh (0.27) and SM (0.22). There were, however, high inter-correlations between individual muscle architecture values, especially for muscle thickness and fascicle length data sets. Prediction of the whole hamstring architecture was achieved by combining data from all four muscles. These data show different designs of the hamstring muscles, especially between the SM and ST (medial) and BFlh and BFsh (lateral) muscles. Modeling the hamstrings as one muscle group by assuming uniform inter-muscular architecture yields less accurate representation of human hamstring muscle function.  相似文献   

2.
The purpose of this study was to quantify strain and elongation of the long head of the biceps femoris (BFlh) and the semitendinosus (ST) tendon/aponeurosis. Forty participants performed passive knee extension trials from 90° of knee flexion to full extension (0°) followed by ramp isometric contractions of the knee flexors at 0°, 45° and 90° of knee flexion. Two ultrasound probes were used to visualize the displacement of BFlh and ST tendon/aponeurosis. Three-way analysis of variance designs indicated that: (a) Tendon/aponeurosis (passive) elongation and strain were higher for the BFlh than the ST as the knee was passively extended (p < 0.05), (b) contraction at each angular position was accompanied by a smaller BFlh tendon/aponeurosis (active) strain and elongation than the ST at higher levels of effort (p < 0.05) and (c) combined (passive and active) strain was significantly higher for the BFlh than ST during ramp contraction at 0° but the opposite was observed for the 45° and 90° flexion angle tests (p < 0.05). Passive elongation of tendon/aponeurosis has an important effect on the tendon/aponeurosis behavior of the hamstrings and may contribute to a different loading of muscle fibers and tendinous tissue between BFlh and ST.  相似文献   

3.
The purpose of this study was to compare the architectural parameters of the long head of biceps femoris (BFlh) and semitendinosus (ST) muscles by comparing measurements from ultrasound (US) with those obtained from direct dissection. The BFlh and ST architectures were examined bilaterally in 6 legs from 3 male cadavers. The fascicle length, pennation angle, muscle thickness and muscle and tendon length were obtained from direct measurement and US scans along each muscle. Intraclass correlation coefficients between the two methods ranged from 0.905 to 0.913 for the BFlh variables and from 0.774 to 0.974 for the ST parameters. Compared with the direct measurements, the US method showed a mean typical error of 0.09–0.14 cm for muscle thickness, 1.01–1.31° for the pennation angle, 0.92–1.71 cm for fascicle length and muscle–tendon length measurements. The US method is a valid alternative tool for assessing basic architectural parameters of ST and BFlh components of the hamstring muscles.  相似文献   

4.
The purpose of this study was to examine the moment-arm and cross-sectional area (CSA) of the patellar tendon (PT) and the hamstrings after anterior cruciate ligament (ACL) reconstruction. The right knee of five males who underwent ACL reconstruction with a PT graft and five age-matched controls was scanned using magnetic resonance image scans. Based on three-dimensional (3D) solids of the PT, CSAs and moment-arms of semitendinous (ST), biceps femoris (BF) long head and semimembranosus (SM) were estimated. Analysis of variance indicated no significant group differences in muscle moment-arms (p>0.05). 3D moment-arms of PT, ST and BF were significantly lower than the corresponding 2D values (p < 0.05). The ACL group displayed a significantly higher maximum BF CSA, a lower ST CSA (p < 0.05) but similar PT and SM CSAs compared with controls. It is concluded that any alterations in PT properties 1 year after harvesting do not affect knee muscle moment-arms compared with age-matched controls. Moment-arm estimation differed between 3D and 2D data, although it did not affect comparisons between ACL reconstruction group and controls. Design of rehabilitation programmes should take into consideration a potential alteration in hamstring morphology following surgery with a PT graft.  相似文献   

5.
6.
Changes in fascicle length and tension of the soleus (SOL) muscle have been observed in humans using B-mode ultrasound to examine the knee from different angles. An alternative technique of assessing muscle and tendon stiffness is myometry, which is non-invasive, accessible, and easy to use. This study aimed to estimate the compressive stiffness of the distal SOL and Achilles tendon (AT) using myometry in various knee and ankle joint positions. Twenty-six healthy young males were recruited. The Myoton-PRO device was used to measure the compressive stiffness of the distal SOL and AT in the dominant leg. The knee was measured in two positions (90° of flexion and 0° of flexion) and the ankle joint in three positions (10° of dorsiflexion, neutral position, and 30° of plantar flexion) in random order. A three-way repeated-measures ANOVA test was performed. Significant interactions were found for structure × ankle position, structure × knee position, and structure × ankle position × knee position (p < 0.05). The AT and SOL showed significant increases in compressive stiffness with knee extension over knee flexion for all tested ankle positions (p < 0.05). Changes in stiffness relating to knee positioning were larger in the SOL than in the AT (p < 0.05). These results indicate that knee extension increases the compressive stiffness of the distal SOL and AT under various ankle joint positions, with a greater degree of change observed for the SOL. This study highlights the relevance of knee position in passive stiffness of the SOL and AT.  相似文献   

7.
Although the possibility that the vastus intermedius (VI) muscle contributes to flexion of the knee joint has been suggested previously, the detail of its functional role in knee flexion is not well understood. The purpose of this study was to examine the antagonist coactivation of VI during isometric knee flexion. Thirteen men performed 25–100% of maximal voluntary contraction (MVC) at 90°, 120°, and 150° knee joint angles. Surface electromyography (EMG) of the four individual muscles in the quadriceps femoris (QF) was recorded and normalized by the EMG signals during isometric knee extension at MVC. Cross-talk on VI EMG signal was assessed based on the median frequency response to selective cooling of hamstring muscles. Normalized EMG of the VI was significantly higher than that of the other synergistic QF muscles at each knee joint angle (all P < 0.05) with minimum cross-talk from the hamstrings to VI. There were significant correlations between the EMG signal of the hamstrings and VI (r = 0.55–0.85, P < 0.001). These results suggest that VI acts as a primary antagonistic muscle of QF during knee flexion, and that VI is presumably a main contributor to knee joint stabilization.  相似文献   

8.
It is not understood how the knee joint angle affects the relationship between electromyography (EMG) and force of four individual quadriceps femoris (QF) muscles. The purpose of this study was to examine the effect of the knee joint angle on the EMG–force relationship of the four individual QF muscles, particularly the vastus intermedius (VI), during isometric knee extensions. Eleven healthy men performed 20–100% of maximal voluntary contraction (MVC) at knee joint angles of 90°, 120° and 150°. Surface EMG of the four QF synergists was recorded and normalized by the root mean square during MVC. The normalized EMG of the four QF synergists at a knee joint angle of 150° was significantly lower than that at 90° and 120° (P < 0.05). Comparing the normalized EMG among the four QF synergists, a significantly lower normalized EMG was observed in the VI at 150° as compared with the other three QF muscles (P < 0.05). These results suggest that the EMG–force relationship of the four QF synergists shifted downward at an extended knee joint angle of 150°. Furthermore, the neuromuscular activation of the VI was the most sensitive to change in muscle length among the four QF synergistic muscles.  相似文献   

9.
The ankle flexor and extensor muscles are essential for pedal movements associated with car driving. Neuromuscular activation of lower leg muscles is influenced by the posture during a given task, such as the flexed knee joint angle during car driving. This study aimed to investigate the influence of flexion of the knee joint on recruitment threshold-dependent motor unit activity in lower leg muscles during isometric contraction. Twenty healthy participants performed plantar flexor and dorsiflexor isometric ramp contractions at 30 % of the maximal voluntary contraction (MVC) with extended (0°) and flexed (130°) knee joint angles. High-density surface electromyograms were recorded from medial gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) muscles and decomposed to extract individual motor units. The torque-dependent change (Δpps /Δ%MVC) of the motor unit activity of MG (recruited at 15 %MVC) and SOL (recruited at 5 %MVC) muscles was higher with a flexed compared with an extended knee joint (p < 0.05). The torque-dependent change of TA MU did not different between the knee joint angles. The motor units within certain limited recruitment thresholds recruited to exert plantar flexion torque can be excited to compensate for the loss of MG muscle torque output with a flexed knee joint.  相似文献   

10.
The purpose of this study was to examine the correlation in semitendinosus (ST) and gracilis (GT) tendon cross-sectional area (CSA) evaluated directly during anterior cruciate ligament (ACL) surgery and pre-operatively using ultrasound (US) and magnetic resonance imaging (MRI). A total of 14 patients undergoing ACL reconstruction with a quadruple ST–GT graft by the same orthopaedic surgeon participated in this study. Pre-operative evaluation included determination of ST and GT CSA area using US and MRI. Intraoperative measurement of the diameters of the ST, GT and the final ACL graft using a closed-hole sizing block with 0.5-mm increments was made and this diameter was used to estimate tendon CSA. The correlation between graft diameter and CSA were 0.563 (GT) and 0.807 (ST) for MRI and 0.498 (GT) and 0.612 (ST) for US. The final ACL graft diameter displayed a correlation coefficient of 0.813 with MRI CSA and 0.518 with US CSA. No differences in CSA were observed between intraoperative, MRI and US methods (p > 0.05). The intraclass correlation coefficients between the US, MRI and intraoperative graft methods for the ST and GT data ranged from 0.502 to 0.903 with an estimation error ranging from 1.41% to 2.26%. These results indicate that in clinical situations where MRI is contra-indicated or not accessible, US can provide measurable values which could predict sufficient diameter of the ACL graft. In addition, determination of tendon CSA using US displays errors less than 2% which is similar to that observed using MRI. This suggests that the application of US can be applied to in vivo examination of the ST and GT CSA.  相似文献   

11.
This study aimed to analyze the effects of the contraction mode (isotonic vs. isokinetic concentric conditions), the joint angle and the investigated muscle on agonist muscle activity and antagonist muscle co-activity during standardized knee extensions. Twelve healthy adult subjects performed three sets of isotonic knee extensions at 40% of their maximal voluntary isometric torque followed by three sets of maximal isokinetic knee extensions on an isokinetic dynamometer. For each set, the mean angular velocity and the total external amount of work performed were standardized during the two contraction modes. Surface electromyographic activity of vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), semitendinosus (ST) and biceps femoris (BF) muscles was recorded. Root mean square values were then calculated for each 10° between 85° and 45° of knee extension (0° = horizontal position). Results show that agonist muscle activity and antagonist muscle co-activity levels are significantly greater in isotonic mode compared to isokinetic mode. Quadriceps activity and hamstrings co-activity are significantly lower at knee extended position in both contraction modes. Considering agonist muscles, VL reveals a specific pattern of activity compared to VM and RF; whereas considering hamstring muscles, BF shows a significantly higher co-activity than ST in both contraction modes. Results of this study confirmed our hypothesis that higher quadriceps activity is required during isotonic movements compared to isokinetic movements leading to a higher hamstrings co-activity.  相似文献   

12.
Minimising post-operative donor site morbidity is an important consideration when selecting a graft for surgical reconstruction of the torn anterior cruciate ligament (ACL). One of the most common procedures, the bone-patellar tendon-bone (BPTB) graft involves removal of the central third from the tendon. However, it is unknown whether the mechanical properties of the donor site (patellar tendon) recover. The present study investigated the mechanical properties of the human patellar tendon in 12 males (mean±S.D. age: 37±14 years) who had undergone surgical reconstruction of the ACL using a BPTB graft between 1 and 10 years before the study (operated knee; OP). The uninjured contralateral knee served as a control (CTRL). Patellar tendon mechanical properties were assessed in vivo combining dynamometry with ultrasound imaging. Patellar tendon stiffness was calculated from the gradient of the tendon's force–elongation curve. Tendon stiffness was normalised to the tendon's dimensions to obtain the tendon's Young's modulus. Cross-sectional area (CSA) of OP patellar tendons was larger by 21% than CTRL tendons (P<0.01). Patellar tendon stiffness was not significantly different between OP and CTRL tendons, but the Young's modulus was lower by 24% in OP tendons (P<0.01). A compensatory enlargement of the patellar tendon CSA, presumably due to scar tissue formation, enabled a recovery of tendon stiffness in the OP tendons. The newly formed tendon tissue had inferior properties as indicated by the reduced tendon Young's modulus, but it increased to a level that enabled recovery of tendon stiffness.  相似文献   

13.
This study investigated the effects of dynamic knee extension and flexion fatiguing task on torque and neuromuscular responses in young and older individuals. Eighteen young (8 males; 25.1 ± 3.2 years) and 17 older (8 males; 69.7 ± 3.7 years) volunteered. Following a maximal voluntary isometric contraction test, participants performed a fatiguing task involving 22 maximal isokinetic (concentric) knee extension and flexion contractions at 60°/s, while surface EMG was recorded simultaneously from the knee extensors (KE) and flexors (KF). Fatigue-induced relative torque reductions were similar between age groups for KE (peak torque decrease: 25.15% vs 26.81%); however, KF torque was less affected in older individuals (young vs older peak torque decrease: 27.6% vs 11.5%; p < 0.001) and this was associated with greater increase in hamstring EMG amplitude (p < 0.001) and hamstrings/quadriceps peak torque ratio (p < 0.01). Furthermore, KE was more fatigable than KF only among older individuals (peak torque decrease: 26.8% vs 11.5%; p < 0.001). These findings showed that the age-related fatigue induced by a dynamic task was greater for the KE, with greater age-related decline in KE compared to KF.  相似文献   

14.
The knee kept forcibly in a flexed position is typical in cerebral palsy. Using a benchmark, we investigate intra-operatively if peak spastic hamstring force is measured in flexed knee positions. This tests the assumed shift of optimal length due to adaptation of spastic muscle and a decreasing force trend towards extension. Previously we measured spastic gracilis (GRA) and semitendinosus (ST) forces. Presently, we studied spastic semimembranosus (SM) and tested the following hypotheses: spastic SM forces are (1) high in flexed and (2) low in extended positions. We compared the data to those of GRA and ST to test (3) if percentages of peak force produced in flexed positions are different. During muscle lengthening surgery of 8 CP patients (9 years, 4 months; GMFCS levels = II–IV; limbs tested = 13) isometric SM forces were measured from flexion (120°) to full extension (0°). Spastic SM forces were low in flexed knee positions (only 4.2% (3.4%) and 10.7% (9.7%) of peak force at KA = 120° and KA = 90° respectively, indicating less force production compared to the GRA or ST) and high in extended knee positions (even 100% of peak force at KA = 0°). This indicates an absence of strong evidence for a shift of optimal muscle length of SM towards flexion.  相似文献   

15.
A study was conducted to establish a sustainable and effective manual freezing technique for cryopreservation of Bangladeshi ram semen. Three diluents and freezing techniques were tested, both as treatment combinations (diluent × freezing technique) and fixed effects (diluent or freezing technique) on post-thaw sperm motility (SM), viability (SV), plasma membrane integrity (SPMI) and acrosome integrity (SAI). Ten rams were selected, based on semen evaluation. Eight ejaculates were used for each treatment combination. Semen samples were diluted using a two-step protocol for home-made Tris-based egg yolk (20%, v/v) diluents: D1 (7% glycerol, v/v) and D2 (5% glycerol, v/v), and one-step for commercial diluent: D3 (Triladyl®, consists of bi-distilled water, glycerol, tris, citric acid, fructose, spectinomycin, lincomycin, tylosin and gentamycin) at 35 °C. Fraction-A (without glycerol) was added at 35 °C, and following cooling of sample to 5 °C (−0.30 °C/min), Fraction-B (with glycerol) was added. The diluted semen samples were aspirated into 0.25 ml French straws, sealed, and equilibrated at 5 °C for 2 h. The straws were frozen in liquid nitrogen (LN) vapour, in a Styrofoam box. The freezing techniques were; One-step (F1): at −15.26 °C/min from +5 °C to −140 °C; Two-step (F2): at −11.33 °C/min from +5 °C to −80 °C, and −30 °C/min from −80 °C-140 °C; and Three-step (F3): at −11.33 °C/min from +5 °C to −80 °C, at −26.66 °C/min from to −80 °C to −120 °C, and at −13.33 °C/min from −120 °C to −140 °C. Two semen straws from each batch were evaluated before and after freezing. The group F3D3 exhibited significantly higher (p < 0.05) post-thaw SM 63.1 ± 2.5%, SV 79.0 ± 2.1% and SPMI 72.9 ± 1.7%, whereas SAI 72.9 ± 1.7% was significantly higher (p < 0.05) in group F3D2. The freezing technique F2 and F3 had significantly higher (p < 0.05) post-thaw sperm values compared to F1. The post-thaw SM and SV were above 50% and 65% with the freezing technique F2 and F3 but differed non-significant. The SPMI 67.6 ± 2.0% and SAI 76.1 ± 1.4% were significantly higher (p < 0.05) with F3. Likewise, the diluent D2 and D3 had significantly higher (p < 0.05) post-thaw sperm values compared to D1. The post-thaw SM, SV and SPMI were above 50%, 65% and 55% with the diluents D2 and D3 but differed non-significant. The SAI 76.1 ± 1.1% was significantly higher (p < 0.05) with D3. We concluded that the use of a simple home-made Tris-based diluent containing 20% (v/v) egg yolk and 5% glycerol (v/v), two-step dilution and a three-step freezing technique is a sustainable and effective method for freezing ram semen. For further validation, the fertility of ewes artificially inseminated with the frozen semen will be observed.  相似文献   

16.
17.
A finite element analysis (FEA) modeling technique has been developed to characterize how varying the orientation of the patellar tendon influences the patellofemoral pressure distribution. To evaluate the accuracy of the technique, models were created from MRI images to represent five knees that were previously tested in vitro to determine the influence of hamstrings loading on patellofemoral contact pressures. Hamstrings loading increased the lateral and posterior orientation of the patellar tendon. Each model was loaded at 40°, 60°, and 80° of flexion with quadriceps force vectors representing the experimental loading conditions. The orientation of the patellar tendon was represented for the loaded and unloaded hamstrings conditions based on experimental measures of tibiofemoral alignment. Similar to the experimental data, simulated loading of the hamstrings within the FEA models shifted the center of pressure laterally and increased the maximum lateral pressure. Significant (p < 0.05) differences were identified for the center of pressure and maximum lateral pressure from paired t-tests carried out at the individual flexion angles. The ability to replicate experimental trends indicates that the FEA models can be used for future studies focused on determining how variations in the orientation of the patellar tendon related to anatomical or loading variations or surgical procedures influence the patellofemoral pressure distribution.  相似文献   

18.
Sixteen subjects (aged 54.2 ± 14.1 years) with hemiparesis (7.9 ± 7.1 years since diagnosis) demonstrating a foot-drop and hamstrings muscle weakness were fitted with a dual-channel functional electrical stimulation (FES) system activating the dorsiflexors and hamstrings muscles. Measurements of gait performance were collected after a conditioning period of 6 weeks, during which the subjects used the system throughout the day. Gait was assessed with and without the dual-channel FES system, as well as with peroneal stimulation alone. Outcomes included lower limb kinematics and the step length taken with the non-paretic leg. Results with the dual-channel FES indicate that in the subgroup of subjects who demonstrated reduced hip extension but no knee hyperextension (n = 9), hamstrings FES increased hip extension during terminal stance without affecting the knee. Similarly, in the subgroup of subjects who demonstrated knee hyperextension but no limitation in hip extension (n = 7), FES restrained knee hyperextension without having an impact on hip movement. Additionally, step length was increased in all subjects. The peroneal FES had a positive effect only on the ankle. The results suggest that dual-channel FES for the dorsiflexors and hamstrings muscles may affect lower limb control beyond that which can be attributed to peroneal stimulation alone.  相似文献   

19.
Hamstring muscle function during knee flexion has been linked to hamstring injury and performance. However, it is unclear whether knee flexion alone (KF) requires similar hamstring electromyography (EMG) activity pattern to simultaneous hip extension and knee flexion (HE-KF), a combination that occurs in the late swing phase of sprinting. This study examined whether HE-KF maximal voluntary isometric contraction (MVIC) evokes higher (EMG) activity in biceps femoris long head (BFlh) and semitendinosus (ST) than KF alone. Effects of shank rotation angles were also tested. Twenty-one males performed the above-mentioned MVICs while EMG activity was measured along ST and BFlh. Conditions were compared using a one-way mixed functional ANOVA model under a fully Bayesian framework. Higher EMG activity was found in HE-KF in all shank rotation positions than in KF in the middle region of BFlh (highest in the 9th channel, by 0.022 mV [95%CrI 0.014 to 0.030] in neutral shank position). For ST, this was only observed in the neutral shank position and in the most proximal channel (by 0.013 mV [95%CrI 0.001 to 0.025]). We observed muscle- and region-specific responses to HE-KF. Future studies should examine whether hamstring activation in this task is related to injury risk and sprint performance.  相似文献   

20.
The aim of this study was to quantitatively describe the relationships between joint angles and muscle architecture (lengths (Lf) and angles (Θf) of fascicles) of human triceps surae [medial (MG) and lateral (LG) gastrocnemius and soleus (SOL) muscles] in vivo for three men-cosmonaut after long-duration spaceflight. Sagittal sonographs of MG, LG, SOL were taken at ankle was positioned at 15° (dorsiflexion), 0° (neutral position), +15°, and +30° (plantarflexion), with the knee at 90° at rest and after a long-duration spaceflight. At each position, longitudinal ultrasonic images of the MG and LG and SOL were obtained while the cosmonauts was relaxed from which fascicle lengths and angles with respect to the aponeuroses were determined. After space flight plantarflexor force declined significantly (26%; p < 0.001). The internal architecture of the GM, and LG, and SOL muscle was significantly altered. In the passive condition, Lf changed from 45, 53, and 39 mm (knee, 0°, ankle, −15°) to 26, 33, and 28 mm (knee, 90° ankle, 30°) for MG, LG, and SOL, respectively. Different lengths and angles of fascicles, and their changes by contraction, might be related to differences in force-producing capabilities of the muscles and elastic characteristics of tendons and aponeuroses. The three heads of the triceps surae muscle substantially differ in architecture, which probably reflects their functional roles. Differences in fiber length and pennation angle that were observed among the muscles and could be associated with differences in force production and in elastic properties of musculo-tendinous complex and aponeuroses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号