首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
将黄曲霉毒素B1肟(AFB1O)与牛血清白蛋白(BSA)的连接物,通过多点、多次免疫法注射免疫兔子。分析了抗体的产生进程、效价以及特异性。注射抗原后的第60天开始有较明显抗体产生,第120天达到高峰,维持15天左右后开始下降;抗体的ELISA效价高达1:30000;和黄曲霉毒素B1(AFB1)的结构类似物的竞争ELISA表明,抗体有很好的特异性。运用该抗体,以ELISA分析检测了几种农产品及饲料中污染AFB1,的含量,并和薄层层析法的分析结构进行了比较,结果表明当AFB1.的含量大于等于5ng/ml时。两者间有很好的相关性。  相似文献   

2.
李伟  李幼荣  潘宁   《生物工程学报》2001,17(6):639-642
所研究的酶标免疫传感器是采用再生丝素将待测抗原 (兔IgG)固定在石墨电极表面 ,选用抗体 (山羊抗兔IgG HRP)与其识别结合。利用H2O2 将抗原抗体结合的电位响应信号放大采用直接电位法检测IgG的浓度。该传感器测定IgG的最低浓度可达 1.2×10-10 mol/L ,标准曲线的线形范围在4.1×10-7~1.2×10-10 mol/L ,回归方程为: E=-1049+721g[IgG],响应时间为 15s。通过电泳的方法加速抗原抗体的识别结合 ,反应时间由原来的 90min缩短到 3 0min。这种以固定化抗原结合酶标抗体量的多少作为检测抗原标准的新型酶标免疫传感器 ,在临床检测、环境监测、HLA个人身份鉴定等领域都有着广阔的应用前景。  相似文献   

3.
某些革兰氏阴性细菌激活补体的新途径   总被引:2,自引:0,他引:2  
巳被公认的补体系统漱活途径有两条:一条是以抗原抗体复合物为“激活剂”激活C1的经典途径,另一条是不依赖抗体直接激活C3的替代途径。用补体对7种革兰氏阴性细菌做溶菌试验,发现E.coli B、E.coli K12gal+可不依赖特异性抗体而激活补体系统的经典途径,这是又一条补体系统的激活途径。  相似文献   

4.
人端粒结合蛋白TRF1的克隆、表达和抗体制备   总被引:1,自引:0,他引:1  
利用RT-PCR技术,从HeLa细胞的cDNA文库中扩增到人端粒结合蛋白1(hTRF1)基因编码区序列,克隆至pUCm-T载体,测序正确后,构建带His6-tag原核表达载体pET-28c-TRF1,经IPTG诱导表达的His6-TRF1融合蛋白分子量约为65kD,Western-blot证实表达产物可特异地与TRF1抗体sc-6165结合。用Ni2+NTA胶亲和层析纯化可得到电泳均一的融合蛋白,免疫新西兰纯种大白兔,获得特异性好的多克隆抗体,该抗体可用于免疫荧光染色和Western-blot方法检测哺乳动物细胞内源性的TRF1分子。  相似文献   

5.
用链霉素抗血清对链霉素的亲和力(KSM)和链霉素抗血清对二链霉胺的亲和力(KB)之比(KSM/KB)为指标,表征链霉素抗血清抗原结合部位的特异性;建立了快速分析该指标的ELISA(酶联免疫吸附法)法;并对链霉素抗体抗原结合部位的特异性进行了分类。  相似文献   

6.
噬菌体抗体库的构建及抗乳腺癌细胞单链抗体的筛选   总被引:3,自引:0,他引:3  
构建抗人乳腺癌细胞MCF 7的噬菌体单链抗体库 ,从中筛选MCF 7细胞特异性单链抗体。用MCF-7细胞免疫BALB C小鼠 ,取脾脏 ,提取总RNA ,用RT-PCR技术扩增小鼠抗体重链 (VH)和轻链 (VL)可变区基因 ,经重叠PCR(SOE-PCR) ,在体外将VH和VL连接成单链抗体 (scFv)基因 ,并克隆到噬菌粒载体pCANTAB5E中 ,电转化至大肠杆菌TG1,经辅助噬菌体超感染 ,构建噬菌体单链抗体库。从该抗体库中筛选特异性识别MCF-7细胞的噬菌体单链抗体 ,将表面展示单链抗体的单克隆噬菌体转化大肠杆菌TOP10进行可溶性表达。成功地构建了库容为12×106 的抗MCF-7乳腺癌细胞的单链抗体库 ,初步筛选到了与MCF 7细胞特异性结合的scFv,Westernblot检测表明 ,在大肠杆菌TOP10中实现了单链抗体可溶性表达  相似文献   

7.
目的:研究阿尔茨海默病β淀粉样肽(Aβ)B细胞表位疫苗2Aβ1-15-PADRE(Aβ-T)诱导产生抗体的免疫反应特性,并探讨不同佐剂对该疫苗免疫反应效果的影响。方法:合成了含2个Aβ42的 B细胞表位—Aβ1-15及1个辅助T细胞表位—PADRE的多肽2Aβ1-15-PADRE。采用Al(OH)3佐剂,弗氏佐剂,Abisco佐剂,MF59佐剂分别与多肽疫苗联合免疫小鼠,并另设3个对照组:无佐剂多肽免疫组(Mock),PBS免疫组(PBS),未免疫组(Native)。结果:5组多肽免疫组小鼠均产生了针对Aβ的特异性抗体,无佐剂多肽免疫组的IgG抗体滴度最低,Al(OH)3佐剂组,MF59佐剂组,Abisco佐剂组小鼠IgG抗体滴度较高,弗氏佐剂组IgG抗体滴度最高。斑点杂交实验结果显示5组小鼠免疫后血清与Aβ42单体反应较弱,与寡聚体反应最明显,与纤维状Aβ42几乎不反应。结论:4种佐剂均能提高多肽疫苗的免疫反应,产生高水平抗Aβ的特异性抗体。5组免疫小鼠产生的抗体均与Aβ寡聚体反应较强,与纤维状Aβ42反应较弱,表明该多肽疫苗具有良好的应用前景。  相似文献   

8.
目的: 研究人轮状病毒ZTR-5株灭活疫苗的制备及在实验小鼠中的免疫原性评价。方法: 轮状病毒ZTR-5株在MA104细胞上经蚀斑筛选纯化后,获得单一克隆接种至Vero细胞上适应性培养,免疫荧光定量检测病毒的感染性滴度,对收获的病毒液进行离心、超滤、分子筛纯化,甲醛灭活,抗原定量检测Al(OH)3吸附制备的实验性疫苗。使用不同剂量(8EU、32EU、128EU、256EU)经肌内注射免疫小鼠,共免疫三次,免疫间隔2周。采用间接ELISA法检测血清特异性抗体效价。 结果: 通过蚀斑纯化,筛选得到一株纯化的病毒株ZTR-5纯-1,在Vero细胞上适应性后感染性滴度达7.35logCCID50/ml;大量培养收获的病毒原液滴度为7.57logCCID50/ml,制备获得轮状病毒样品抗原含量为2 560EU/ml;经肌内注射,初次免疫后,所有剂量组动物均获得抗体阳转,阳转率为100%;第一次加强免疫后,各组血清特异性抗体水平均明显增高,免疫剂量为128EU和256EU的两组小鼠血清抗体效价均达1∶10 240;第二次加强免疫后,各剂量组(8EU、32EU、128EU、256EU)血清抗体效价依次达1∶5 120,1∶7 456,1∶14 481.54,1∶14 481.54。 结论:人轮状病毒ZTR-5株可在Vero细胞上稳定增殖,所制备的疫苗具良好免疫原性,用128EU/2次免疫即可获得良好的免疫效果。  相似文献   

9.
抗松材线虫纤维素酶单链抗体库的构建及筛选   总被引:1,自引:0,他引:1  
构建鼠源性松材线虫纤维素酶(Bursaphelenchus xylophilus cellulase, BXC)的噬菌体单链抗体库,从中筛选特异性BXC的单链抗体。以BXC为抗原免疫BALB/C小鼠,从脾脏提取总RNA,用RT-PCR技术扩增小鼠抗体重链(VH)和轻链(VL)可变区基因。经重叠PCR(SOE-PCR)在体外将VH和VL连接成单链抗体(scFv)基因,并克隆到噬菌粒载体pCANTAB5E中,电转化至大肠杆菌TG1,经辅助噬菌体超感染,成功构建了库容为5×104的Anti-BXC单链抗体库,并从该抗体库中初步筛选到了特异性识别BXC的噬菌体单链抗体scFv。将表面展示单链抗体的单克隆噬菌体转化大肠杆菌HB2151进行可溶性表达,SDS-PAGE及Western blot分析结果显示,可溶性scFv获得表达,且与BXC具有结合活性,为松材线虫的检验检疫以及病理学研究奠定了基础。  相似文献   

10.
前列腺素(PGs)在胚泡着床和子宫的蜕膜化过程中起着重要的调节作用,前列环素(PGI2)是着床位点表达量最高的PGs.前列环素受体(IP)和过氧化物酶体增殖因子活化受体(PPARs)分别是PGI2的细胞表面G蛋白偶联的受体和细胞核内受体,IP在胚泡着床位点不表达或检测不到,而PPARδ表达丰富,RXRs(PPARs的异二聚体伴侣)及相应的PPARδ-RXRα复合物、PGI2合成酶(COX-2/PGIS)也在着床位点表达丰富,因此推测PGI2在胚泡着床中的作用可能是通过PPARδ受体介导的.利用PGI2类似物(cPGI)和PPARδ特异性类似物能够恢复COX-2基因敲除小鼠的胚泡着床和蜕膜化.总之,PGI2通过PPARδ在胚泡着床和蜕膜化过程中起着重要的调节作用.  相似文献   

11.
An electrochemical immunosensor for quantitative detection of α-fetoprotein (AFP) in human serum was developed using graphene sheets (GS) and thionine (TH) as electrode materials and mesoporous silica nanoparticles (MSNs) loaded with ferroferric oxide (Fe3O4) nanoparticles and horseradish peroxidase (HRP) as labels for signal amplification. In this study, the compound of GS and TH (GS–TH) was used as a substrate for promoting electron transfer and immobilization of primary antibody of AFP (Ab1). MSNs were used as a carrier for immobilization of secondary antibody of AFP (Ab2), Fe3O4, and HRP. The synergistic effect occurred between Fe3O4 and HRP and greatly improved the sensitivity of the immunosensor. This method could detect AFP over a wide concentration range from 0.01 to 25 ng ml−1 with a detection limit of 4 pg ml−1. This strategy may find wide potential application in clinical analysis or detection of other tumor markers.  相似文献   

12.
A multiplexing electrochemical immunosensor was developed for ultrasensitive detection of cancer related protein biomarkers. We employed disposable screen-printed carbon electrode (SPCE) array as the detection platform. A universal multi-labeled nanoprobe was developed by loading HRP and goat-anti-rabbit IgG (secondary antibody, Ab2) onto multiwalled carbon nanotube (MWNT). This universal nanoprobe was available for virtually any sandwich-based antigen detection and showed superiority in several areas. By using the SPCE array and the universal nanoprobe, we could detect as low as 5 pg mL−1 of prostate specific antigen (PSA) and 8 pg mL−1 of Interleukin 8 (IL-8) with the electrochemical immunosensor. We also demonstrated simultaneous detection of two protein biomarkers with this platform. With these attracted features, our immunoassay system shows promising applications for in-field and point-of-care test in clinical diagnostics.  相似文献   

13.
Here we presented a simple and effective membrane mimetic microfluidic device with antibody conjugated supported lipid bilayer (SLB) “smart coating” to capture viable circulating tumor cells (CTCs) and circulating tumor microemboli (CTM) directly from whole blood of all stage clinical cancer patients. The non-covalently bound SLB was able to promote dynamic clustering of lipid-tethered antibodies to CTC antigens and minimized non-specific blood cells retention through its non-fouling nature. A gentle flow further flushed away loosely-bound blood cells to achieve high purity of CTCs, and a stream of air foam injected disintegrate the SLB assemblies to release intact and viable CTCs from the chip. Human blood spiked cancer cell line test showed the ~95% overall efficiency to recover both CTCs and CTMs. Live/dead assay showed that at least 86% of recovered cells maintain viability. By using 2 mL of peripheral blood, the CTCs and CTMs counts of 63 healthy and colorectal cancer donors were positively correlated with the cancer progression. In summary, a simple and effective strategy utilizing biomimetic principle was developed to retrieve viable CTCs for enumeration, molecular analysis, as well as ex vivo culture over weeks. Due to the high sensitivity and specificity, it is the first time to show the high detection rates and quantity of CTCs in non-metastatic cancer patients. This work offers the values in both early cancer detection and prognosis of CTC and provides an accurate non-invasive strategy for routine clinical investigation on CTCs.  相似文献   

14.
In this study, a novel tracer, horseradish peroxidase (HRP) functionalized gold nanorods (Au NRs) nanocomposites (HRP–Au NRs), was designed to label the signal antibodies for sensitive electrochemical measurement of alpha-fetoprotein (AFP). The preparation of HRP–Au NRs nanocomposites and the labeling of secondary antibody (Ab2) were performed by one-pot assembly of HRP and Ab2 on the surface of Au NRs. The immunosensor was fabricated by assembling carbon nanotubes (CNTs), Au NRs, and capture antibodies (Ab1) on the glassy carbon electrode. In the presence of AFP antigen, the labels were captured on the surface of the Au NRs/CNTs via specific recognition of antigen–antibody, resulting in the signal intensity being clearly increased. Differential pulse voltammetry (DPV) was employed to record the response signal of the immunosensor in phosphate-buffered saline (PBS) containing hydrogen peroxide (H2O2) and 3,3′,5,5′-tetramethylbenzidine (TMB). Under optimal conditions, the signal intensity was linearly related to the concentration of AFP in the range of 0.1–100 ng ml−1, and the limit of detection was 30 pg ml−1 (at signal/noise [S/N] = 3). Furthermore, the immunoassay method was evaluated using human serum samples, and the recovery obtained was within 99.0 and 102.7%, indicating that the immunosensor has potential clinical applications.  相似文献   

15.
Prostate-specific antigen (PSA), as the specificity of prostate cancer markers, has been widely used in prostate cancer diagnosis and screening. In this study, we fabricated an electrochemical immunosensor for PSA detection using the amino-functionalized graphene sheet–ferrocenecarboxaldehyde composite materials (NH2-GS@FCA) and silver hybridized mesoporous silica nanoparticles (Ag@NH2-MCM48). Under optimal conditions, the fabricated immunosensor showed a wide linear range with PSA concentration (0.01–10.0 ng·ml−1). Low detection limit (2 pg·ml−1) proved the high sensitivity. In addition, the immunosensor possessed good stability and reproducibility. Moreover, the application to PSA analysis in serum samples yielded satisfactory results.  相似文献   

16.
A rapid, simple, facile, sensitive and enzyme‐amplified chemiluminescence immunoassay (CLIA) method to detect antibodies against porcine parvovirus has been developed. Horseradish peroxidase (HRP) and the detection antibody were simultaneously co‐immobilized on the surface of gold nanoparticles using the electrostatic method to form gold nanoparticle‐based nanoprobes. This nanoprobe was employed in a sandwich‐type CLIA, which enables CL signal readout from enzymatic catalysis and results in signal amplification. The presence of porcine parvovirus infection was determined in porcine parvovirus antibodies by measuring the CL intensity caused by the reaction of HRP–luminol with H2O2. Under optimal conditions, the obtained calibration plot for the standard positive serum was approximately linear within the dilution range of 1:80 to 1:5120. The limit of detection for the assay was 1:10,240 (S/N = 3), which is much lower than that typically achieved with an enzyme‐linked immunosorbent assay (1:160; S/N = 3). A series of repeatability measurements using 1:320‐fold diluted standard positive serum gave reproducible results with a relative standard deviation of 4.9% (n = 11). The ability of the immunosensor to analyze clinical samples was tested on porcine sera. The immunosensor had an efficiency of 90%, a sensitivity of 93.3%, and a specificity of 87.5% relative to the enzyme‐linked immunosorbent assay results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.

Background

Asialoglycoprotein receptor (ASGPR)-ligand-based separation combined with identification with Hep Par 1 or pan-cytokeratin (P-CK) antibody have been demonstrated to detect circulating tumor cells (CTCs) in hepatocellular carcinoma (HCC). The aim of this study was to develop an improved enrichment and identification system that allows the detection of all types of HCC CTCs.

Methods

The specificity of the prepared anti-ASGPR monoclonal antibody was characterized. HCC cells were bound by ASGPR antibody and subsequently magnetically isolated by second antibody-coated magnetic beads. Isolated HCC cells were identified by immunofluorescence staining using a combination of anti-P-CK and anti-carbamoyl phosphate synthetase 1 (CPS1) antibodies. Blood samples spiked with HepG2 cells were used to determine recovery and sensitivity. CTCs were detected in blood samples from HCC patients and other patients.

Results

ASGPR was exclusively expressed in human hepatoma cell line, normal hepatocytes and HCC cells in tissue specimens detected by the ASGPR antibody staining. More HCC cells could be identified by the antibody cocktail for CPS1 and P-CK compared with a single antibody. The current approach obtained a higher recovery rate of HepG2 cells and more CTC detection from HCC patients than the previous method. Using the current method CTCs were detected in 89% of HCC patients and no CTCs were found in the other test subjects.

Conclusions

Our anti-ASGPR antibody could be used for specific and efficient HCC CTC enrichment, and anti-P-CK combined with anti-CPS1 antibodies is superior to identification with one antibody alone in the sensitivity for HCC CTC detection.  相似文献   

18.
In this work, a multiplexed electrochemical immunosensor was developed for sensitive detection of carcinoembryonic antigen (CEA) and α-fetoprotein (AFP) using silver nanoparticles (Ag NPs) or gold nanoparticles (Au NPs) coated-carbon nanospheres (CNSs) as labels. CNSs were employed as the carrier for the immobilization of nanoparticles (Ag NPs or Au NPs), thionine (Thi), and secondary antibodies (Ab2) due to their good monodispersity and uniform structure. Au NPs reduced graphene oxide (rGO) nanocomposites were used as sensing substrate for assembling two primary antibodies (Ab1). In the presence of target proteins, two labels were attached onto the surface of the rGO/Au NPs nanocomposites via a sandwich immunoreaction. Two distinguishable peaks, one at +0.16 V (corresponding to Ag NPs) and another at −0.33 V (corresponding to Thi), were obtained in differential pulse voltammetry (DPV). The peak difference was approximately 490 mV, indicating that CEA and AFP can be simultaneously detected in a single run. Under optimal conditions, the peak currents were linearly related to the concentrations of CEA or AFP in the range of 0.01–80 ng ml−1. The detection limits of CEA and AFP were 2.8 and 3.5 pg ml−1, respectively (at a signal-to-noise ratio of 3). Moreover, when the immunosensor was applied to serum samples, the results obtained were in agreement with those of the reference method, indicating that the immunosensor would be promising in the application of clinical diagnosis and screening of biomarkers.  相似文献   

19.
BackgroundCirculating tumor cells (CTCs) existing in peripheral blood can be used to predict the prognosis and survival of cancer patients. The study was designed to detect circulating tumor cells and circulating tumor single cell genes by applying microfluidic chip technology. It was used to explore the clinical application value in breast cancer.MethodsWe have developed a size-based CTCs sorting microfluidic chip, which contains a hexagonal array and a micro-pipe channel array to isolate and confirm both single CTCs and CTCs clusters. The sorting performance of the as-fabricated chip was tested by analyzing the clinical samples collected from 129 breast cancer patients and 50 healthy persons.ResultsIn this study, the chip can detect different immunophenotypes of CTCs in breast cancer patients. It was found that the new microfluidic device had high sensitivity (73.6%) and specificity (82.0%) in detecting CTCs. By detecting the blood samples of 129 breast cancer patients and 50 healthy blood donors, it was found that the number of CTCs was not associated with clinical factors such as age, gender, pathological type, and tumor size of breast cancer patients (P > 0.05), but was associated with TNM staging of breast cancer, with or without metastasis (P < 0.005). There was a statistically significant difference in the number of CTCs between luminal A (ER+/PR+/HER2-) and HER-2+ (ER-/PR-/HER2+) (P < 0.05). The best cut-off level distinguished by CTC between the breast cancer patients and the healthy persons was 3.5 cells/mL, with 0.845 for AUC-ROC, 0.790–0.901 for 95% CI, 73.6% for sensitivity, and 82% for specificity (P = 0.000). The combination of CTC, CEA, CA125 and CA153 can provide more effective breast cancer screening.ConclusionsThe CTCs analysis method presented here doesn''t rely on the specific antibody, such as anti-EpCAM, which would avoid the missed inspection caused by antibody-relied methods and offer more comprehensive biological information for clinical breast cancer diagnosis and treatment.  相似文献   

20.
We report a novel electrochemical immunosensor that can sensitively detect avian influenza virus H5 subtype (AIV H5) captured by graphene oxide-H5-polychonal antibodies-bovine serum albumin (GO-PAb-BSA) nanocomposite. The graphene oxide (GO) carried H5-polychonal antibody (PAb) were used as signal amplification materials. Upon signal amplification, the immunosensor showed a 256-fold increase in detection sensitivity compared to the immunosensor without GO-PAb-BSA. We designed a PAb labeling GO strategy and signal amplification procedure that allow ultrasensitive and selective detection of AIV H5. The established method responded to 2−15 HA unit/50 µL H5, with a linear calibration range from 2−15 to 2−8 HA unit/50 µL. In summary, we demonstrated that the immunosenser has a high specificity and sensitivity for AIV H5, and the established assay could be potentially applied in the rapid detection of other pathogenic microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号