首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphatidic acid is a key signaling molecule heavily implicated in exocytosis due to its protein-binding partners and propensity to induce negative membrane curvature. One phosphatidic acid-producing enzyme, phospholipase D (PLD), has also been implicated in neurotransmission. Unfortunately, due to the unreliability of reagents, there has been confusion in the literature regarding the expression of PLD isoforms in the mammalian brain which has hampered our understanding of their functional roles in neurons. To address this, we generated epitope-tagged PLD1 and PLD2 knockin mice using CRISPR/Cas9. Using these mice, we show that PLD1 and PLD2 are both localized at synapses by adulthood, with PLD2 expression being considerably higher in glial cells and PLD1 expression predominating in neurons. Interestingly, we observed that only PLD1 is expressed in the mouse retina, where it is found in the synaptic plexiform layers. These data provide critical information regarding the localization and potential role of PLDs in the central nervous system.  相似文献   

2.
BackgroundTo date, EVs characterization techniques are extremely diverse. The contribution of AFM, in particular, is often confined to size distribution. While AFM provides a unique possibility to carry out measurements in situ, nanomechanical characterization of EVs is still missing.MethodsBlood plasma EVs were isolated by ultracentrifugation, analyzed by flow cytometry and NTA. Followed by cryo-EM, we applied PeakForce AFM to assess morphological and nanomechanical properties of EVs in liquid.ResultsNanoparticles were subdivided by their size estimated for their suspended state into sub-sets of small S1-EVs (< 30 nm), S2-EVs (30–50 nm), and sub-set of large ones L-EVs (50–170 nm). Non-membranous S1-EVs were distinguished by higher Young's modulus (10.33(7.36;15.25) MPa) and were less deformed by AFM tip (3.6(2.8;4.4) nm) compared to membrane exosomes S2-EVs (6.25(4.52;8.24) MPa and 4.8(4.3;5.9) nm). L-EVs were identified as large membrane exosomes, heterogeneous by their nanomechanical properties (22.43(8.26;53.11) MPa and 3.57(2.07;7.89) nm). Nanomechanical mapping revealed a few non-deformed L-EVs, of which Young's modulus rose up to 300 MPa. Taken together with cryo-EM, these results lead us to the suggestion that two or more vesicles could be contained inside a large one being a multilayer vesicle.ConclusionsWe identified particles similar in morphology and showed differences in nanomechanical properties that could be attributed to the features of their inner structure.General significanceOur results further elucidate the identification of EVs and concomitant nanoparticles based on their nanomechanical properties.  相似文献   

3.
There are over 7 million people worldwide suffering from Parkinson's disease, and this number will double in the next decade. Causative mutations and risk variants in >20 genes that predominantly act at synapses have been linked to Parkinson's disease. Synaptic defects precede neuronal death. However, we are only now beginning to understand which molecular mechanisms contribute to this synaptic dysfunction. In this review, we discuss recent data demonstrating that Parkinson proteins act centrally to various protein quality control pathways at the synapse, and we argue that disturbed synaptic proteostasis is an early driver of neurodegeneration in Parkinson's disease.  相似文献   

4.
In some cases, lipids in one leaflet of an asymmetric artificial lipid vesicle suppress the formation of ordered lipid domains (rafts) in the opposing leaflet. Whether this occurs in natural membranes is unknown. Here, we investigated this issue using plasma membrane vesicles (PMVs) from rat leukemia RBL-2H3 cells. Membrane domain formation and order was assessed by fluorescence resonance energy transfer and fluorescence anisotropy. We found that ordered domains in PMVs prepared from cells by N-ethyl maleimide (NEM) treatment formed up to ~37°C, whereas ordered domains in symmetric vesicles formed from the extracted PMV lipids were stable up to 55°C, indicating the stability of ordered domains was substantially decreased in intact PMVs. This behavior paralleled lesser ordered domain stability in artificial asymmetric lipid vesicles relative to the corresponding symmetric vesicles, suggesting intact PMVs exhibit some degree of lipid asymmetry. This was supported by phosphatidylserine mislocalization on PMV outer leaflets as judged by annexin binding, which indicated NEM-induced PMVs are much more asymmetric than PMVs formed by dithiothreitol/paraformaldehyde treatment. Destroying asymmetry by reconstitution of PMVs using detergent dilution also showed stabilization of domain formation, even though membrane proteins remained associated with reconstituted vesicles. Similar domain stabilization was observed in artificial asymmetric lipid vesicles after destroying asymmetry via detergent reconstitution. Proteinase K digestion of proteins had little effect on domain stability in NEM PMVs. We conclude that loss of PMV lipid asymmetry can induce ordered domain formation. The dynamic control of lipid asymmetry in cells may regulate domain formation in plasma membranes.  相似文献   

5.
6.
《遗传学报》2020,47(10):627-636
The primary cilium, an important microtubule-based organelle, protrudes from nearly all the vertebrate cells. The motility of cilia is necessary for various developmental and physiological processes. Phosphoinositides (PIs) and its metabolite, PtdIns(4,5)P2, have been revealed to contribute to cilia assembly and disassembly. As an important kinase of the PI pathway and signaling, phosphatidylinositol 4-kinase β (PI4KB) is the one of the most extensively studied phosphatidylinositol 4-kinase isoform. However, its potential roles in organ development remain to be characterized. To investigate the developmental role of Pi4kb, especially its function on zebrafish ciliogenesis, we generated pi4kb deletion mutants using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 technique. The homozygous pi4kb mutants exhibit an absence of primary cilia in the inner ear, neuromasts, and pronephric ducts accompanied by severe edema in the eyes and other organs. Moreover, smaller otic vesicle, malformed semicircular canals, and the insensitivity on sound stimulation were characteristics of pi4kb mutants. At the protein level, both in vivo and in vitro analyses revealed that synthesis of Pi4p was greatly reduced owing to the loss of Pi4kb. In addition, the expression of the Pi4kb-binding partner of neuronal calcium sensor-1, as well as the phosphorylation of phosphatidylinositol-4-phosphate downstream effecter of Akt, was significantly inhibited in pi4kb mutants. Taken together, our work uncovers a novel role of Pi4kb in zebrafish inner ear development and the functional formation of hearing ability by determining hair cell ciliogenesis.  相似文献   

7.
Meiotic maturation is an intricate and precisely regulated process orchestrated by various pathways and numerous proteins. However, little is known about the proteome landscape during oocytes maturation. Here, we obtained the temporal proteomic profiles of mouse oocytes during in vivo maturation. We successfully quantified 4694 proteins from 4500 oocytes in three key stages (germinal vesicle, germinal vesicle breakdown, and metaphase II). In particular, we discovered the novel proteomic features during oocyte maturation, such as the active Skp1–Cullin–Fbox pathway and an increase in mRNA decay–related proteins. Using functional approaches, we further identified the key factors controlling the histone acetylation state in oocytes and the vital proteins modulating meiotic cell cycle. Taken together, our data serve as a broad resource on the dynamics occurring in oocyte proteome and provide important knowledge to better understand the molecular mechanisms during germ cell development.  相似文献   

8.
The amount of any given protein in the brain is determined by the rates of its synthesis and destruction, which are regulated by different cellular mechanisms. Here, we combine metabolic labeling in live mice with global proteomic profiling to simultaneously quantify both the flux and amount of proteins in mouse models of neurodegeneration. In multiple models, protein turnover increases were associated with increasing pathology. This method distinguishes changes in protein expression mediated by synthesis from those mediated by degradation. In the AppNL-F knockin mouse model of Alzheimer’s disease, increased turnover resulted from imbalances in both synthesis and degradation, converging on proteins associated with synaptic vesicle recycling (Dnm1, Cltc, Rims1) and mitochondria (Fis1, Ndufv1). In contrast to disease models, aging in wild-type mice caused a widespread decrease in protein recycling associated with a decrease in autophagic flux. Overall, this simple multidimensional approach enables a comprehensive mapping of proteome dynamics and identifies affected proteins in mouse models of disease and other live animal test settings.  相似文献   

9.
Influenza is an acute respiratory disease and a global health problem. Although influenza vaccines are commercially available, frequent antigenic changes in hemagglutinin might render them less effective or unavailable. We previously reported that modified outer membrane vesicle (fmOMV) provided immediate and robust protective immunity against various subtypes of influenza virus. However, the effect was transient because it was innate immunity-dependent. In this study, we investigated the effects of consecutive administration of fmOMV and influenza virus on the adaptive immune response and long-term protective immunity against influenza virus. When the mice were pretreated with fmOMV and subsequently infected with influenza virus, strong influenza-specific antibody and T cell responses were induced in both systemic and lung mucosal compartments without pathogenic symptoms. Upon the secondary viral challenge at week 4, the mice given fmOMV and influenza virus exhibited almost complete protection against homologous and heterologous viral challenge. More importantly, this strong protective immunity lasted up to 18 weeks after the first infection. These results show that pretreatment with fmOMV and subsequent infection with influenza virus efficiently induces broad and long-lasting protective immunity against various virus subtypes, suggesting a novel antiviral strategy against newly-emerging viral diseases without suitable vaccines or therapeutics.  相似文献   

10.
Protein dynamics play a major role for the catalytic function of enzymes, the interaction of protein complexes or signal integration in regulatory proteins. In the context of multi-domain proteins involved in light-regulation of enzymatic effectors, the central role of conformational dynamics is well established. Light activation of sensory modules is followed by long-range signal transduction to different effectors; rather than domino-style structural rearrangements, a complex interplay of functional elements is required to maintain functionality. One family of such sensor-effector systems are red-light-regulated phytochromes that control diguanylate cyclases involved in cyclic-dimeric-GMP formation. Based on structural and functional studies of one prototypic family member, the central role of the coiled-coil sensor-effector linker was established. Interestingly, subfamilies with different linker lengths feature strongly varying biochemical characteristics. The dynamic interplay of the domains involved, however, is presently not understood. Here we show that the PHY domain dimer interface plays an essential role in signal integration, and that a functional coupling with the coiled-coil linker element is crucial. Chimaeras of two biochemically different family members highlight the phytochrome-spanning helical spine as an essential structural element involved in light-dependent upregulation of enzymatic turnover. However, isolated structural elements can frequently not be assigned to individual characteristics, which further emphasises the importance of global conformational dynamics. Our results provide insights into the intricate processes at play during light signal integration and transduction in these photosensory systems and thus provide additional guidelines for a more directed design of novel sensor-effector combinations with potential applications as optogenetic tools.  相似文献   

11.
Tau is an intrinsically disordered protein implicated in many neurodegenerative diseases. The repeat domain fragment of tau, tau-K18, is known to undergo a disorder to order transition in the presence of lipid micelles and vesicles, in which helices form in each of the repeat domains. Here, the mechanism of helical structure formation, induced by a phospholipid mimetic, sodium dodecyl sulfate (SDS) at sub-micellar concentrations, has been studied using multiple biophysical probes. A study of the conformational dynamics of the disordered state, using photoinduced electron transfer coupled to fluorescence correlation spectroscopy (PET-FCS) has indicated the presence of an intermediate state, I, in equilibrium with the unfolded state, U. The cooperative binding of the ligand (L), SDS, to I has been shown to induce the formation of a compact, helical intermediate (IL5) within the dead time (∼37 µs) of a continuous flow mixer. Quantitative analysis of the PET-FCS data and the ensemble microsecond kinetic data, suggests that the mechanism of induction of helical structure can be described by a U ↔ I ↔ IL5 ↔ FL5 mechanism, in which the final helical state, FL5, forms from IL5 with a time constant of 50–200 µs. Finally, it has been shown that the helical conformation is an aggregation-competent state that can directly form amyloid fibrils.  相似文献   

12.
Long-lasting synaptic changes within the neuronal network mediate memory. Neurons bearing such physical traces of memory (memory engram cells) are often equated with neurons expressing immediate early genes (IEGs) during a specific experience. However, past studies observed the expression of different IEGs in non-overlapping neurons or synaptic plasticity in neurons that do not express a particular IEG. Importantly, recent studies revealed that distinct subsets of neurons expressing different IEGs or even IEG negative-(yet active) neurons support different aspects of memory or computation, suggesting a more complex nature of memory engram cells than previously thought. In this short review, we introduce studies revealing such heterogeneous composition of the memory engram and discuss how the memory system benefits from it.  相似文献   

13.
Aging leads to cognitive impairments characterized by reduced hippocampal functions that are associated with impairment of long-term potentiation of CA1 synapses. Here, we assessed the safety and efficacy of modified (?)-gallocatechin gallate (GCG)-enriched green tea extract (HTP-GTE) in ameliorating the cognitive dysfunctions in late middle-aged murine model. We developed a novel HTP-GTE that was enriched with GCG via epimerization that involved heating. We compared the effects of oral administrations of conventional green tea and HTP-GTE in young and aged male C57/BL6 mice, and examined the changes in the hippocampal functions related to aging process. The functional outcome was assessed by the electrophysiological experiments to measure the long-term potentiation (LTP). HTP-GTE improved the age-related cognitive impairments via restoring long-term synaptic plasticity. We also identified that GCG was the main active component responsible for the HTP-GTE effect. The main molecular pathway in ameliorating the age-related cognitive dysfunctions involved protein kinase A (PKA) which was shown to be modulated by HTP-GTE. Thus, HTP-GTE has a therapeutic potential as a dietary supplement which may aid to rescue the impaired cognitive functions at the early phase of aging process through the modulation of LTP threshold.  相似文献   

14.
Changes in the glycosylation process appear early in carcinogenesis and evolve with the growth and spread of cancer. The correlation of the characteristic glycosylation signature with the tumor stage and the appropriate therapy choice is an important issue in translational medicine. Oncologists also pay attention to extracellular vesicles as reservoirs of new cancer glycomarkers that can be potent for cancer diagnosis/prognosis. In this review, we recall glycomarkers used in oncology and show their new glycoforms of improved clinical relevance. We summarize current knowledge on the biological functions of glycoepitopes in cancer-derived extracellular vesicles and their potential use in clinical practice. Is glycomics a future of cancer diagnosis? It may be, but in combination with other omics analyses than alone.  相似文献   

15.
Sortilin is a post-Golgi trafficking receptor homologous to the yeast vacuolar protein sorting receptor 10 (VPS10). The VPS10 motif on sortilin is a 10-bladed β-propeller structure capable of binding more than 50 proteins, covering a wide range of biological functions including lipid and lipoprotein metabolism, neuronal growth and death, inflammation, and lysosomal degradation. Sortilin has a complex cellular trafficking itinerary, where it functions as a receptor in the trans-Golgi network, endosomes, secretory vesicles, multivesicular bodies, and at the cell surface. In addition, sortilin is associated with hypercholesterolemia, Alzheimer’s disease, prion diseases, Parkinson’s disease, and inflammation syndromes. The 1p13.3 locus containing SORT1, the gene encoding sortilin, carries the strongest association with LDL-C of all loci in human genome-wide association studies. However, the mechanism by which sortilin influences LDL-C is unclear. Here, we review the role sortilin plays in cardiovascular and metabolic diseases and describe in detail the large and often contradictory literature on the role of sortilin in the regulation of LDL-C levels.  相似文献   

16.
Mutations in PRKN cause the second most common genetic form of Parkinson's disease (PD)—a debilitating movement disorder that is on the rise due to population aging in the industrial world. PRKN codes for an E3 ubiquitin ligase that has been well established as a key regulator of mitophagy. Together with PTEN-induced kinase 1 (PINK1), Parkin controls the lysosomal degradation of depolarized mitochondria. But Parkin's functions go well beyond mitochondrial clearance: the versatile protein is involved in mitochondria-derived vesicle formation, cellular metabolism, calcium homeostasis, mitochondrial DNA maintenance, mitochondrial biogenesis, and apoptosis induction. Moreover, Parkin can act as a modulator of different inflammatory pathways. In the current review, we summarize the latest literature concerning the diverse roles of Parkin in maintaining a healthy mitochondrial pool. Moreover, we discuss how these recent discoveries may translate into personalized therapeutic approaches not only for PRKN-PD patients but also for a subset of idiopathic cases.  相似文献   

17.
Parkinson’s disease (PD) is the most common neurological movement disorder characterized by the selective and irreversible loss of dopaminergic neurons in substantia nigra pars compacta resulting in dopamine deficiency in the striatum. While most cases are sporadic or environmental, about 10% of patients have a positive family history with a genetic cause. The misfolding and aggregation of α-synuclein (α-syn) as a casual factor in the pathogenesis of PD has been supported by a great deal of literature. Extensive studies of mechanisms underpinning degeneration of the dopaminergic neurons induced by α-syn dysfunction suggest a complex process that involves multiple pathways, including mitochondrial dysfunction and increased oxidative stress, impaired calcium homeostasis through membrane permeabilization, synaptic dysfunction, impairment of quality control systems, disruption of microtubule dynamics and axonal transport, endoplasmic reticulum/Golgi dysfunction, nucleus malfunction, and microglia activation leading to neuroinflammation. Among them mitochondrial dysfunction has been considered as the most primary target of α-syn-induced toxicity, leading to neuronal cell death in both sporadic and familial forms of PD. Despite reviewing many aspects of PD pathogenesis related to mitochondrial dysfunction, a systemic study on how α-syn malfunction/aggregation damages mitochondrial functionality and leads to neurodegeneration is missing in the literature. In this review, we give a detailed molecular overview of the proposed mechanisms by which α-syn, directly or indirectly, contributes to mitochondrial dysfunction. This may provide valuable insights for development of new therapeutic approaches in relation to PD. Antioxidant-based therapy as a potential strategy to protect mitochondria against oxidative damage, its challenges, and recent developments in the field are discussed.  相似文献   

18.
The inflammatory hypothesis is one of the most important mechanisms of depression. Fucoidan is a bioactive sulfated polysaccharide abundant in brown seaweeds with anti-inflammatory activity. However, the antidepressant effects of fucoidan on chronic stress-induced depressive-like behaviors have not been well elucidated. Here, we used two different depressive-like mouse models, lipopolysaccharide (LPS) and chronic restraint stress (CRS) models, to explore the detailed molecular mechanism underlying its antidepressant-like effects in C57BL/6J mice by combining multiple behavioral, molecular and immunofluorescence experiments. Adenovirus-mediated overexpression of caspase-1 and pharmacological inhibitors were also used to clarify the antidepressant mechanisms of fucoidan. We found that acute administration of fucoidan did not produce antidepressant effects in the tail suspension test (TST) and forced swim test (FST). Interestingly, chronic fucoidan administration not only dose-dependently reduced stress-induced depressive-like behaviors in the TST, FST, sucrose preference test (SPT), and novelty-suppressed feeding test (NSFT), but also alleviated the downregulation of brain-derived neurotrophic factor (BDNF)-dependent synaptic plasticity via inhibiting caspase-1-mediated inflammation in the hippocampus of mice. Moreover, fucoidan significantly ameliorated behavioral and synaptic plasticity abnormalities in the overexpression of caspase-1 in the hippocampus of mice. Furthermore, blocking BDNF abolished the antidepressant-like effects of fucoidan in mice. Therefore, our findings clearly indicate that fucoidan provides a potential supplementary noninvasive treatment for depression by inhibition of hippocampal inflammation.  相似文献   

19.
Cellular biomolecular complexes including protein–protein, protein–RNA, and protein–DNA interactions regulate and execute most biological functions. In particular in brain, protein–protein interactions (PPIs) mediate or regulate virtually all nerve cell functions, such as neurotransmission, cell–cell communication, neurogenesis, synaptogenesis, and synaptic plasticity. Perturbations of PPIs in specific subsets of neurons and glia are thought to underly a majority of neurobiological disorders. Therefore, understanding biological functions at a cellular level requires a reasonably complete catalog of all physical interactions between proteins. An enzyme-catalyzed method to biotinylate proximal interacting proteins within 10 to 300 nm of each other is being increasingly used to characterize the spatiotemporal features of complex PPIs in brain. Thus, proximity labeling has emerged recently as a powerful tool to identify proteomes in distinct cell types in brain as well as proteomes and PPIs in structures difficult to isolate, such as the synaptic cleft, axonal projections, or astrocyte–neuron junctions. In this review, we summarize recent advances in proximity labeling methods and their application to neurobiology.  相似文献   

20.
Like most eukaryotic organisms, fungi use endocytosis for nutrition, signal transduction, turnover of plasma membrane molecules, etc. It is generally accepted that in filamentous fungi, as in yeast, invaginations of the plasma membrane of a small size (up to about 100 nm) are formed in the early stages of endocytosis. These invaginations are surrounded by a rigid actin scaffold – an actin patch, and give rise to small primary endocytic vesicles after scission from the plasma membrane. However, in classical mycological studies, complex large-volume invaginations of the plasma membrane – lomasomes – were described in filamentous fungi. In our time, in a number of filamentous basidiomycetes when tracking endocytosis using styryl fluorescent labels, large invaginations of the plasma membrane have been found, presumably forming endocytic macrovesicles after scission. In this paper, for comparison, large-sized types of endocytosis in animal cells are briefly described. Information about tubular endocytic invaginations in fungi is presented. Three types of large invaginations of the plasma membrane, detected at the TEM level in basidiomycetes, are characterized. The main question this paper addresses is whether or not filamentous fungi do have an analogue of animal macropinocytosis – macrovesicular endocytosis. There are some indications that the answer to this question is yes, but further research is needed. The presence of macrovesicular endocytosis may change the well-established beliefs about the cellular organization of filamentous fungi and the physiology of their nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号