首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An estimated half of all proteins contain a metal, with these being essential for a tremendous variety of biological functions. X-ray crystallography is the major method for obtaining structures at high resolution of these metalloproteins, but there are considerable challenges to obtain intact structures due to the effects of radiation damage. Serial crystallography offers the prospect of determining low-dose synchrotron or effectively damage free XFEL structures at room temperature and enables time-resolved or dose-resolved approaches. Complementary spectroscopic data can validate redox and or ligand states within metalloprotein crystals. In this opinion, we discuss developments in the application of serial crystallographic approaches to metalloproteins and comment on future directions.  相似文献   

2.
Metalloprotein and redox protein design are rapidly advancing toward the chemical synthesis of novel proteins that have predictable structures and functions. Current data demonstrate a breadth of successful approaches to metallopeptide and metalloprotein design based on de novo, rational and combinatorial strategies. These sophisticated synthetic analogs of natural proteins constructively test our comprehension of metalloprotein structure/function relationships. Additionally, designed redox proteins provide novel constructs for examining the thermodynamics and kinetics of biological electron transfer.  相似文献   

3.
De novo design of metalloproteins provides a valuable tool for understanding the structural constraints and functional attributes of natural biological systems using first principles. This review focuses on recent research aimed primarily at probing the subtle interactions between metals and proteins in designed systems. Considerable attention has focussed on redefining novel design methods used in mimicking natural hemeproteins, mononuclear and dinuclear metallopeptides and functional biological electron-transfer proteins. The present results indicate that the field of metalloprotein design is contributing significantly to the understanding of metals in biology.  相似文献   

4.
X-ray crystallography is extensively used to determine the atomic structure of proteins and their cofactors. Though a commonly overlooked problem, it has been shown that structural damage to a redox active metal site may precede loss of diffractivity by more than an order of magnitude in X-ray dose. Therefore the risk of misassigning redox states is great. Adequate treatment and consideration of this issue is of paramount importance in metalloprotein science, from experimental design to interpretation of the data and results. Some metal sites appear to be much more amenable to reduction than others, but the underlying processes are poorly understood. Here, we have analyzed the four non-crystallographically related diiron sites in a crystal of the ribonucleotide reductase R2F protein from Corynebacterium ammoniagenes. We conclude that the amount of X-ray reduction a metal site suffers correlates with its soaking accessibility. This direct observation supports the hypothesis that a diffusion component is involved in the X-ray reduction process.  相似文献   

5.
Structural biology has experienced several transformative technological advances in recent years. These include: development of extremely bright X‐ray sources (microfocus synchrotron beamlines and free electron lasers) and the use of electrons to extend protein crystallography to ever decreasing crystal sizes; and an increase in the resolution attainable by cryo‐electron microscopy. Here we discuss the use of these techniques in general terms and highlight their application for biological filament systems, an area that is severely underrepresented in atomic resolution structures. We assemble a model of a capped tropomyosin‐actin minifilament to demonstrate the utility of combining structures determined by different techniques. Finally, we survey the methods that attempt to transform high resolution structural biology into more physiological environments, such as the cell. Together these techniques promise a compelling decade for structural biology and, more importantly, they will provide exciting discoveries in understanding the designs and purposes of biological machines.  相似文献   

6.
7.
Metal ions play an important role in diverse biological processes, and much of the basic knowledge derived from studying native bioinorganic systems are applied in the synthesis of new molecules with the aim of diagnosing and treating diseases. At first glance, metalloproteins and metallodrugs are very different systems, but metal ion coordination, redox chemistry and substrate binding play essential roles in advancing both of these research fields. In this article, we discuss recent metalloprotein and metallodrug studies where electron paramagnetic resonance spectroscopy served as a major tool to gain a better understanding of metal-based structures and their function.  相似文献   

8.
Metallomics (more specifically, metalloproteomics) is an emerging field that encompasses the role, uptake, transport and storage of trace metals, which are essential to preserve the functions of proteins within a biological system. The current strategies for metal-binding and metalloprotein analysis based on the combination of polyacrylamide gel electrophoresis (PAGE) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are discussed in this review. The advantages, limitations and the most recently developed and applied quantification approaches for this methodology are also described.  相似文献   

9.
Metallomic studies regarding environmental contamination by metals are of value in elucidating metal uptake, trafficking, accumulation and metabolism in biological systems. Many proven bioindicator species, such as bivalves, have not yet, however, been well-characterized regarding their metalloprotein expression in response to environmental contaminants. In this context, the aim of the present study was to investigate metalloprotein expressions in the thermostable protein fraction of muscle tissue and digestive glands from mussels (Perna perna) from three differentially metal-contaminated sites in Southeastern Brazil in comparison with a reference site. The thermostable protein fractions were analyzed by SDS-PAGE and SEC-HPLC-ICP-MS. Metal content was also determined in both the crude and the purified extracts. Several inter-organ differences were observed, which is to be expected, while inter-site differences regarding thermostable protein content were also verified, indicating accumulation of these elements in muscle tissue and digestive glands and disruption of homeostasis of essential elements, with detoxification attempts by metal-bound proteins, since all metalloproteins present in both matrices eluted bound to at least one non-essential metal. These results are also noteworthy with regard to the adopted reference site, that also seems to be contaminated by toxic metals.  相似文献   

10.
Freeze-trapping reaction intermediates in macromolecular crystals is now a proven technique for obtaining their high-resolution structures by X-ray crystallography. The structural study of metalloprotein mechanisms has spearheaded this work, mainly because of the increased availability of single-crystal UV/visible spectrophotometry that enables reaction monitoring in the crystalline state. In particular, through formation of the frozen glass state, the stabilization of intermediates involving dissolved gases has yielded some of the most spectacular results. Metalloprotein systems still dominate this field, and the most recent successes, along with the accompanying advances in methodology, are presented.  相似文献   

11.
Redox post-translational modifications on cysteine thiols (redox PTMs) have profound effects on protein structure and function, thus enabling regulation of various biological processes. Redox proteomics approaches aim to characterize the landscape of redox PTMs at the systems level. These approaches facilitate studies of condition-specific, dynamic processes implicating redox PTMs and have furthered our understanding of redox signaling and regulation. Mass spectrometry (MS) is a powerful tool for such analyses which has been demonstrated by significant advances in redox proteomics during the last decade. A group of well-established approaches involves the initial blocking of free thiols followed by selective reduction of oxidized PTMs and subsequent enrichment for downstream detection. Alternatively, novel chemoselective probe-based approaches have been developed for various redox PTMs. Direct detection of redox PTMs without any enrichment has also been demonstrated given the sensitivity of contemporary MS instruments. This review discusses the general principles behind different analytical strategies and covers recent advances in redox proteomics. Several applications of redox proteomics are also highlighted to illustrate how large-scale redox proteomics data can lead to novel biological insights.  相似文献   

12.
生物三维电子显微学主要由三个部分组成——电子晶体学、单颗粒技术和电子断层成像术,其结构解析对象的尺度范围介于x射线晶体学与光学显微镜之间,适合从蛋白质分子结构到细胞和组织结构的解析。以冷冻电镜技术与三维重构技术为基础的低温电子显微学代表了生物电子显微学的前沿。低温单颗粒技术对于高度对称的病毒颗粒的解析最近已达到3.8A分辨率,正在成为解析分子量很大的蛋白质复合体高分辨结构的有效技术手段。低温电子断层成像技术目前对于真核细胞样品的结构解析已达到约40A的分辨率,在今后5年有望达到20A。这样,把x射线晶体学、NMR以及电镜三维重构获得的蛋白质分子及复合体的高分辨率的结构,锚定到较低分辨率的电子断层成像图像中,从而在细胞水平上获得高精确的蛋白质空间定位和原子分辨率的蛋白质相互作用的结构信息。这将成为把分子水平的结构研究与细胞水平的生命活动衔接起来的可行途径。  相似文献   

13.
Diversity of Nitrogenase Systems in Diazotrophs   总被引:1,自引:0,他引:1  
Nitrogenase is a metalloprotein complex that catalyses the reaction of biological nitrogen fixation. At least three genetically distinct nitrogenase systems have been confirmed in diazotrophs, namely Nil, Vnf, and Anf, in which the active-site central metals are Mo, V, and Fe, respectively. The present review summarizes progress on the genetic, structural, and functional investigations into the three nitrogenases and discusses the possibility of the existence of other novel nitrogenases.  相似文献   

14.
Cryo-electron microscopy and single-particle 3D image reconstruction techniques have been used to examine a broad spectrum of samples ranging from 500 kDa protein complexes to large subcellular organelles. The attainable resolution has improved rapidly over the past few years. Structures of both symmetric and asymmetric assemblies at approximately 7.5 A have been reported. Together with X-ray crystallography, three-dimensional cryo-electron microscopy reconstruction has provided important insights into the function of many biological systems in their native biochemical contexts.  相似文献   

15.
Physical electrochemistry has undergone a remarkable evolution over the last few decades, integrating advanced techniques and theory from solid state and surface physics. Single-crystal electrode surfaces have been a core notion, opening for scanning tunnelling microscopy directly in aqueous electrolyte (in situ STM). Interfacial electrochemistry of metalloproteins is presently going through a similar transition. Electrochemical surfaces with thiol-based promoter molecular monolayers (SAMs) as biomolecular electrochemical environments and the biomolecules themselves have been mapped with unprecedented resolution, opening a new area of single-molecule bioelectrochemistry. We consider first in situ STM of small redox molecules, followed by in situ STM of thiol-based SAMs as molecular views of bioelectrochemical environments. We then address electron transfer metalloproteins, and multi-centre metalloenzymes including applied single-biomolecular perspectives based on metalloprotein/metallic nanoparticle hybrids.  相似文献   

16.
A decade after the development of electron cryo-microscopy for vitrified specimens, its advantages and limitations are analysed. Indeed, recent work carried out by different laboratories strengthens the idea that electron cryo-microscopy might soon be an alternative method to X-ray crystallography and NMR techniques for determining the structure of biological assemblies with both high spatial and temporal resolutions. High pressure freezing allows vitrification of larger volumes of biological suspensions. Thick vitrified objects can be cryosectioned. Electron cryo-microscopy of the sections gives images having a resolution better than 2 nm. Although the high resolution imaging mode under low dose conditions is not yet fully understood, microscopes are being developed to provide better and better images. Image averaging is being facilitated by the development of both crystallization and computer methods. Thus, we can expect that electron microscopy will soon become a potential technique for structural determination at atomic resolution. Finally, much effort is being devoted to improving the temporal resolution of electron cryo-microscopy. Soon, we may be able to observe molecules during their biological activity.  相似文献   

17.
A strategy of metallizing peptides to serve as conduits of electronic signals that bridge between a redox enzyme and a carbon-nanotube electrode has been developed with enhanced results. In conjunction, a protocol to link the biological elements to the tips of carbon nanotubes has been developed to optimize contact and geometry between the redox enzyme and the carbon nanotube electrode array. A peptide nanowire of 33 amino acids, comprised of a leucine zipper motif, was mutated to bind divalent metals, conferring conductivity into the peptide. Reaction between a thiolate of the peptide with the sulfenic acid of the NADH peroxidase enzyme formed a peptide-enzyme assembly that are fully primed to transduce electrons out of the enzyme active site to an electrode. Scanning electron microscopy shows immobilization and linking of the assembly specifically to the tips of carbon nanotube electrodes, as designed. Isothermal titration calorimetry and mass spectrometry indicate a binding stoichiometry of at least three metals bound per peptide strand. Overall, these results highlight the gain that can be achieved when the signal tranducing units of a biosensor are aligned through directed peptide chemistry.  相似文献   

18.
Metal ions are known to play an important role in many neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and prion diseases. In these diseases, aberrant metal binding or improper regulation of redox active metal ions can induce oxidative stress by producing cytotoxic reactive oxygen species (ROS). Altered metal homeostasis is also frequently seen in the diseased state. As a result, the imaging of metals in intact biological cells and tissues has been very important for understanding the role of metals in neurodegenerative diseases. A wide range of imaging techniques have been utilized, including X-ray fluorescence microscopy (XFM), particle induced X-ray emission (PIXE), energy dispersive X-ray spectroscopy (EDS), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS), all of which allow for the imaging of metals in biological specimens with high spatial resolution and detection sensitivity. These techniques represent unique tools for advancing the understanding of the disease mechanisms and for identifying possible targets for developing treatments. In this review, we will highlight the advances in neurodegenerative disease research facilitated by metal imaging techniques.  相似文献   

19.
Macromolecular crystallography has been, for the last few decades, the main source of structural information of biological macromolecular systems and it is one of the most powerful techniques for the analysis of enzyme mechanisms and macromolecular interactions at the atomic level. In addition, it is also an extremely powerful tool for drug design. Recent technological and methodological developments in macromolecular X-ray crystallography have allowed solving structures that until recently were considered difficult or even impossible, such as structures at atomic or subatomic resolution or large macromolecular complexes and assemblies at low resolution. These developments have also helped to solve the 3D-structure of macromolecules from twin crystals. Recently, this technique complemented with cryo-electron microscopy and neutron crystallography has provided the structure of large macromolecular machines with great precision allowing understanding of the mechanisms of their function.  相似文献   

20.
X-ray absorption fine structure is a powerful tool for probing the structures of metals in proteins in both crystalline and noncrystalline environments. Until recently, a fundamental problem in biological XAFS has been that ad hoc assumptions must be made concerning the vibrational properties of the amino acid residues that are coordinated to the metal to fit the data. Here, an automatic procedure for accurate structural determination of active sites of metalloproteins is presented. It is based on direct multiple-scattering simulation of experimental X-ray absorption fine structure spectra combining electron multiple scattering calculations with density functional theory calculations of vibrational modes of amino acid residues and the genetic algorithm differential evolution to determine a global minimum in the space of fitting parameters. Structure determination of the metalloprotein active site is obtained through a self-consistent iterative procedure with only minimal initial information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号