首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The native state of serpins represents a long-lived intermediate or metastable structure on the serpin folding pathway. Upon interaction with a protease, the serpin trap is sprung and the molecule continues to fold into a more stable conformation. However, thermodynamic stability can also be achieved through alternative, unproductive folding pathways that result in the formation of inactive conformations. Our increasing understanding of the mechanism of protease inhibition and the dynamics of native serpin structures has begun to reveal how evolution has harnessed the actual process of protein folding (rather than the final folded outcome) to elegantly achieve function. The cost of using metastability for function, however, is an increased propensity for misfolding.  相似文献   

2.
A number of naturally occurring small organic molecules, primarily involved in maintaining osmotic pressure in the cell, display chaperone-like activity, stabilizing the native conformation of proteins and protecting them from various kinds of stress. Most of them are sugars, polyols, amino acids or methylamines. In addition to their intrinsic protein-stabilizing activity, these small organic stress molecules regulate the activity of some molecular chaperones, and may stabilize the folded state of proteins involved in unfolding or in misfolding diseases, such as Alzheimer's and Parkinson's diseases, or alpha1-antitrypsin deficiency and cystic fibrosis, respectively. Similar to molecular chaperones, most of these compounds have no substrate specificity, but some specifically stabilize certain proteins, e.g., 6-aminohexanoic acid (AHA) stabilizes apolipoprotein A. In the present work, the capacity of 6-aminohexanoic acid to stabilize non-specifically other proteins is demonstrated. Both trehalose and AHA significantly protect glucose-6-phosphate dehydrogenase (G6PD) against glycation-induced inactivation, and renatured enzyme already inactivated by glycation and by guanidinium hydrochloride (GuHCl). To the best of our knowledge, there are no data on the effect of these compounds on protein glycation. The correlation between the recovery of enzyme activity and structural changes indicated by fluorescence spectroscopy and Western blotting contribute to better understanding of the protein stabilization mechanism.  相似文献   

3.
Feng H  Takei J  Lipsitz R  Tjandra N  Bai Y 《Biochemistry》2003,42(43):12461-12465
Structures of intermediates and transition states in protein folding are usually characterized by amide hydrogen exchange and protein engineering methods and interpreted on the basis of the assumption that they have native-like conformations. We were able to stabilize and determine the high-resolution structure of a partially unfolded intermediate that exists after the rate-limiting step of a four-helix bundle protein, Rd-apocyt b(562), by multidimensional NMR methods. The intermediate has partial native-like secondary structure and backbone topology, consistent with our earlier native state hydrogen exchange results. However, non-native hydrophobic interactions exist throughout the structure. These and other results in the literature suggest that non-native hydrophobic interactions may occur generally in partially folded states. This can alter the interpretation of mutational protein engineering results in terms of native-like side chain interactions. In addition, since the intermediate exists after the rate-limiting step and Rd-apocyt b(562) folds very rapidly (k(f) approximately 10(4) s(-1)), these results suggest that non-native hydrophobic interactions, in the absence of topological misfolding, are repaired too rapidly to slow folding and cause the accumulation of folding intermediates. More generally, these results illustrate an approach for determining the high-resolution structure of folding intermediates.  相似文献   

4.
Angel L. Pey 《Amino acids》2013,45(6):1331-1341
Many inborn errors of amino acids metabolism are caused by single point mutations affecting the ability of proteins to fold properly (i.e., protein homeostasis), thus leading to enzyme loss-of-function. Mutations may affect protein homeostasis by altering intrinsic physical properties of the polypeptide (folding thermodynamics, and rates of folding/unfolding/misfolding) as well as the interaction of partially folded states with elements of the protein homeostasis network (such as molecular chaperones and proteolytic machineries). Understanding these mutational effects on protein homeostasis is required to develop new therapeutic strategies aimed to target specific features of the mutant polypeptide. Here, I review recent work in three different diseases of protein homeostasis associated to inborn errors of amino acids metabolism: phenylketonuria, inherited homocystinuria and primary hyperoxaluria type I. These three different genetic disorders involve proteins operating in different cell organelles and displaying different structural complexities. Mutations often decrease protein kinetic stability of the native state (i.e., its half-life for irreversible denaturation), which can be studied using simple kinetic models amenable to biophysical and biochemical characterization. Natural ligands and pharmacological chaperones are shown to stabilize mutant enzymes, thus supporting their therapeutic application to overcome protein kinetic destabilization. The role of molecular chaperones in protein folding and misfolding is also discussed as well as their potential pharmacological modulation as promising new therapeutic approaches. Since current available treatments for these diseases are either burdening or only successful in a fraction of patients, alternative treatments must be considered covering studies from protein structure and biophysics to studies in animal models and patients.  相似文献   

5.
L G Chavez  H A Scherage 《Biochemistry》1977,16(9):1849-1856
An immunological method is used to follow the folding of different portions of the reduced bovine pancreatic ribonuclease molecule during air oxidation. Antibodies that react specifically with segments 1-13, 31-79, and 80-124 of native ribonuclease, as they are folded, were purified by affinity chromatography, using antiserum to native ribonuclease and columns to which the ribonuclease fragments were attached. The kinetics of reaction between these prufied antibodies and refolded portions that are produced when reduced rebonuclease is oxidized by air demonstrate the presence of intermediate states of folding, and are consistent with folding of the anti-genic determinants in the order 80-124, 1-13, and 31-79. The relative stabilities of each of these segments to thermal denaturation in the native protein provide additional evidence that the native conformation of region 80-124 is a very stable one in the intact molecule. On the basis of these two types of evidence, it appears that segment 80-124 contains a nucleation site for the folding of the protein molecule.  相似文献   

6.
Mason JM  Gibbs N  Sessions RB  Clarke AR 《Biochemistry》2002,41(40):12093-12099
Thirteen versions of a beta-sheet protein have been constructed, each with a single, surface-exposed disulfide bridge. A comparison of folding kinetics, in oxidizing and reducing conditions, is used to elucidate the order in which beta-strands become associated during the folding process and, hence, the relationship between topology and folding dynamics. In common with the wild-type molecule, all the proteins fold through a two-step (three state) mechanism with a rapidly formed intermediate which slowly converts to the native state. In a majority of cases, the bridge is seen to stabilize the folded state, and for five of the modified proteins, the additional stability is greater than 3 kcal/mol. Surprisingly, cross-links which connect beta-strands which are distant in sequence predominantly stabilize the rapidly formed intermediate state, suggesting that these strand-strand interactions occur in the initial stages of folding. Cross-links which stabilize local hairpins have their major influence on the second, rate-determining step leading to significant enhancements in the folding rate. We find that enhancement of the folding rate in the second, rate-limiting step is correlated with a reduction in contact order in the same way as in naturally occurring proteins of different folds. The large increases in native-state stability resulting from the insertion of disulfide bridges on the surface of beta-sheet structures have implications for enhancing the robustness of proteins by molecular engineering.  相似文献   

7.
Derek R. Dee 《朊病毒》2016,10(3):207-220
Protein sequences are evolved to encode generally one folded structure, out of a nearly infinite array of possible folds. Underlying this code is a funneled free energy landscape that guides folding to the native conformation. Protein misfolding and aggregation are also a manifestation of free-energy landscapes. The detailed mechanisms of these processes are poorly understood, but often involve rare, transient species and a variety of different pathways. The inherent complexity of misfolding has hampered efforts to measure aggregation pathways and the underlying energy landscape, especially using traditional methods where ensemble averaging obscures important rare and transient events. We recently studied the misfolding and aggregation of prion protein by examining 2 monomers tethered in close proximity as a dimer, showing how the steps leading to the formation of a stable aggregated state can be resolved in the single-molecule limit and the underlying energy landscape thereby reconstructed. This approach allows a more quantitative comparison of native folding versus misfolding, including fundamental differences in the dynamics for misfolding. By identifying key steps and interactions leading to misfolding, it should help to identify potential drug targets. Here we describe the importance of characterizing free-energy landscapes for aggregation and the challenges involved in doing so, and we discuss how single-molecule studies can help test proposed structural models for PrP aggregates.  相似文献   

8.
Understanding the energetic and structural basis of protein folding in a physiological context may represent an important step toward the elucidation of protein misfolding and aggregation events that take place in several pathological states. In particular, investigation of the structure and thermodynamic properties of partially folded intermediate states involved in productive folding or in misfolding/aggregation may provide insight into these processes and suggest novel approaches to prevent misfolding in living organisms. This goal, however, has remained elusive, because such intermediates are often transient and correspond to metastable states that are little populated under physiological conditions. Characterization of these states requires their stabilization by means of manipulation of the experimental conditions, involving changes in temperature, pH, or addition of different types of denaturants. In the past few years, hydrostatic pressure has been increasingly used as a thermodynamic variable in the study of both protein folding and misfolding/aggregation transitions. Compared with other chemical or physical denaturing agents, a unique feature of pressure is its ability to induce subtle changes in protein conformation, allowing the stabilization of partially folded states that are usually not significantly populated under more drastic conditions. Much of the recent work in this field has focused on the characterization of folding intermediates, because they seem to be involved in a variety of disease-causing protein misfolding and aggregation reactions. Here, we review recent examples of the use of hydrostatic pressure as a tool to gain insight into the forces and energetics governing the productive folding or the misfolding and amyloid aggregation of proteions.  相似文献   

9.
By employing thousands of PCs and new worldwide-distributed computing techniques, we have simulated in atomistic detail the folding of a fast-folding 36-residue alpha-helical protein from the villin headpiece. The total simulated time exceeds 300 micros, orders of magnitude more than previous simulations of a molecule of this size. Starting from an extended state, we obtained an ensemble of folded structures, which is on average 1.7A and 1.9A away from the native state in C(alpha) distance-based root-mean-square deviation (dRMS) and C(beta) dRMS sense, respectively. The folding mechanism of villin is most consistent with the hydrophobic collapse view of folding: the molecule collapses non-specifically very quickly ( approximately 20ns), which greatly reduces the size of the conformational space that needs to be explored in search of the native state. The conformational search in the collapsed state appears to be rate-limited by the formation of the aromatic core: in a significant fraction of our simulations, the C-terminal phenylalanine residue packs improperly with the rest of the hydrophobic core. We suggest that the breaking of this interaction may be the rate-determining step in the course of folding. On the basis of our simulations we estimate the folding rate of villin to be approximately 5micros. By analyzing the average features of the folded ensemble obtained by simulation, we see that the mean folded structure is more similar to the native fold than any individual folded structure. This finding highlights the need for simulating ensembles of molecules and averaging the results in an experiment-like fashion if meaningful comparison between simulation and experiment is to be attempted. Moreover, our results demonstrate that (1) the computational methodology exists to simulate the multi-microsecond regime using distributed computing and (2) that potential sets used to describe interatomic interactions may be sufficiently accurate to reach the folded state, at least for small proteins. We conclude with a comparison between our results and current protein-folding theory.  相似文献   

10.
Rao DK  Prabhu NP  Bhuyan AK 《Biochemistry》2006,45(27):8393-8401
This work describes an extensively misfolded kinetic intermediate in the folding of horse ferrocytochrome c. Under absolute native conditions, the alkali-unfolded protein liganded with carbon-monoxide exhibits misfolding. The misfolded product, apparently an off-pathway intermediate, requires large-scale unfolding in order to have a chance to fold correctly to the native state. The rate of unfolding of the misfolded intermediate limits the overall rate of protein folding. The high level of observed misfolding possibly results from a failure of the polypeptide chain to achieve by stochastic search the transition state relevant for successful folding. Such misfolding may be analogous to the failure of a sizable set of proteins in the intracellular milieu to fold to the functionally active native state.  相似文献   

11.
Partitioning of polypeptides between protein folding and amyloid formation is of outstanding pathophysiological importance. Using yeast phosphoglycerate kinase as model, here we identify the features of the energy landscape that decide the fate of the protein: folding or amyloidogenesis. Structure formation was initiated from the acid-unfolded state, and monitored by fluorescence from 10 ms to 20 days. Solvent conditions were gradually shifted between folding and amyloidogenesis, and the properties of the energy landscape governing structure formation were reconstructed. A gradual transition of the energy landscape between folding and amyloid formation was observed. In the early steps of both folding and misfolding, the protein searches through a hierarchically structured energy landscape to form a molten globule in a few seconds. Depending on the conditions, this intermediate either folds to the native state in a few minutes, or forms amyloid fibers in several days. As conditions are changed from folding to misfolding, the barrier separating the molten globule and native states increases, although the barrier to the amyloid does not change. In the meantime, the native state also becomes more unstable and the amyloid more stable. We conclude that the lower region of the energy landscape determines the final protein structure.  相似文献   

12.
Recombinant polypeptides and protein domains containing two cysteine pairs located distal in primary sequence but proximal in the native folded or assembled state are labeled selectively in vitro and in mammalian cells using the profluorescent biarsenical reagents FlAsH-EDT2 and ReAsH-EDT2. This strategy, termed bipartite tetracysteine display, enables the detection of protein-protein interactions and alternative protein conformations in live cells. As proof of principle, we show that the equilibrium stability and fluorescence intensity of polypeptide-biarsenical complexes correlates with the thermodynamic stability of the protein fold or assembly. Destabilized protein variants form less stable and less bright biarsenical complexes, which allows discrimination of live cells expressing folded polypeptide and protein domains from those containing disruptive point mutations. Bipartite tetracysteine display may provide a means to detect early protein misfolding events associated with Alzheimer's disease, Parkinson's disease and cystic fibrosis; it may also enable high-throughput screening of compounds that stabilize discrete protein folds.  相似文献   

13.
The structural conversion of the prion protein PrP into a transmissible, misfolded form is the central element of prion disease, yet there is little consensus as to how it occurs. Key aspects of conversion into the diseased state remain unsettled, from details about the earliest stages of misfolding such as the involvement of partially- or fully-unfolded intermediates to the structure of the infectious state. Part of the difficulty in understanding the structural conversion arises from the complexity of the underlying energy landscapes. Single molecule methods provide a powerful tool for probing complex folding pathways as in prion misfolding, because they allow rare and transient events to be observed directly. We discuss recent work applying single-molecule probes to study misfolding in prion proteins, and what it has revealed about the folding dynamics of PrP that may underlie its unique behavior. We also discuss single-molecule studies probing the interactions that stabilize non-native structures within aggregates, pointing the way to future work that may help identify the microscopic events triggering pathogenic conversion. Although single-molecule approaches to misfolding are relatively young, they have a promising future in prion science.  相似文献   

14.
Proteins that are exported from the cell, or targeted to the cell surface or other organelles, are synthesised and assembled in the endoplasmic reticulum and then delivered to their destinations. Point mutations - the most common cause of human genetic diseases - can inhibit folding and assembly of the protein in the endoplasmic reticulum. The unstable or partially folded mutant protein does not undergo trafficking and is usually rapidly degraded. A potential therapy for protein misfolding is to correct defective protein folding and trafficking using pharmacological chaperones. Pharmacological chaperones are substrates or modulators that appear to function by directly binding to the partially folded biosynthetic intermediate to stabilise the protein and allow it to complete the folding process to yield a functional protein. Initial clinical studies with pharmacological chaperones have successfully reduced clinical symptoms of disease. Therefore, pharmacological chaperones show great promise as a new class of therapeutic agents that can be specifically tailored for a particular genetic disease.  相似文献   

15.
Inheriting a mutant misfolding-prone protein that cannot be efficiently folded in a given cell type(s) results in a spectrum of human loss-of-function misfolding diseases. The inability of the biological protein maturation pathways to adapt to a specific misfolding-prone protein also contributes to pathology. Chemical and biological therapeutic strategies are presented that restore protein homeostasis, or proteostasis, either by enhancing the biological capacity of the proteostasis network or through small molecule stabilization of a specific misfolding-prone protein. Herein, we review the recent literature on therapeutic strategies to ameliorate protein misfolding diseases that function through either of these mechanisms, or a combination thereof, and provide our perspective on the promise of alleviating protein misfolding diseases by taking advantage of proteostasis adaptation.  相似文献   

16.
Chaperones assist in protein folding, but what this common phrase means in concrete terms has remained surprisingly poorly understood. We can readily measure chaperone binding to unfolded proteins, but how they bind and affect proteins along folding trajectories has remained obscure. Here we review recent efforts by our labs and others that are beginning to pry into this issue, with a focus on the chaperones trigger factor and Hsp70. Single-molecule methods are central, as they allow the stepwise process of folding to be followed directly. First results have already revealed contrasts with long-standing paradigms: rather than acting only “early” by stabilizing unfolded chain segments, these chaperones can bind and stabilize partially folded structures as they grow to their native state. The findings suggest a fundamental redefinition of the protein folding problem and a more extensive functional repertoire of chaperones than previously assumed.  相似文献   

17.
Isogai Y 《Biochemistry》2006,45(8):2488-2492
Hydrophobic core mutants of sperm whale apomyoglobin were constructed to investigate the amino acid sequence features that determine the folding properties. Replacements of all of the Ile residues with Leu and of all of the Ile and Val residues with Leu decreased the thermodynamic stability of the folded states against the unfolded states but increased the stability of the folding intermediates against the unfolded states, indicating that the amino acid composition of the protein core is important for the protein stability and folding cooperativity. To examine the effect of the arrangement of these hydrophobic residues, mutant proteins were further constructed: 12 sites out of the 18 Leu, 9 Ile, and 8 Val residues of the wild-type myoglobin were randomly replaced with each other so that the amino acid compositions were similar to that of the wild-type protein. Four mutant proteins were obtained without selection of the protein properties. These residue replacements similarly resulted in the stabilization of both the intermediate and folded states against the unfolded states, as compared to the wild-type protein. Thus, the arrangements of the hydrophobic residues in the native amino acid sequence are selected to destabilize the folding intermediate rather than to stabilize the folded state. The present results suggest that the two-state transition of protein folding or the transient formation of the unstable intermediate, which seems to be required for effective production of the functional proteins, has been a major driving force in the molecular evolution of natural globular proteins.  相似文献   

18.
Proteins carry out important functions as they fold themselves. Protein misfolding occurs during different biochemical processes and may lead to the development of diseases such as cancer, which is characterized by genetic instability. The cancer microenvironment exposes malignant cells to a variety of stressful conditions that may further promote protein misfolding. Tumor development and progression often arises from mutations that interfere with the appropriate function of tumor-suppressor proteins and oncogenes. These may be due to alteration of catalytic activity of the protein, loss of binding sites for effector proteins or alterations of the native folded protein conformation. Src family kinases, p53, mTOR and C-terminus of HSC70 interacting protein (CHIPs) are some examples associated with protein misfolding and tumorigenesis. Molecular chaperones, such as heat-shock protein (HSP)70 and HSP90, assist protein folding and recognize target misfolded proteins for degradation. It is likely that this misfolding in cancer is linked by common principles, and may, therefore, present an exciting possibility to identify common targets for therapeutic intervention. Here we aim to review a number of examples that show how alterations in the folding of tumor-suppressor proteins or oncogenes lead to tumorigenesis. The possibility of targeting the targets to repair or degrade protein misfolding in cancer therapy is discussed.  相似文献   

19.
Many proteins populate collapsed intermediate states during folding. In order to elucidate the nature and importance of these species, we have mapped the structure of the on-pathway intermediate of the four-helix protein, Im7, together with the conformational changes it undergoes as it folds to the native state. Kinetic data for 29 Im7 point mutants show that the intermediate contains three of the four helices found in the native structure, packed around a specific hydrophobic core. However, the intermediate contains many non-native interactions; as a result, hydrophobic interactions become disrupted in the rate-limiting transition state before the final helix docks onto the developing structure. The results of this study support a hierarchical mechanism of protein folding and explain why the misfolding of Im7 occurs. The data also demonstrate that non-native interactions can play a significant role in folding, even for small proteins with simple topologies.  相似文献   

20.
We present a method for calculating the configurational-dependent diffusion coefficient of a globular protein as a function of the global folding process. Using a coarse-grained structure-based model, we determined the diffusion coefficient, in reaction coordinate space, as a function of the fraction of native contacts formed Q for the cold shock protein (TmCSP). We find nonmonotonic behavior for the diffusion coefficient, with high values for the folded and unfolded ensembles and a lower range of values in the transition state ensemble. We also characterized the folding landscape associated with an energetically frustrated variant of the model. We find that a low-level of frustration can actually stabilize the native ensemble and increase the associated diffusion coefficient. These findings can be understood from a mechanistic standpoint, in that the transition state ensemble has a more homogeneous structural content when frustration is present. Additionally, these findings are consistent with earlier calculations based on lattice models of protein folding and more recent single-molecule fluorescence measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号