首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colorectal cancer (CRC) is one of the most frequent cancer in numerous of countries worldwidely. The initiation and progression of CRC is an extremely complex process, and have been suggested a correlation with Long non-coding RNAs (lncRNAs). Our results showed that lncRNA-422(ENST00000415820) significantly downregulated in the tissues and serum of CRC patients, and is closely associated with the poor prognosis. Then gain or loss of lncRNA-422 models in SW480 and SW620cells were established. The results showed that lncRNA-422 overexpression inhibited cell proliferation, migration, and invasion. Knockdown of lncRNA-422 promoted tumorigensis. Western blot and qRT-PCR were performed to examine the activity of the PI3K/AKT/mTOR pathway in CRC cells after alternation of lncRNA-422. Results showed that lncRNA-422 acts as a tumor suppressor by PI3K/AKT/mTOR pathway in CRC.  相似文献   

2.
3.
Long noncoding RNA Breast Cancer Antiestrogen Resistance 4 (BCAR4) has been identified to be oncogenic in several cancers. In our study, we demonstrated that BCAR4 expression was significantly upregulated in glioma tissues compared with paired nontumor tissues. In addition, higher BCAR4 level was associated with poor overall survival in patients with glioma. Besides, we also discovered that knockdown of BCAR4 inhibited cell proliferation, whereas BCAR4 overexpression promoted this process. Intriguingly, we proved a cellular transformation of normal human astrocyte cells (NHAs) in response to enforced expression of BCAR4. In addition, we revealed that BCAR4 affected cell proliferation in glioma cells by promoting cell cycle progression and inhibiting cell apoptosis. Mechanistically, we uncovered that BCAR4 activated PI3K/AKT signaling pathway in glioma through upregulating EGFR and interacting with it. Moreover, activating PI3K/AKT pathway could reverse the repressive effects caused by BCAR4 silence on the biological behaviors of glioma cells, whereas inhibition of this pathway rescued the impact of BACR4 upregulation in NHAs. These findings disclosed that BCAR4 contributes to glioma progression by enhancing cell growth via activating EGFR/PI3K/AKT pathway, providing potent evidence that BCAR4 could be an effective new target for treatment and prognosis of glioma patients.  相似文献   

4.
Cervical cancer continues to be among the most frequent gynaecologic cancers worldwide. The phosphoinositide 3‐kinase (PI3K)/protein kinase B (AKT) pathway is constitutively activated in cervical cancer. Inositol polyphosphate 4‐phosphatase type II (INPP4B) is a phosphoinositide phosphatase and considered a negative regulatory factor of the PI3K/AKT pathway. INPP4B has diverse roles in various tumours, but its role in cervical cancer is largely unknown. In this study, we investigated the role of INPP4B in cervical cancer. Overexpression of INPP4B in HeLa, SiHa and C33a cells inhibited cell proliferation, metastasis and invasiveness in CCK‐8, colony formation, anchorage‐independent growth in soft agar and Transwell assay. INPP4B reduced the expression of some essential proteins in the PI3K/AKT/SGK3 pathway including p‐AKT, p‐SGK3, p‐mTOR, phospho‐p70S6K and PDK1. In addition, overexpression of INPP4B decreased xenograft tumour growth in nude mice. Loss of INPP4B protein expression was found in more than 60% of human cervical carcinoma samples. In conclusion, INPP4B impedes the proliferation and invasiveness of cervical cancer cells by inhibiting the activation of two downstream molecules of the PI3K pathway, AKT and SGK3. INPP4B acts as a tumour suppressor in cervical cancer cells.  相似文献   

5.
Metastasis is the main cause of death in colorectal cancer (CRC) patients. Aberrant fucosylation, catalyzed by the specific fucosyltransferases (FUTs), is associated with malignant behaviors. Non-conding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), emerge as key molecules in cancer malignancy. The aim of this study was to investigate HOTAIR/miR-326/FUT6 axis modified fucosylation on sLeX-CD44 (HCELL), which served as E-selectin ligand during CRC progression. Higher levels of HOTAIR and FUT6 were verified in CRC tissues and cell lines, with a positive correlation. HOTAIR was associated with poor clinical prognosis of CRC. Altered HOTAIR levels influenced proliferation, aggressiveness, apoptosis and tumorigenesis of CRC cells. HOTAIR directly harbored miR-326 binding sites and regulated FUT6 expression. Further results corroborated that HOTAIR/miR-326/FUT6 axis modified α1, 3-fucosylation of CD44, which mediated CRC malignancy. Co-modulation of HOTAIR, miR-326 and FUT6 impacted α1, 3-fucosylated CD44, which further triggered PI3K/AKT/mTOR pathway. HOTAIR also mediated CRC tumorigenesis and liver metastasis in vivo. Thus, our findings indicated that HOTAIR/miR-326/FUT6 axis mediated CRC procession through α1, 3-fucosylated CD44 via PI3K/AKT/mTOR pathway. This work rendered new therapeutic targets for CRC.  相似文献   

6.
The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT)/mammalian target of rapamycin (mTOR) pathway conveys signals from receptor tyrosine kinases (RTKs) to regulate cell metabolism, proliferation, survival, and motility. Previously we found that prolylcarboxypeptidase (PRCP) regulate proliferation and survival in breast cancer cells. In this study, we found that PRCP and the related family member prolylendopeptidase (PREP) are essential for proliferation and survival of pancreatic cancer cells. Depletion/inhibition of PRCP and PREP-induced serine phosphorylation and degradation of IRS-1, leading to inactivation of the cellular PI3K and AKT. Notably, depletion/inhibition of PRCP/PREP destabilized IRS-1 in the cells treated with rapamycin, blocking the feedback activation PI3K/AKT. Consequently, inhibition of PRCP/PREP enhanced rapamycin-induced cytotoxicity. Thus, we have identified PRCP and PREP as a stabilizer of IRS-1 which is critical for PI3K/AKT/mTOR signaling in pancreatic cancer cells.  相似文献   

7.
8.
Phosphatidylinositide 3-kinase/AKT in radiation responses   总被引:2,自引:0,他引:2  
  相似文献   

9.
Cervical cancer is common cancer among women with high morbidity. MicroRNAs (miRs) are involved in the progression and development of cervical cancer. This study aimed to explore the effect of miR-99b-5p (miR-99b) on invasion and migration in cervical cancer through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway. The microarray-based analysis was used to screen out differentially expressed miRNAs. Expression of miR-99b, PI3K, AKT, mTOR, and ribosomal protein S6 kinase (p70S6K) was determined in both cervical cancer tissues and paracancerous tissues. Next, alteration of miR-99b expression in cervical cancer was conducted to evaluate levels of PI3K, AKT, mTOR, p70S6K matrix metallopeptidase 2, epithelial cell adhesion molecule, and intercellular adhesion molecule 1, as well as the effect of miR-99b on cell proliferation, invasion, migration, cell cycle distribution, and apoptosis. The results demonstrated that miR-99b expression was decreased and levels of PI3K, AKT, mTOR, and p70S6K were elevated in cervical cancer tissues. More important, overexpressed miR-99b repressed the PI3K/AKT/mTOR signaling pathway, inhibited cell proliferation, invasion, and migration, blocked cell cycle entry, and promoted apoptosis in cervical cancer. These results indicate that miR-99b attenuates the migration and invasion of human cervical cancer cells through downregulation of the PI3K/AKT/mTOR signaling pathway, which provides a therapeutic approach for cervical cancer treatment.  相似文献   

10.
Activation of AKT/protein kinase B promotes a variety of biological activities important in tumorigenesis, such as cell survival and cell cycle progression. We previously demonstrated amplification and overexpression of the AKT2 gene in a subset of human pancreatic carcinomas. In this investigation, we assessed AKT2 catalytic activity in 50 frozen pancreatic tissues (37 carcinomas, four benign tumors and nine normal pancreata) by in vitro kinase assay. Twelve of 37 (32%) pancreatic carcinomas showed markedly elevated levels of AKT2 activity compared to normal pancreata and begin pancreatic tumors. To delineate mechanisms contributing to AKT2 activation in malignant pancreatic tumors, we examined the status of upstream components of the phosphatilydlinositol 3-kinase (PI3K)/AKT pathway. Western blot analysis revealed loss of PTEN protein expression in two of the 12 pancreatic carcinomas with activated AKT2. In vitro PI3K assays demonstrated high levels of PI3K activity in seven carcinoma specimens that showed AKT2 activation. Immunohistochemical staining confirmed high levels of phosphorylated (active) AKT in malignant pancreatic tumors compared to normal pancreata. Overall, these data suggest that upstream perturbations of the PI3K/AKT pathway contribute to frequent activation of AKT2 in pancreatic cancer, which may contribute to the pathogenesis of this highly aggressive form of human malignancy.  相似文献   

11.
RNF7 has been reported to play critical roles in various cancers. However, the underlying mechanisms of RNF7 in glioma development remain largely unknown. Herein, the expression level of RNF7 was examined in tissues by quantitative real-time PCR, Western blotting and immunohistochemistry. The effect of RNF7 on glioma progression was measured by performing CCK-8 and apoptosis assays, cell cycle-related experiments and animal experiments. The effect of RNF7 on PI3K/AKT signalling pathway was tested by Western blotting. First, we found that RNF7 was upregulated in tumour tissue compared with normal brain tissue, especially in high-grade glioma, and the high expression of RNF7 was significantly related to tumour size, Karnofsky Performance Scale score and a poor prognosis. Second, RNF7 overexpression facilitated tumour cell cycle progression and cell proliferation and suppressed apoptosis. Conversely, RNF7 knockdown suppressed tumour cell cycle progression and cell proliferation and facilitated apoptosis. Furthermore, follow-up mechanistic studies indicated that RNF7 could facilitate glioma cell proliferation and cell cycle progression and inhibit apoptosis by activating the PI3K/AKT signalling pathway. This study shows that RNF7 can clearly promote glioma cell proliferation by facilitating cell cycle progression and inhibiting apoptosis by activating the PI3K/AKT signalling pathway. Targeting the RNF7/PI3K/AKT axis may provide a new perspective on the prevention or treatment of glioma.  相似文献   

12.
Lung cancer is the leading cause of cancer-related mortality worldwide due to its early asymptomatic and late metastasis. While cancer stem cells (CSCs) may play a vital role in oncogenesis and development of lung cancer, mechanisms underlying CSCs self‐renewal remain less clear. In the present study, we constructed a clinically relevant CSCs enrichment recognition model and evaluated the potential functions of phosphatidylinositol 3-kinase (PI3K)/AKT pathway (PI3K/AKT) and mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) pathways in lung cancer via bioinformatic analysis, providing the basis for in depth mechanistic inquisition. Experimentally, we confirmed that PI3K/AKT pathway predominantly promotes proliferation through anti-apoptosis in lung adenocarcinoma cells, while MAPK/ERK pathway has an overwhelming superiority in regulating the proliferation in lung CSCs. Further, utilizing stemness score model, LLC-Symmetric Division (LLC-SD) cells and mouse orthotopic lung transplantation model, we elucidated an intricate cross-talk between the oncogenic pathway and the stem cell reprograming pathway that impact stem cell characteristics as well as cancer biology features of lung CSCs both in vitro and in vivo. In summary, our findings uncovered a new insight that PI3K/AKT and MAPK/ERK pathways as oncogenic signaling pathway and/or stem cell signaling pathway act distinctively and synergistically to regulate lung CSCs self-renewal.  相似文献   

13.
细胞的增殖、转移、存活等细胞生物学过程的异常对人类众多疾病尤其是恶性肿瘤的发生发展至关重要。大量研究表明,PI3K/AKT信号通路的异常激活在肿瘤的恶性转化过程中发挥重要作用并具有普遍意义。但是,目前的研究多集中于探讨AKT总的激酶活性,而往往忽视了AKT不同亚型的特异性功能。近年来在乳腺癌中的研究发现,AKT家族不同亚型的激酶分子在调控肿瘤细胞的存活、生长、增殖、代谢、转移等众多恶性表型方面发挥独特而关键的作用:与Akt1促进肿瘤细胞增殖、抑制肿瘤细胞转移的作用相反,Akt2在促进肿瘤细胞转移、抑制肿瘤细胞增殖方面发挥重要功能;此外,随着对AKT家族研究的深入,人们对Akt3的特异性生物学功能也有了新的认识。本文在此对AKT不同亚型与乳腺癌恶性表型之间关系的研究进展做一总结。  相似文献   

14.
Ovarian cancer is one of the most common cancers among women. Recent studies demonstrated that the gene encoding the p110alpha catalytic subunit of phosphatidylinositol 3-kinase (PI3K) is frequently amplified in ovarian cancer cells. PI3K is involved in multiple cellular functions, including proliferation, differentiation, antiapoptosis, tumorigenesis, and angiogenesis. In this study, we demonstrate that the inhibition of PI3K activity by LY-294002 inhibited ovarian cancer cell proliferation and induced G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins, including cyclin D1, cyclin-dependent kinase (CDK) 4, CDC25A, and retinoblastoma phosphorylation at Ser(780), Ser(795), and Ser(807/811). Expression of CDK6 and beta-actin was not affected by LY-294002. Expression of the cyclin kinase inhibitor p16(INK4a) was induced by the PI3K inhibitor, whereas steady-state levels of p21(CIP1/WAF1) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation of AKT and p70S6K1, but not extracellular regulated kinase 1/2. The G(1) cell cycle arrest induced by LY-294002 was restored by the expression of active forms of AKT and p70S6K1 in the cells. Our study shows that PI3K transmits a mitogenic signal through AKT and mammalian target of rapamycin (mTOR) to p70S6K1. The mTOR inhibitor rapamycin had similar inhibitory effects on G(1) cell cycle progression and on the expression of cyclin D1, CDK4, CDC25A, and retinoblastoma phosphorylation. These results indicate that PI3K mediates G(1) progression and cyclin expression through activation of an AKT/mTOR/p70S6K1 signaling pathway in the ovarian cancer cells.  相似文献   

15.
The regulation of signal transmission and biological processes, such as cell proliferation, apoptosis, metabolism, migration, and angiogenesis are greatly influenced by the PI3K/AKT signaling pathway. Highly conserved endogenous non-protein-coding RNAs known as microRNAs (miRNAs) have the ability to regulate gene expression by inhibiting mRNA translation or mRNA degradation. MiRNAs serve key role in PI3K/AKT pathway as upstream or downstream target, and aberrant activation of this pathway contributes to the development of cancers. A growing body of research shows that miRNAs can control the PI3K/AKT pathway to control the biological processes within cells. The expression of genes linked to cancers can be controlled by the miRNA/PI3K/AKT axis, which in turn controls the development of cancer. There is also a strong correlation between the expression of miRNAs linked to the PI3K/AKT pathway and numerous clinical traits. Moreover, PI3K/AKT pathway-associated miRNAs are potential biomarkers for cancer diagnosis, therapy, and prognostic evaluation. The role and clinical applications of the PI3K/AKT pathway and miRNA/PI3K/AKT axis in the emergence of cancers are reviewed in this article.  相似文献   

16.
《Cellular signalling》2014,26(12):2782-2792
Angiogenin (ANG), a member of RNase A superfamily, is the only angiogenic factor that possesses ribonucleolytic activity. Recent studies showed that the expression of ANG was elevated in various types of cancers. Accumulating evidence indicates that ANG plays an essential role in cancer progression by stimulating both cancer cell proliferation and tumor angiogenesis. Human ribonuclease inhibitor (RI), a cytoplasmic protein, is constructed almost entirely of leucine rich repeats (LRRs), which are present in a large family of proteins that are distinguished by their display of vast surface areas to foster protein–protein interactions. RI might be involved in unknown biological effects except inhibiting RNase A activity. The experiment demonstrated that RI also could suppress activity of angiogenin (ANG) through closely combining with it in vitro. PI3K/AKT/mTOR signaling pathway exerts a key role in cell growth, survival, proliferation, apoptosis and angiogenesis. We recently reported that up-regulating RI inhibited the growth and induced apoptosis of murine melanoma cells through repression of angiogenin and PI3K/AKT signaling pathway. However, ANG receptors have not yet been identified to date, its related signal transduction pathways are not fully clear and underlying interacting mechanisms between RI and ANG remain largely unknown. Therefore, we hypothesize that RI might combine with intracellular ANG to block its nuclear translocation and regulate PI3K/AKT/mTOR signaling pathway to inhibit biological functions of ANG. Here, we reported for the first time that ANG could interact with RI endogenously and exogenously by using co-immunoprecipitation (Co-IP) and GST pull-down. Furthermore, we observed the colocalization of ANG and RI in cells with immunofluorescence staining under laser confocal microscope. Moreover, through fluorescence resonance energy transfer (FRET) assay, we further confirmed that these two proteins have a physical interaction in living cells. Subsequently, we demonstrated that up-regulating ANG including ANG His37Ala mutant obviously decreased RI expression and activated phosphorylation of key downstream target molecules of PI3K/AKT/mTOR signaling pathway. Finally, up-regulating ANG led to the promotion of tumor angiogenesis, tumorigenesis and metastasis in vivo. Taken together, our data provided a novel mechanism of ANG in regulating PI3K/AKT/mTOR signaling pathway via RI, which suggested a new therapeutic target for cancer therapy.  相似文献   

17.
The aim of this study was to explore the relationship between the expression of HOXD antisense growth-associated long noncoding RNA (HAGLROS) and prognosis of patients with colorectal cancer (CRC), as well as the roles and regulatory mechanism of HAGLROS in CRC development. The HAGLROS expression in CRC tissues and cells was detected. The correlation between HAGLROS expression and survival time of CRC patients was investigated. Moreover, HAGLROS was overexpressed and suppressed in HCT-116 cells, followed by detection of cell viability, apoptosis, and the expression of apoptosis-related proteins and autophagy markers. Furthermore, the association between HAGLROS and miR-100 and the potential targets of miR-100 were investigated. Besides, the regulatory relationship between HAGLROS and PI3K/AKT/mTOR pathway was elucidated. The results showed that HAGLROS was highly expressed in CRC tissues and cells. Highly expression of HAGLROS correlated with a shorter survival time of CRC patients. Moreover, knockdown of HAGLROS in HCT-116 cells induced apoptosis by increasing the expression of Bax/Bcl-2 ratio, cleaved-caspase-3, and cleaved-caspase-9, and inhibited autophagy by decreasing the expression of LC3II/LC3I and Beclin-1 and increasing P62 expression. Furthermore, HAGLROS negatively regulated the expression of miR-100, and HAGLROS controlled HCT-116 cell apoptosis and autophagy through negatively regulation of miR-100. Autophagy related 5 (ATG5) was verified as a functional target of miR-100 and miR-100 regulated HCT-116 cell apoptosis and autophagy through targeting ATG5. Besides, HAGLROS overexpression activated phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. In conclusion, a highly expression of HAGLROS correlated with shorter survival time of CRC patients. Downregulation of HAGLROS may induce apoptosis and inhibit autophagy in CRC cells by regulation of miR-100/ATG5 axis and PI3K/AKT/mTOR pathway.  相似文献   

18.
Lung cancer remains the leading cause of cancer-related death all over the world. In spite of the great advances made in surgery and chemotherapy, the prognosis of lung cancer patients is poor. A substantial fraction of long noncoding RNAs (lncRNAs) can regulate various cancers. A recent study has reported that lncRNA HOXB-AS3 plays a critical role in cancers. However, its biological function remains unclear in lung cancer progression. In the current research, we found HOXB-AS3 was obviously elevated in NSCLC tissues and cells. Functional assays showed that inhibition of HOXB-AS3 was able to repress A549 and H1975 cell proliferation, cell colony formation ability and meanwhile, triggered cell apoptosis. Furthermore, the lung cancer cell cycle was mostly blocked in the G1 phase whereas the cell ratio in the S phase was reduced. Also, A549 and H1975 cell migration and invasion capacity were significantly repressed by the loss of HOXB-AS3. The PI3K/AKT pathway has been implicated in the carcinogenesis of multiple cancers. Here, we displayed that inhibition of HOXB-AS3 suppressed lung cancer cell progression via inactivating the PI3K/AKT pathway. Subsequently, in vivo experiments were utilized in our study and it was demonstrated that HOXB-AS3 contributed to lung cancer tumor growth via modulating the PI3K/AKT pathway. Overall, we implied that HOXB-AS3 might provide a new perspective for lung cancer treatment via targeting PI3K/AKT.  相似文献   

19.
(1) Background: Triple negative breast cancer (TNBC) is a highly aggressive tumor, associated with high rates of early distant recurrence and short survival times, and treatment may require surgery, and thus anesthesia. The effects of anesthetic drugs on cancer progression are under scrutiny, but published data are controversial, and the involved mechanisms unclear. Anesthetic agents have been shown to modulate several molecular cascades, including PI3K/AKT/mTOR. AKT isoforms are frequently amplified in various malignant tumors and associated with malignant cell survival, proliferation and invasion. Their activation is often observed in human cancers and is associated with decreased survival rate. Certain anesthetics are known to affect hypoxia cell signaling mechanisms by upregulating hypoxia-inducible factors (HIFs). (2) Methods: MCF-10A and MDA-MB 231 cells were cultivated and CellTiter-Blue® Cell Viability assay, 2D and 3D matrigel assay, immunofluorescence assays and gene expressions assay were performed after exposure to different sevoflurane concentrations. (3) Results: Sevoflurane exposure of TNBC cells results in morphological and behavioral changes. Sevoflurane differently influences the AKT isoforms expression in a time-dependent manner, with an important early AKT3 upregulation. The most significant effects occur at 72 h after 2 mM sevoflurane treatment and consist in increased viability, proliferation and aggressiveness and increased vimentin and HIF expression. (4) Conclusions: Sevoflurane exposure during surgery may contribute to cancer recurrence via AKT3 induced epithelial–mesenchymal transition (EMT) and by all three AKT isoforms enhanced cancer cell survival and proliferation.  相似文献   

20.
There is increasing evidence that the core clock gene Period 1 (PER1) plays important roles in the formation of various tumors. However, the biological functions and mechanism of PER1 in promoting tumor progression remain largely unknown. Here, we discovered that PER1 was markedly downregulated in oral squamous cell carcinoma (OSCC). Then, OSCC cell lines with stable overexpression, knockdown, and mutation of PER1 were established. We found that PER1 overexpression significantly inhibited glycolysis, glucose uptake, proliferation, and the PI3K/AKT pathway in OSCC cells. The opposite effects were observed in PER1-knockdown OSCC cells. After treatment of PER1-overexpressing OSCC cells with an AKT activator or treatment of PER1-knockdown OSCC cells with an AKT inhibitor, glycolysis, glucose uptake, and proliferation were markedly rescued. In addition, after treatment of PER1-knockdown OSCC cells with a glycolysis inhibitor, the increase in cell proliferation was significantly reversed. Further, coimmunoprecipitation (Co-IP) and cycloheximide (CHX) chase experiment demonstrated that PER1 can bind with RACK1 and PI3K to form the PER1/RACK1/PI3K complex in OSCC cells. In PER1-overexpressing OSCC cells, the abundance of the PER1/RACK1/PI3K complex was significantly increased, the half-life of PI3K was markedly decreased, and glycolysis, proliferation, and the PI3K/AKT pathway were significantly inhibited. However, these effects were markedly reversed in PER1-mutant OSCC cells. In vivo tumorigenicity assays confirmed that PER1 overexpression inhibited tumor growth while suppressing glycolysis, proliferation, and the PI3K/AKT pathway. Collectively, this study generated the novel findings that PER1 suppresses OSCC progression by inhibiting glycolysis-mediated cell proliferation via the formation of the PER1/RACK1/PI3K complex to regulate the stability of PI3K and the PI3K/AKT pathway-dependent manner and that PER1 could potentially be a valuable therapeutic target in OSCC.Subject terms: Oral cancer, Cell growth, RNAi  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号