首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The larch forests at the southern limit of the Siberian boreal forest in Central Asia have repeatedly experienced strong recent growth declines attributed to decreasing summer precipitation in the course of climate warming. Here, we present evidence from the southernmost Larix sibirica forests in eastern Kazakhstan that these declines are primarily caused by a decrease in effective moisture due to increasing summer temperatures, despite constant annual, and summer precipitation. Tree-ring chronologies (>800 trees) showed a reduction by 50–80% in mean ring width and an increase in the frequency of missing rings since the 1970s. Climate-response analysis revealed a stronger (negative) effect of summer temperature (in particular of the previous year’s June and July temperature) on radial growth than summer precipitation (positive effect). It is assumed that a rise in the atmospheric vapor pressure deficit, which typically increases with temperature, is negatively affecting tree water status and radial growth, either directly or indirectly through reduced soil moisture. Larch rejuvenation ceased in the 1950s, which is partly explained by increasing topsoil desiccation in a warmer climate and a high drought susceptibility of larch germination, as was demonstrated by a germination experiment with variable soil moisture levels. The lack of regeneration and the reduced annual stem increment suggest that sustainable forest management aiming at timber harvesting is no longer feasible in these southern boreal forests. Progressive climate warming is likely to cause a future northward shift of the southern limit of the boreal forest.  相似文献   

2.
The Daxing’an Mountains is one of the areas with the most serious climate warming in northern China. Dahurian larch (Larix gmelinii) and Mongolian Scots pine (Pinus sylvestris var. mongolica) are two major coniferous species in boreal forests of the region. Their growth-climate relationship is crucial for understanding the effects of climate change on boreal forest ecosystems. To examine and compare the changes of climate-growth relationship between larch and pine, a total of 418 tree-ring cores of the two species were collected at six sites in the Daxing’an Mountains, and the tree-ring chronologies were developed. The results showed that water availability (Palmer Drought Severity Index, PDSI) played a key role in the stable growth of larch and pine. The temperature and precipitation in January, June-August are important factors affecting the radial growth of the two coniferous species along the latitude gradient. The correlation coefficients of growth and the seasonal temperature and precipitation of larch and pine showed a completely opposite trend with the increase of latitude. In summer and autumn, the correlation coefficients between larch growth and seasonal mean temperature decreased first and then increased with the increase of latitude, while that of pine, on the contrary, increased first and then decreased. In winter, spring and autumn, the correlation coefficients between larch growth and seasonal total precipitation decreased first and then increased with the increase of latitude, while that of pine was opposite. However, the correlation coefficients between larch and pine growth and PDSI showed the same trend with the increase of latitude, decreasing at first and then increasing. Before and after rapid warming (around 1980), the correlation coefficients between larch and pine growth and PDSI showed a completely opposite change. Our findings emphasize that the growth-climate relationships of Dahurian larch and Mongolian Scotts pine shows an opposite trend with latitude, which means that the two species may exhibit a completely opposite response with climate change along the latitude gradient.  相似文献   

3.
Radial growth in trees responds to environmental changes in various ways ranging from immediate to hysteretic responses. However, species-specific tree radial growth patterns and their responses to short-term weather changes are not fully understood. Here, the daily stem radial changes (SRCs) in four common tree species, linden (Tilia mongolica), birch (Betula dahurica), oak (Quercus wutaishanica) and larch (Larix principis-rupprechtii), were monitored with high-resolution point dendrometers during the main growing seasons in 2017–2019 on Dongling Mountain, northern China. The SRC was differentiated into tree water deficit-induced stem shrinkage (TWD) and growth-induced irreversible stem expansion (GRO) to evaluate species-specific responses to weather variables and short-term drought events. We found that the TWD and GRO of the four species were significantly different. The TWD was influenced primarily by the vapor pressure deficit (VPD), whereas the GRO was influenced primarily by precipitation (P). In linden and birch, a larger proportion of the GRO occurred at higher air temperature (Tmean) and VPD values; in contrast, the range of these changes was lower in oak and larch. With the increased durations of drought periods, oak and larch experienced large and rapid increases in TWD, whereas birch and linden showed small and slow increases. These results indicate that oak and larch would be sensitive to warmer and drier weather conditions predicted for the future, while linden and birch would have a conservative growth strategy. Our results provide further insights into the physiology of these four tree species and allow us to better predict the growth response of forest dynamics under climate change.  相似文献   

4.
为阐明不同树种间树木径向生长对气候变化的响应及其时间稳定性,本研究以长白山北坡高海拔处(1600~1750 m)落叶松和鱼鳞云杉为研究对象,运用年轮年代学方法探究树木径向生长与气候的关系.结果表明: 研究区落叶松生长与当年6月最高气温呈显著正相关,与当年6月降水呈负相关;鱼鳞云杉与当年5月最高温度呈显著正相关.冗余分析进一步表明,落叶松生长主要受夏季温度的影响,鱼鳞云杉生长主要受春季温度的制约.在1959—2014年,落叶松生长-夏季温度关系相对稳定;对于鱼鳞云杉,自1986年以来其与春季温度的相关性减弱,可能由于最高温度降低导致树木生长减慢.本研究结果可以为预测气候变化情景下长白山针叶树种生长的响应趋势提供数据支持和理论参考.  相似文献   

5.
Responses of tree growth to climate are usually spatially heterogeneous. Besides regionally varying external environments, species specificity is a crucial factor in determining said spatial heterogeneity. A better understanding of this species specificity would improve our estimations of the warming effects on forests. In this study, we selected two widely-distributed boreal conifers, Dahurian larch (Larix gmelinii) and Mongolian pine (Pinus sylvestris var. mongolica), to compare their growth-climate responses, including long-term growth-climate correlations and short-term growth resilience to drought. We sampled 160 trees and 481 tree-ring cores from the two species in two pure and two mixed forests, located in the Greater Khingan Range, northeast China. We found that Dahurian larch was generally positively correlated with spring temperature and negatively correlated with summer temperature. In contrast, Mongolian pine was more sensitive to summer moisture. Our results suggest that the main climatic limitations were low spring temperatures for Dahurian larch and summer moisture deficits for Mongolian pine. Dahurian larch represented higher growth resistance to drought, while Mongolia pine represented higher recovery. Based on this, we inferred that Dahurian larch was more vulnerable to extreme droughts, while Mongolian pine was more vulnerable to frequent droughts. We also demonstrated the effects of forest type on growth-climate responses. The negative effects of summer temperatures on Mongolian pine seemed to be more significant in mixed forests. As warming continued, Mongolian pine in this area would suffer severer moisture deficits, especially when coexisting with Dahurian larch. Our results suggest that Dahurian larch gained an advantage in the competition with Mongolian pine during high moisture stress. Driven by the warming trends, the species specificity in growth response would ultimately promote the separation of the two species in distribution. This study will help improve our estimations of the warming effects on forests and develop more species-targeted forest management practices.  相似文献   

6.
Wildfires are natural and ubiquitous disturbances in boreal forests. Assessing their impacts on tree growth and resilience are particularly important to recognize the adaptation strategies of fire-tolerant species and forest succession in fire conditions. To date, the growth resilience of fire-tolerant species in boreal forests remains largely unquantified, and the drivers of resilience are poorly understood. Here, we measured the tree-ring widths of 99 fire-scarred trees from three sites in natural Dahurian larch (Larix gmelinii) forests. Three moderate-severity fire events in years 1987, 1990, and 2000 occurring at three sites were detected from the records of local forestry bureau. Based on tree-ring width data, we calculated resilience components (i.e., resistance, recovery, resilience and relative resilience) to quantify the responses of growth resilience in the larch trees to fires and analyzed their drivers at three sites. Results indicated that fires significantly reduced the tree growth. With the increasing tree age, these reductions were more pronounced. As for resilience components, our study showed a limited resistance but high recovery of tree growth against fires, and resistance tended to increase northwards but recovery showed the opposite, suggesting a growth-survival tradeoff was exhibited in Dahurian larch trees. With an increasing tree age, regional resistance and resilience showed a decreasing trend, whereas recovery and relative resilience showed an increasing trend. Resilience components were mainly affected by the climatic factors in spring. An increase in moisture availability enhanced resistance, a reduction in diurnal temperature range enhanced recovery, and an increase in mean temperature enhanced resilience and relative resilience. This study reveals that Dahurian larch could be even less favorable when faced with moderate or severe fire events, but a high capacity of recovery enables this species to adapt to the fire-prone condition. Moreover, this work highlights that the resilience of tree growth should be considered to understand tree behaviors and survival strategies of boreal forests following fires across fire-prone regions under future climate warming.  相似文献   

7.
Climatic harshness is expected to increase at higher elevations; however, elevational trends of tree radial growth response of high-elevation forests to climate change need to be investigated at different locations because of existing local variability in site-specific climatic conditions. We developed tree-ring width chronologies of Yunnan fir (Abies georgei) along elevation gradients at two sites in the central Hengduan Mountains (HM). High-elevation forests of A. georgei showed growth synchronicity and common growth signals along elevation gradients, indicating a common climatic forcing, although tree radial growth rates decreased with increasing elevation. Radial growth of Yunnan fir showed positive correlations with summer temperatures and February precipitation and moisture availability, but were negatively correlated with spring temperatures. The strongest positive relationship indicated summer (July) mean and minimum temperatures are the most important growth determining climatic factors for tree radial growth in the cold environment of HM, and this relationship revealed a clear elevational trend with stronger correlations at higher altitudes. In contrast, tree radial growth was negatively correlated with June precipitation and moisture availability. The whole study period 1954–2015 was split in two sub-periods of equal length. Comparing the early sub-period (1954–1984) to the later sub-period (1985–2015), tree growth response to the summer temperatures strongly increased, while it became weaker to June precipitation and moisture availability. High-elevation Yunnan fir forests in the HM currently benefit from elevated growing season temperatures under humid summer conditions. However, increasing temperatures may induce drought stress on tree radial growth if the observed decreasing trend in humidity and precipitation continues.  相似文献   

8.
大兴安岭是我国气候变化最为显著的地区之一,兴安落叶松和樟子松是该地区最为重要的树种,研究它们径向生长对气候变化的响应差异,可以为预测气候变化下我国北方森林动态提供科学依据。在大兴安岭地区选择6个样点共采集兴安落叶松树轮和樟子松树轮样芯451个,建立了12个标准年表。比较了1900年以来树木径向生长趋势,利用Pearson相关分析法分析各样点兴安落叶松和樟子松生长对气候因子的响应,运用线性混合模型探讨温度和降水对兴安落叶松和樟子松年径向生长的影响,通过滑动相关对比两个树种生长-气候关系的时间稳定性。结果表明: 兴安落叶松径向生长与3月平均温度呈负相关,与上一年冬季和当年7月降水呈正相关。樟子松径向生长与当年8月温度呈正相关,与当年生长季(5—9月)降水呈正相关。冬季降雪对兴安落叶松径向生长起到重要的促进作用,夏季过多降水对樟子松径向生长起到显著的限制作用。兴安落叶松和樟子松生长对气候变化的响应存在明显差异,因此,气候变化可能会影响北方森林生态系统的树木生长、物种组成以及空间分布等。  相似文献   

9.
Population structure and tree recruitment dynamics in the natural treeline ecotone of high mountains are strong indicators of vegetation responses to climate. Here, we examined recruitment dynamics of Abies spectabilis across the treeline ecotone (3439–3638 m asl) of Chimang Lekh of Annapurna Conservation Area in the Trans-Himalayan zone of central Nepal. Dendrochronological techniques were used to establish stand age structure by ring counts of adults, and by terminal bud scar count for seedlings and saplings. The results showed abundant seedling recruitment, higher regenerative inertia and colonization with a consistent range shift of the A. spectabilis treeline. The upward expansion of this sub-alpine treeline was found to be driven by a strong dependence of seedling recruitment and radial growth on snowmelt and precipitation as temperatures rise. The radial growth of A. spectabilis at the alpine timberline ecotone (ATE) and closed timberline forest (CTF) showed sensitivity to spring season (March–May) climate. Tree ring indices of CTF showed a strong positive correlation with spring and annual precipitation, and a significant negative correlation with spring and annual temperature, however, moisture sensitivity was less strong at ATE than CTF.  相似文献   

10.
《Dendrochronologia》2014,32(2):137-143
We sampled Rocky Mountain junipers (RMJ) to produce a multi-century tree-ring chronology from a relict lava flow, the Paxton Springs Malpais (PAX), in the Zuni Mountains of western New Mexico. Our objective was to assess crossdating potential for RMJ growing on the volcanic badlands of the region, investigate potential relationships between climate and RMJ growth, and investigate temporal variability in relationships identified between climate and RMJ growing at our site. We hypothesized that, similar to other drought stressed-conifers growing on the lava flows, RMJ responds to climate factors that influence and indicate moisture availability. We found a high average mean sensitivity value (0.53), which indicated the PAX chronology exhibited enough annual variability to capture fluctuations in environmental conditions. The average interseries correlation (0.74) indicated confident crossdating and a significant association of annual growth among trees within the stand. The positive correlation between the PAX chronology and total precipitation for the local water year was significant (r = 0.53; P < 0.001). Significant positive correlations also were identified between monthly PDSI, monthly total precipitation, and RMJ radial growth. Analyses of temporal stability indicated that the positive relationship between RMJ growth at the PAX site and monthly PDSI was the most stable relationship during the period of analysis (1895–2007). More importantly, we identified a unique inverse relationship between radial growth and monthly mean temperature during periods of the preceding year and current growing year, the first such finding of a strong temperature response for a low-mid elevation tree species in the American Southwest. Our results confirm that RMJ samples collected on the Paxton Springs Malpais are sensitive to climate factors that affect moisture availability, further suggesting that RMJ may be suitable for use in dendroclimatic research at additional locations across the broad distribution of the species.  相似文献   

11.
To address the central question of how climate change influences tree growth within the context of global warming, we used dendroclimatological analysis to understand the reactions of four major boreal tree species –Populus tremuloides, Betula papyrifera, Picea mariana, and Pinus banksiana– to climatic variations along a broad latitudinal gradient from 46 to 54°N in the eastern Canadian boreal forest. Tree‐ring chronologies from 34 forested stands distributed at a 1° interval were built, transformed into principal components (PCs), and analyzed through bootstrapped correlation analysis over the period 1950–2003 to identify climate factors limiting the radial growth and the detailed radial growth–climate association along the gradient. All species taken together, previous summer temperature (negative influences), and current January and March–April temperatures (positive influences) showed the most consistent relationships with radial growth across the gradient. Combined with the identified species/site‐specific climate factors, our study suggested that moisture conditions during the year before radial growth played a dominant role in positively regulating P. tremuloides growth, whereas January temperature and growing season moisture conditions positively impacted growth of B. papyrifera. Both P. mariana and P. banksiana were positively affected by the current‐year winter and spring or whole growing season temperatures over the entire range of our corridor. Owing to the impacts of different climate factors on growth, these boreal species showed inconsistent responsiveness to recent warming at the transition zone, where B. papyrifera, P. mariana, and P. banksiana would be the most responsive species, whereas P. tremuloides might be the least. Under continued warming, B. papyrifera stands located north of 49°N, P. tremuloides at northern latitudes, and P. mariana and P. banksiana stands located north of 47°N might benefit from warming winter and spring temperatures to enhance their radial growth in the coming decades, whereas other southern stands might be decreasing in radial growth.  相似文献   

12.
Within a dry inner Alpine valley in the Eastern Central Alps (750 m a.s.l., Tyrol, Austria), the influence of climate variables (precipitation, air humidity, temperature) and soil water content on intra-annual dynamics of tree-ring development was determined in Scots pine (Pinus sylvestris L.) at two sites differing in soil water availability (xeric and dry-mesic site). Radial stem development was continuously followed during 2007 and 2008 by band dendrometers and repeated micro-sampling of the developing tree rings of mature trees. Daily and seasonal fluctuations of the stem radius, which reached almost half of total annual increment, primarily reflected changes in tree water status and masked radial stem growth especially during drought periods in spring. However, temporal dynamics of intra-annual radial growth determined by both methods were found to be quite similar, when onset of radial growth in dendrometer traces was defined by the occurrence of first enlarging xylem cells. Radial increments during the growing period, which lasted from early April through early August, showed statistically significant relationships with precipitation (Kendall τ = 0.234, p < 0.01, and τ = 0.184, p < 0.05, at the xeric and dry-mesic site, respectively) and relative air humidity (Pearson r = 0.290, p < 0.05, and r = 0.306, p < 0.05 at the xeric and dry-mesic site, respectively). Soil water content and air temperature had no influence on radial stem increment. Culmination of radial stem growth was detected at both study plots around mid-May, prior to occurrence of more favourable climatic conditions, i.e., an increase in precipitation during summer. We suggest that the early decrease in radial growth rate is due to a high belowground demand for carbohydrates to ensure adequate resource acquisition on the drought-prone substrate.  相似文献   

13.
Water availability acts as a major constraint on productivity in many sub-humid forest regions. Precipitation can be an important limiting factor for tree growth in such areas, but the strength of the relationship can vary by habitat and species, as well as with tree size and local hydrology. We quantified the influence of past weather conditions on the growth of two conifer species (Pinus contorta and Picea glauca) across a water-limited forest landscape in western Canada. The two species differ in moisture requirements and are segregated across a local elevational gradient, and so we expected them to exhibit different sensitivities to precipitation. We also expected that larger trees and those more distant from creeks would have a stronger response to precipitation. A hierarchical Bayesian model fit to the annual ring widths of 387 trees showed that historical precipitation from 1951 to 2016 had a positive overall effect on radial growth. The magnitude of precipitation effects on radial tree growth varied with creek proximity (a proxy for the soil moisture provided by an elevated water table in the valley bottom) and tree size. Precipitation had a greater positive influence on the growth of larger P. glauca trees, as well as individuals of both species at far and intermediate distances from creeks. Precipitation had a weaker but still positive effect on P. glauca trees growing close to creeks. Tree growth rates may change with the predicted greater inter-annual variability of precipitation under climate change, but the magnitude of these responses appear to vary by species, size, and creek proximity. Overall changes in tree growth are expected to be relatively small as trees are well-adapted to cope with the variation in water availability across a moisture-limited landscape.  相似文献   

14.
The influence of climate changes on larch (Larix sibirica Ledeb.) radial increment under conditions of a limited (forest steppe) and sufficient (high-altitude Kuznetsk Alatau, floodplain stands) humidification is considered. The relationship between growth index of larch trees (N = 257) and ecological and climatic variables is analyzed. In the forest steppe, with the onset of warming, a decrease in the aridity of the climate, an increase in the duration of the growing season (1980s), and an increase in the larch growth index followed by its depression in the 1990s have been observed. Radial-increment depression is caused by an increase in vapor-pressure deficit and arid climate due to a rising air temperature. In the 2000s, radial-increment fluctuations with average values not exceeding those before the beginning of current climate warming period occurred. In the highlands, since the 1970s, there has been a general increase in the larch radial increment closely associated with the main limiting factor of growth—air temperature. At the same time, in arid years, the radial-increment depression of larch trees in highland and floodplain larch forests is also noted. When implementing “hard” climate scenarios (RCP 6.0 and RCP 8.5), it is likely that the larch growth index in a forest steppe will decrease further and its increase in areas of sufficient moisture will be observed.  相似文献   

15.
North-Central China is a region in which the air temperature has clearly increased for several decades. Picea meyeri and Larix principis-rupprechtii are the most dominant co-occurring tree species within the cold coniferous forest belt ranging vertically from 1800 m to 2800 m a.s.l. in this region. Based on a tree-ring analysis of 292 increment cores sampled from 146 trees at different elevations, this study aimed to examine if the radial growth of the two species in response to climate is similar, whether the responses are consistent along altitudinal gradients and which species might be favored in the future driven by the changing climate. The results indicated the following: (1) The two species grew in different rhythms at low and high elevation respectively; (2) Both species displayed inconsistent relationships between radial growth and climate data along altitudinal gradients. The correlation between radial growth and the monthly mean temperature in the spring or summer changed from negative at low elevation into positive at high elevation, whereas those between the radial growth and the total monthly precipitation displayed a change from positive into negative along the elevation gradient. These indicate the different influences of the horizontal climate and vertical mountainous climate on the radial growth of the two species; (3) The species-dependent different response to climate in radial growth appeared mainly in autumn of the previous year. The radial growth of L. principis-rupprechtii displayed negative responses both to temperature and to precipitation in the previous September, October or November, which was not observed in the radial growth of P. meyeri. (4) The radial growth of both species will tend to be increased at high elevation and limited at low elevation, and L. principis-rupprechtii might be more favored in the future, if the temperature keeps rising.  相似文献   

16.
Quantifying the effects of environmental variables on radial growth has real significance for reasonably predicting the impacts of environmental changes on tree dynamics. This study used Picea crassifolia, a widely distributed dominant evergreen coniferous tree species found on the north-eastern fringe of the Tibetan Plateau, as a case study to analyse the associations of radial growth with environmental variables during 1960–2018 using a correlation analysis and sliding correlation analysis. The responses of radial growth to different moisture conditions were further quantitatively evaluated through the generalised linear model and relative dominance analysis. The results show that the radial growth of P. crassifolia is mainly influenced by moisture conditions in the study area. Specifically, the response times of P. crassifolia radial growth to soil moisture and precipitation differ, as radial growth has a significant positive correlation with precipitation in the early growth period. Notably, radial growth has a remarkable and stable correlation with soil moisture in the autumn and winter seasons of the previous year. This study provides a theoretical foundation and scientific grounds for analysing the response of Tibetan Plateau forests to climate change and can act as a reference for future research on the response of radial growth to soil moisture in alpine regions.  相似文献   

17.
Long-term climate–growth relationships, were examined in tree rings of four co-occurring tree species from semi-arid Acacia savanna woodlands in Ethiopia. The main purpose of the study was to prove the presence of annual tree rings, evaluate the relationship between radial growth and climate parameters, and evaluate the association of El Niño and drought years in Ethiopia. The results showed that all species studied form distinct growth boundaries, though differences in distinctiveness were revealed among the species. Tree rings of the evergreen Balanites aegyptiaca were separated by vessels surrounding a thin parenchyma band and the growth boundary of the deciduous acacias was characterized by thin parenchyma bands. The mean annual diameter increment ranged from 3.6 to 5.0 mm. Acacia senegal and Acacia seyal showed more enhanced growth than Acacia tortilis and B. aegyptiaca. High positive correlations were found between the tree-ring width chronologies and precipitation data, and all species showed similar response to external climate forcing, which supports the formation of one tree-ring per year. Strong declines in tree-ring width correlated remarkably well with past El Niño Southern Oscillation (ENSO) events and drought/famine periods in Ethiopia. Spectral analysis of the master tree-ring chronology indicated occurrences of periodic drought events, which fall within the spectral peak equivalent to 2–8 years. Our results proved the strong linkage between tree-ring chronologies and climate, which sheds light on the potential of dendrochronological studies developing in Ethiopia. The outcome of this study has important implications for paleoclimatic reconstructions and in restoration of degraded lands.  相似文献   

18.
A better understanding of growth-climate responses of high-elevation tree species across their distribution range is essential to devise an appropriate forest management and conservation strategies against adverse impacts of climate change. The present study evaluates how radial growth of Himalayan fir (Abies spectabilis D. Don) and its relation to climate varies with elevation in the Manaslu Mountain range in the central Himalaya. We developed tree-ring width chronologies of Himalayan fir from three elevational belts at the species’upper distribution limit (3750−3900 m), in the middle range (3500−3600 m), and at the lower distribution limit (3200−3300 m), and analyzed their associations with climatic factors. Tree growth of Himalayan fir varied synchronously across elevational belts, with recent growth increases observed at all elevations. Across the elevation gradient, radial growth correlated positively (negatively) with temperature (precipitation and standardized precipitation-evapotranspiration index, SPEI-03) during the summer (July to September) season. However, the importance of summer (July to September) temperatures on radial growth decreased with elevation, whereas correlations with winter (previous November to current January) temperatures increased. Correlations with spring precipitation and SPEI-03 changed from positive to negative from low to high elevations. Moving correlation analysis revealed a persistent response of tree growth to May and August temperatures. However, growth response to spring moisture availability has strongly increased in recent decades, indicating that intensified spring drought may reduce growth rates of Himalayan fir at lower elevations. Under sufficient moisture conditions, increasing summer temperature might be beneficial for fir trees growing at all elevations, while trees growing at the upper treeline will take additional benefit from winter warming.  相似文献   

19.
To predict the long‐term effects of climate change – global warming and changes in precipitation – on the diameter (radial) growth of jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana [Mill.] B.S.P.) trees in boreal Ontario, we modified an existing diameter growth model to include climate variables. Diameter chronologies of 927 jack pine and 1173 black spruce trees, growing in the area from 47°N to 50°N and 80°W to 92°W, were used to develop diameter growth models in a nonlinear mixed‐effects approach. Our results showed that the variables long‐term average of mean growing season temperature, precipitation during wettest quarter, and total precipitation during growing season were significant (alpha = 0.05) in explaining variation in diameter growth of the sample trees. Model results indicated that higher temperatures during the growing season would increase the diameter growth of jack pine trees, but decrease that of black spruce trees. More precipitation during the wettest quarter would favor the diameter growth of both species. On the other hand, a wetter growing season, which may decrease radiation inputs, increase nutrient leaching, and reduce the decomposition rate, would reduce the diameter growth of both species. Moreover, our results indicated that future (2041–2070) diameter growth rate may differ from current (1971–2000) growth rates for both species, with conditions being more favorable for jack pine than black spruce trees. Expected future changes in the growth rate of boreal trees need to be considered in forest management decisions. We recommend that knowledge of climate–growth relationships, as represented by models, be combined with learning from adaptive management to reduce the risks and uncertainties associated with forest management decisions.  相似文献   

20.
Most North American forests are at some stage of post‐disturbance regrowth, subject to a changing climate, and exhibit growth and mortality patterns that may not be closely coupled to annual environmental conditions. Distinguishing the possibly interacting effects of these processes is necessary to put short‐term studies in a longer term context, and particularly important for the carbon‐dense, fire‐prone boreal forest. The goals of this study were to combine dendrochronological sampling, inventory records, and machine‐learning algorithms to understand how tree growth and death have changed at one highly studied site (Northern Old Black Spruce, NOBS) in the central Canadian boreal forest. Over the 1999–2012 inventory period, mean tree diameter increased even as stand density and basal area declined significantly. Tree mortality averaged 1.4 ± 0.6% yr?1, with most mortality occurring in medium‐sized trees; new recruitment was minimal. There have been at least two, and probably three, significant influxes of new trees since stand initiation, but none in recent decades. A combined tree ring chronology constructed from sampling in 2001, 2004, and 2012 showed several periods of extreme growth depression, with increased mortality lagging depressed growth by ~5 years. Higher minimum and maximum air temperatures exerted a negative influence on tree growth, while precipitation and climate moisture index had a positive effect; both current‐ and previous‐year data exerted significant effects. Models based on these variables explained 23–44% of the ring‐width variability. We suggest that past climate extremes led to significant mortality still visible in the current forest structure, with decadal dynamics superimposed on slower patterns of fire and succession. These results have significant implications for our understanding of previous work at NOBS, the carbon sequestration capability of old‐growth stands in a disturbance‐prone landscape, and the sustainable management of regional forests in a changing climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号