首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tree growth sensitivity to climate can vary over space and time. This variability generates inconsistency in growth response to climate, which makes it difficult to assess the effects of past climate and global climate change on tree growth. A previous short-term study of Pseudopiptadenia contorta found a consistent growth response to climate in distinct locations, which raises the question, is the growth response of P. contorta to climate consistent over the long-term? We aimed to assess whether there is a common pattern of variation in tree-ring width, build tree-ring width chronologies, and verify the consistency of the climate-growth response of P. contorta in two Atlantic Forest remnants. Wood samples were collected in Reserva Biológica de Poço das Antas (RBPA) and Reserva Biológica de Tinguá (RBT) in the state of Rio de Janeiro, Brazil. Conventional dendrochronology methods were used for cross-dating, to build chronologies and to assess the climate-growth relationship. A common growth pattern was detected for P. contorta, and two tree-ring width chronologies were constructed. A congruent growth response was found for trees of RBPA and RBT to annual and spring precipitation as well as precipitation in the rainy months. Other climate-growth relationships were detected with other precipitation and temperature variables. Considering that P. contorta is a widespread species, occurring in other Brazilian biomes and forest formations, it is a promising model for developing further dendrochronological research including regional networks of replicated site chronologies, which could facilitate the reconstruction of historical climatic series and predictions of future impacts of climate change in tropical areas.  相似文献   

2.
We introduce in this paper the dendroTools R package for studying the statistical relationships between tree-ring parameters and daily environmental data. The core function of the package is daily_response(), which works by sliding a moving window through daily environmental data and calculating statistical metrics with one or more tree ring proxies. Possible metrics are correlation coefficient, coefficient of determination and adjusted coefficient of determination. In addition to linear regression, it is possible to use a nonlinear artificial neural network with the Bayesian regularization training algorithm (brnn). dendroTools provides the opportunity to use daily climate data and robust nonlinear functions for the analysis of climate-growth relationships. Models should thus be better adapted to the real (continuous) growth of trees and should gain in predictive capabilities. The dendroTools R package is freely available in the CRAN repository. The functionality of the package is demonstrated on two examples, one using a mean vessel area (MVA) chronology and one a traditional tree-ring width (TRW).  相似文献   

3.
The growth responses to climate variability are still unknown in locally threatened conifers from dry regions, but this information is necessary for improving the conservation of relict populations under increasing aridification. We characterized the radial growth patterns and responses to climate of Tetraclinis articulata, a Cupressaceae tree endemic to the western Mediterranean Basin, in a relict population located in southwestern Spain (Doñana) and two populations from the northern Morocco where the species core habitat is found (Tétouan, Ifarten). We assessed climate-growth relationships by using tree-ring width, climate data, drought and North Atlantic Oscillation (NAO) indices. Climate-growth analyses were refined using the climwin R package to select the most informative statistical models. The main climatic constraints of growth were inferred by using the process-based Vaganov-Shashkin (VS) model explicitly considering non-linear climate-growth relationships. Tetraclinis articulata growth was favored by wet conditions from the prior autumn to the spring of the growth year. In Doñana, warmer May conditions led to growth decline but this negative effect could be reversed by wet-warm conditions in the prior late autumn. Growth in the two Moroccan sites was constrained by 6- to 18-month long droughts peaking in summer, which account for cumulative water deficit since the previous autumn. Winter and early spring precipitation were the main climate drivers of growth in the Moroccan T. articulata populations, and their year-to-year variability was linked to the NAO. The VS model simulations showed that T. articulata growth is enhanced by wet soil conditions in late winter and early spring, probably recharging shallow soil water pools. The VS model also confirmed that warmer spring-summer conditions could amplify drought stress and threaten the long-term persistence of the relict Doñana population.  相似文献   

4.
Tree-ring inter-annual pattern variation is crucial in dendrochronology, allowing the identification of possible limiting factors on growth. Thus, trees exposed to subtropical or tropical climates without a marked seasonality may show a low degree of interannual variation, impeding a straightforward dendroclimatological approach. Meanwhile, subtropical regions, and areas in transitional climates such as the Azores archipelago, are widely unexplored in terms of dendroclimatology, providing opportunities to work with endemic trees, including the dominant Azorean tree Juniperus brevifolia (Seub.) Antoine. To evaluate the dendrochronological potential of J. brevifolia, we analyzed tree-ring patterns, crossdating capabilities, and correlation with climate parameters. We sampled 48 individual trees from two natural populations (São Miguel and Terceira islands) using an increment borer. Besides, a Trephor tool was used to obtain wood microcores for micro-anatomical analysis. Although the transition between early and latewood was evident, partially indistinct ring boundaries and wedging rings were present in some cases, affecting the crossdating process, but not impeding the establishment of reliable ring-width chronologies. Following detrending, master chronologies were built and correlated with monthly temperature and precipitation data using the treeclim R package. The climate-growth relationships indicated negative correlations with late summer temperature in both populations. Considering our results and the importance of J. brevifolia as a dominant tree in the Azores natural forests, we conclude that it shows an acceptable potential for dendrochronological research. Thus, this study provides baseline information to help fill the knowledge gap regarding the climate-growth relationship of Azorean trees.  相似文献   

5.
The botanical family Lauraceae is ecologically and physiognomically very important in neotropical forests. It is one of the most frequent and distributed family both in number of individuals and species. Despite of this, we have noticed that a very few Lauraceae species have been considered in dendrochronological investigations. In order to analyze the potential of Lauraceae species in dendrochronology and to facilitate future studies we: (1) reviewed the literature on wood anatomy, cambial activity, tree growth and dendrochronology and compiled a list of species’ tree-ring features throughout the Neotropics; (2) Investigated wood anatomy, growth synchronism and climate-growth relationship using dendrochronological standard techniques in 14 species from subtropical forests of southern Brazil. Our review pointed out that the majority of Lauraceae forms distinct tree-rings in several biomes and climates in the Neotropics. Seasonal growth pattern related to water stress and to seasonal air temperature were identified in Amazonia and in subtropical high elevation sites, respectively. Time series of tree-ring width of Lauraceae species were successfully cross-dated and were already used in reconstruction of fire and vegetation dynamics. Our own dendrochronological investigations brought to light that all the 14 studied species form distinct tree-rings in seasonal or even rainforests. By analyzing time series of tree-ring width we found the same growth tendency within trees of Cinnamomum amoenum and Ocotea pulchella. Moreover, year-to-year variation in the growth time-series was linked to climate variations of temperature and precipitation, showing growth decreases when summer water stress occur. We evinced Lauraceae has distinct, synchronic and climate-sensitive tree-rings. Therefore, since Lauraceae has wide distribution and high frequency in the Neotropics and since many species become centenary, we strongly encourage the use of Lauraceae’s tree-rings in autoecology, climatology and on the reconstruction of vegetation and disturbance dynamics.  相似文献   

6.
7.
Climate-growth relationships are usually analysed using monthly climate data. The dendroTools R package also provides methodological approaches that enable climate-growth analysis for daily climate data. Such analysis reveals more complete climate signal patterns. In this article, new functions of the dendroTools R package are presented. Partial correlation coefficients are now implemented and can be used to calculate the strength of a linear relationship between two variables, while controlling for a third variable. Bootstrapped correlations can then be used to provide insights into the confidence intervals of statistical estimates. The calculation of partial and bootstrapped correlations is available for daily and monthly data. Finally, data transformation, S3 generic plotting and summary functions are also presented here.  相似文献   

8.
The recent decade has witnessed considerable progress in the number of tree-ring studies using the tropical conifer taxa, Pinus kesiya. Several tree-ring networks have been established in less explored regions in Northeast India, Southwest China and Vietnam. The seasonal climate response of P. kesiya tree-rings has been examined and used to reconstruct temperature and soil moisture variability over the past century and augment the short instrumental records in South and Southeast Asia. In addition to standard approaches, the application of stable isotope, wood density, and blue intensity measurements indicates a significant development in P. kesiya studies. This review elaborates the future prospects of using multiple tree-ring parameters to establish discrete proxies besides tree-ring width. We recommend blue intensity as a cost-effective alternative to quantitative wood anatomy in tropical pines, and call for routine assessments of the temporal stability of climate-growth responses to identify and study potentially non-stationary climate signals. Efforts should be made towards developing extensive networks of long P. kesiya tree-ring chronologies to extend regional climate reconstructions.  相似文献   

9.
Central Greece is the distribution common area of the endemic fir species Abies cephalonica and Abies borisii-regis. Forests fires and fir decline are some of the problems both species encountered during the past decades, with these problems being exacerbated lately by climate change. The present research investigates tree-ring patterns and climate responses of three fir populations along a latitudinal gradient in Central Greece. All three populations were homogeneous in their dendrometric, silvicultural and site characteristics but were phenotypically different. The analysis of tree-ring widths site chronologies revealed that 59% of their variability interprets common tree-ring patterns whereas another 25% interprets their differences as they appear from a south to north direction. This variability in tree-ring widths is proportional to the variability observed for precipitation, temperature and drought from a south to north direction in this region. The tree-ring to climate relationships revealed that the main climatic factor affecting fir tree-ring width is late spring and summer precipitation to which is positively correlated. Also, tree-ring widths were positively affected by the temperatures of the October and April before the growing season. However, June drought adversely affected tree-ring widths of the northern site while it positively affected them at the beginning of the spring season, especially for the southern site and in September for the northern sites. All dendrochronological statistics, tree-ring patterns and climate-growth relationships show a south to north trend following the climatic and phenotypic (species) variation observed to the same direction for fir populations in Central Greece.  相似文献   

10.
Temporal instability of forest climate-growth relationships has been evidenced at high elevations and latitudes, and in Mediterranean contexts. Investigations under temperate conditions, where growth is under the control of both winter frost and summer water stress, are scarce and could provide valuable information about the ability of forest to cope with climate change. To highlight the main climatic factors driving the radial growth of Quercus petraea forests and to detect their possible evolutions over the last century, dendroecological analyses were performed along a longitudinal gradient of both decreasing summer water stress and increasing winter frost in northern France (from oceanic to semi-continental conditions). The climate-growth relationships were evaluated from 31 tree-ring chronologies (720 trees) through the calculation of moving correlation functions. Q. petraea displayed a rather low sensitivity to climate. High temperature in March and water stress from May to July appeared to be the main growth limiting factors. The sensitivity to winter precipitation and summer water stress decreased from oceanic to semi-continental conditions, whilst the correlation to winter frost tended to increase. Moving correlations revealed a general instability of climate-growth relationships, with a moderate synchronicity with climatic fluctuations. The main changes occurred during previous autumn for both temperature and precipitation whilst climatic trends were rather low or non-significant. The most coherent trends were pointed out (i) in April with a cooling (−0.9°C) leading to positive correlation to temperature at the end of the century, and (ii) in July with a decreasing inter-annual variability of precipitation resulting in a loss of correlation. On the contrary, the decreasing temperature and increasing precipitation in May and June led to few significant changes climate-growth relationships.  相似文献   

11.
The spatial coverage of tree-ring chronologies in tropical South America is low compared to the extratropics, particularly in remote regions. Tree-ring dating from such tropical sites is limited by the generally weak temperature seasonality, complex coloration, and indistinct anatomical morphology in some tree species. As a result, there is a need to complement traditional methods of dendrochronology with innovative and independent approaches. Here, we supplement traditional tree-ring methods via the use of radiocarbon analyses to detect partial missing rings and/or false rings, and wood anatomical techniques to precisely delineate tree-ring boundaries. In so doing we present and confirm the annual periodicity of the first tree-ring width (TRW) chronology spanning from 1814 to 2017 for Juglans boliviana (‘nogal’), a tree species growing in a mid-elevation tropical moist forest in northern Bolivia. We collected 25 core samples and 4 cross-sections from living and recently harvested canopy-dominant trees, respectively. The sampled trees were growing in the Madidi National Park and had a mean age of 115 years old, with certain trees growing for over 200 years. Comparison of (residual and standard) TRW chronologies to monthly climate variables shows significant negative relationships to prior year May-August maximum temperatures (r = −0.54, p < 0.05) and positive relationships to dry season May-October precipitation (r = 0.60, p < 0.05) before the current year growing season. Additionally, the radial growth of Juglans boliviana shows a significant positive trend since 1979. Our findings describe a new and promising tree species for dendrochronology due to its longevity and highlight interdisciplinary techniques that can be used to expand the current tree-ring network in Bolivia and the greater South American tropics.  相似文献   

12.
The influence of tree age on climate sensitivity is of central importance in dendrochronology. Recent research has highlighted the disparate nature of age-dependent growth responses across species and geographic locations. We compared growth sensitivity and the influence of climate in Pinus edulis (Piñon) of varying ages at Dinosaur National Monument (DINO, northwestern Colorado, USA. Piñon is a particularly good species for this study because of its long life-span and climate sensitivity, and the DINO site is at the northern extreme of the current distribution. We evaluated changes in climate-growth relationships in piñon using total ring-width measurements and running averages of chronology statistics, mean sensitivity (MS) and coefficient of variation (CV), and we investigated growth response to climate variability as trees age. These measures indicated initial low growth sensitivity, increasing as trees reached mid-life stages, approximately 200–250 years, then relatively constant sensitivity from 250-800+ years. First order partial auto correlation (PAC1) declined throughout the life stages of piñon at DINO. The trend in declining autocorrelation leads to higher MS values in the older age classes. Greater year to year variation indicates less persistence in the study population, hence lower autocorrelation.We investigated the degree to which this relationship could be explained by the summer Palmer Drought Severity Index (PDSI) and whether this relationship varied with tree age. The strength of the tree-ring growth response to PDSI was at a maximum during the first two centuries of growth (R2 = 0.54). between two and six centuries (R2 = 0.48), after which we detected a decline in the sensitivity of tree growth to PDSI with increasing age (R2 = 0.41). This study adds to the literature on age-related climate sensitivity in trees; our findings indicate that age-related changes in climate-tree-ring growth responses should be considered when climate variables are reconstructed from tree-ring width chronologies, and specifically from Pinus edulis.  相似文献   

13.
灌木对生境和气候变化具有高度敏感性,其年轮资料在认识区域环境演变过程、全球气候变化和环境保护中具有重要作用。灌木植株在生长过程中受遗传和极端环境的影响,年轮常出现偏心和不规则生长,这使得专业年轮分析软件测量的年轮宽度数据难以准确反映其整体径向生长信息。为探讨适合于寒旱区灌木年轮学研究的年轮测量指标和测量方法,研究以该区域荒漠常见植物多枝柽柳(Tamarix ramosissima Ledeb.)为研究对象,通过U-net深度学习方法,获得年轮提取训练模型,自动获取扫描轮盘各年早材区域。轮盘扫描及语义分割后的图像经GIS配准赋坐标、ENVI图像处理后,借助GIS编辑和测量工具,完成多枝柽柳各年年轮生长速率(Tree-ring growth rate, TRGR)、年轮宽度(Tree-ring width, TRW)和树木基部断面积生长增量(Basal area increment, BAI)的测量;研究基于Timesat Savitzky-Golay(S-G)滤波时间序列拟合,获取点样尺度归一化植被指数(Normalized difference vegetation index, ND...  相似文献   

14.
Ring-width series are important for diverse fields of research such as the study of past climate, forest ecology, forest genetics, and the determination of origin (dendro-provenancing) or dating of archaeological objects. Recent research suggests diverging climate-growth relationships in tree-rings due to the cardinal direction of extracting the tree cores (i.e. direction-specific effect). This presents an understudied source of bias that potentially affects many data sets in tree-ring research.In this study, we investigated possible direction-specific growth variability based on an international (10 countries), multi-species (8 species) tree-ring width network encompassing 22 sites. To estimate the effect of direction-specific growth variability on climate-growth relationships, we applied a combination of three methods: An analysis of signal strength differences, a Principal Component Gradient Analysis and a test on the direction-specific differences in correlations between indexed ring-widths series and climate variables.We found no evidence for systematic direction-specific effects on tree radial growth variability in high-pass filtered ring-width series. In addition, direction-specific growth showed only marginal effects on climate-growth correlations. These findings therefore indicate that there is no consistent bias caused by coring direction in data sets used for diverse dendrochronological applications on relatively mesic sites within forests in flat terrain, as were studied here. However, in extremely dry, warm or cold environments, or on steep slopes, and for different life-forms such as shrubs, further research is advisable.  相似文献   

15.
我国树木年代学研究自20世纪90年代以来取得了长足进展,尤其是树木年轮气候学研究已经在国际上有一定影响.然而,我国树木年代学研究发展相对不均衡,其他树木年轮分支学科的发展相对较弱.本文综述国内外树木年代学不同分支学科研究进展,对比我国树木年代学研究现状和国际研究概况,为我国树木年代学不同分支学科的研究提出建议.我国未来树木年轮气候学研究应在开展大量不同区域树木年轮气候学重建基础上,尝试选用不同数理方法和多树木年轮指标(宽度、密度、同位素和木材解剖学指标)进行长时间尺度和大空间范围重建工作,并通过诊断方法和过程模拟方式讨论重建时段的气候机制.  相似文献   

16.
靳翔  徐庆  刘世荣  姜春前 《生态学报》2014,34(7):1831-1840
树木年轮(简称树轮)碳稳定同位素技术是研究树轮气候学的一种有效方法。利用四川卧龙亚高山暗针叶林不同海拔高度岷江冷杉树轮样本资料,提取该树轮稳定碳同位素(δ13C)和去趋势序列(DS),研究其树轮碳稳定同位素序列对气候要素(降水、月平均温度和月平均相对湿度)的响应关系,初步揭示了在全球气候变化背景下,川西亚高山森林岷江冷杉树木生长对气候因子变化(气候变暖、降水减少等)的响应方式。主要结论有:(1)岷江冷杉树轮δ13C组成变化范围为-23.33‰—-26.31‰,平均值为-24.91‰,变异系数为-0.011—-0.038,并表现出较强的一阶自相关;其对环境变化有较好的指示作用,表明岷江冷杉树轮δ13C组成在年际变化中较为稳定。(2)低海拔的岷江冷杉树轮δ13C分馏主要与当年8月月平均相对湿度和当年12月月平均温度相关性显著(P0.05);高海拔岷江冷杉树轮δ13C分馏主要与上一年8月月平均相对湿度和当年4月月平均温度相关性显著(P0.05);中海拔的岷江冷杉树轮δ13C分馏主要与上一年1、11月月平均温度和当年2、11月月平均温度相关性显著(P0.05),冬季温度是中海拔区岷江冷杉树木生长的限制因子,且具有明显的"滞后效应"。川西卧龙亚高山暗针叶林岷江冷杉树木径向生长主要受到气温的制约,从生物学基础上阐明了树木生长与环境的关系,冬季温度的升高,有利于植物生长期的提前,植物生长旺盛,抗旱能力减弱;同时证明了建群种岷江冷杉对雨水的依赖很小,这有利于植物生存,且维持了该植物群落的稳定性。该研究弥补了我国青藏高原高海拔地区气象台站稀少、观测资料时间短缺,为预测未来气候变化对岷江冷杉树木径向生长变化提供了科学的依据。  相似文献   

17.
Carrer M 《PloS one》2011,6(7):e22813
The development of dendrochronological time series in order to analyze climate-growth relationships usually involves first a rigorous selection of trees and then the computation of the mean tree-growth measurement series. This study suggests a change in the perspective, passing from an analysis of climate-growth relationships that typically focuses on the mean response of a species to investigating the whole range of individual responses among sample trees. Results highlight that this new approach, tested on a larch and stone pine tree-ring dataset, outperforms, in terms of information obtained, the classical one, with significant improvements regarding the strength, distribution and time-variability of the individual tree-ring growth response to climate. Moreover, a significant change over time of the tree sensitivity to climatic variability has been detected. Accordingly, the best-responder trees at any one time may not always have been the best-responders and may not continue to be so. With minor adjustments to current dendroecological protocol and adopting an individualistic approach, we can improve the quality and reliability of the ecological inferences derived from the climate-growth relationships.  相似文献   

18.
Tree growth varies closely with high–frequency climate variability. Since the 1930s detrending climate data prior to comparing them with tree growth data has been shown to better capture tree growth sensitivity to climate. However, in a context of increasingly pronounced trends in climate, this practice remains surprisingly rare in dendroecology. In a review of Dendrochronologia over the 2018–2021 period, we found that less than 20 % of dendroecological studies detrended climate data prior to climate-growth analyses. With an illustrative study, we want to remind the dendroecology community that such a procedure is still, if not more than ever, rational and relevant. We investigated the effects of detrending climate data on climate–growth relationships across North America over the 1951–2000 period. We used a network of 2536 tree individual ring-width series from the Canadian and Western US forest inventories. We compared correlations between tree growth and seasonal climate data (Tmin, Tmax, Prec) both raw and detrended. Detrending approaches included a linear regression, 30-yr and 100-yr cubic smoothing splines. Our results indicate that on average the detrending of climate data increased climate–growth correlations. In addition, we observed that strong trends in climate data translated to higher variability in inferred correlations based on raw vs. detrended climate data. We provide further evidence that our results hold true for the entire spectrum of dendroecological studies using either mean site chronologies and correlations coefficients, or individual tree time series within a mixed-effects model framework where regression coefficients are used more commonly. We show that even without a change in correlation, regression coefficients can change a lot and we tend to underestimate the true climate impact on growth in case of climate variables containing trends. This study demonstrates that treating climate and tree-ring time series “like-for-like” is a necessary procedure to reduce false negatives and positives in dendroecological studies. Concluding, we recommend using the same detrending for climate and tree growth data when tree-ring time series are detrended with splines or similar frequency-based filters.  相似文献   

19.
不同径级油松径向生长对气候的响应   总被引:1,自引:0,他引:1  
建立了黑里河自然保护区油松年轮宽度年表,通过不同径级油松径向生长对逐月气候因子的响应关系,研究了干旱对不同径级油松径向生长的影响。结果表明:两个径级油松的年轮宽度指数达到极显著相关(R=0.943,P<0.01),其中小径级(平均胸径20 cm)油松年表的平均敏感度显著高于大径级(平均胸径43 cm)油松年表(P<0.01)。不同径级油松均与上年9月、当年2月及当年5—6月的降水显著正相关(P<0.05),与当年6月的平均温度显著负相关(P<0.05),此外,小径级油松还与当年7月的降水显著正相关(P<0.05);降水是影响油松生长的主要气候因子。不同径级油松的径向生长量在干旱年份均显著降低(P<0.01)且小径级油松的生长降低量显著高于大径级油松(P<0.01);不同径级油松生长量在干旱发生后1年左右的时间内均恢复正常且小径级油松恢复速度更快。  相似文献   

20.
Individual tree-ring width chronologies and mean chronologies from Pinus tabuliformis Carr. (Chinese pine) and Sabina przewalskii Kom. (Qilian juniper) tree cores were collected and analyzed from two sites in the eastern Qilian Mountains of China. The chronologies were used to analyze individual and time-varying tree-ring growth to climate sensitivity with monthly mean air temperature and total precipitation data for the period 1958–2008. Climate–growth relationships were assessed with correlation functions and their stationarity and consistency over time were measured using moving correlation analysis. Individuals’ growth–climate correlations suggested increased percentages of individuals are correlated with certain variables (e.g., current June temperature at the P. tabuliformis site; previous June, December and current May temperature and May precipitation at the S. przewalskii site). These same climatic variables also correspond to the mean chronology correlations. A decreased percentage of individuals correlated with these climatic variables indicates a reduced sensitivity of the mean chronology. Moving correlation analysis indicated a significant change over time in the sensitivity of trees to climatic variability. Our results suggested: (1) that individual tree analysis might be a worthwhile tool to improve the quality and reliability of the climate signal from tree-ring series for dendroclimatology research; and (2) time-dependent fluctuations of climate growth relationships should be taken into account when assessing the quality and reliability of reconstructed climate signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号