首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
In spite of enormous diversity in tree species, dendrochronological records in the tropical Andes are very scarce. Therefore, it is necessary to increase the search for new tree species with high dendrochronological characteristics in the tropical Andes, including the humid Puna of Peru. We present the first tree-ring chronology from Polylepis rodolfo-vasquezii, a recently described tree species in the Central Andes of Peru between 4000 and 4400 m elevation. Fifty trees were sampled in the district of Comas, Peru. After establishing the anatomical characteristics that delimit the annual growth rings, we developed a ring-width chronology by applying conventional dendrochronological techniques. The chronology covers the period 1869–2015 (157 years) and is well replicated from 1920 to present (> 20 samples). The statistics used to evaluate the quality of the chronology indicate that the P. rodolfo-vasquezii has similar values of MS, RBAR and EPS to those shown by other Polylepis spp chronologies. To determine the main climatic factors controlling the growth of P. rodolfo-vasquezii, we compared our chronology with local and regional temperature and precipitation records. Growth season temperature (November to May) seems to be the main climatic factor modulating inter-annual variations in the growth of this species. The sensitivity to inter-annual temperature variations highlights the potential of P. rodolfo-vasquezii to provide climatically sensitive dendrochronological records in the Central Andes. To our knowledge, this is the first tree-ring record in South America displaying significant relationships with temperature over the tropical Atlantic Ocean.  相似文献   

2.
Up to now, the development of dendrochronological records from tropical regions in South America has been limited to the lowlands with emphasis in the Amazon basin. In this contribution, we present the first chronology of Cedrela nebulosa, a species that develops in the tropical mountainous regions of South America. We collected samples from trees in Monobamba district in Peru, analysed the anatomical features that determine the growth rings, and processed following the methods commonly used in dendrochronology. The 133-years chronology covering the 1883–2015 period, showed large correlation between series. In order to determine the climatic variables that control tree growth, we performed correlation analyses between tree-growth and local and regional precipitation and temperature records. We found that precipitation triggers tree growth at the beginning of the spring season but temperature seems to be the main control in annual growth. Also, C. nebulosa chronology present coherent variations with Multivariate Enso Index (MEI) and Pacific Ocean sea surface temperatures during summer months. This climate-sensitive tree-ring record indicates good potential for dendroclimatic studies and provides an opportunity to reconstruct climatic variations in montane forests of the tropical Andes.  相似文献   

3.
In the tropical Andes climate change is expected to increase temperatures and change precipitation patterns. To overcome the lack of systematic weather records that limits the performance of climate models in this region, the use of the environmental information contained in tree rings from tropical Andean species have been found useful to reconstruct spatio-temporal climate variability. Because classical dendrochronology based on ring-width patterns is often challenging in the tropics, alternative approaches such as Quantitative Wood Anatomy (QWA) based on the measurement and quantification of anatomical traits within tree rings can be a significant advance in the field. Here we assess the dendrochronological potential of Polylepis microphylla and its climate sensitivity by using i) classic dendrochronological methods to generate the first Tree-ring Width (TRW) chronology for this tree species spanning from 1965 to 2018; ii) radiocarbon (¹⁴C) analyses as an independent validation method to assess the annual periodicity of the tree growth layers; and iii) QWA to generate tree-ring annual records of the number (VN) and size (VS) of vessels to investigate the climate sensitivity of these anatomical traits. The annual periodicity in P. microphylla radial growth was confirmed by both dendrochronological and ¹⁴C analyses. We found that VN and VS are promising new proxies to reconstruct climate variability in this region and that they provide different information than TRW. While TRW provides information at inter-annual resolution (i.e., year-to-year variability), VN and VS generated with sectorial QWA provide intra-annual resolution for each stage of the growing process. The TRW and the anatomical traits (i.e., VN and VS) showed strong positive correlation with maximum temperature for different periods of the growing season: while VS is higher with warmer conditions prior to the growing season onset, tree-rings are wider and present higher number of vessels when warmer conditions occur during the current growing season. Our findings pointed out the suitability of P. microphylla for dendrochronological studies and may suggest a good performance of this species under the significant warming expected according to future projections for the tropical Andes.  相似文献   

4.
For a better understanding of forest ecology, tree-ring studies can provide information on climate sensitivity, tree growth patterns and population age structure that can inform about stand dynamics such as recruitment of new individuals, and other interspecific interactions related to competition and facilitation. Little is known about the ecology of the recently identified high Andean tree species Polylepis rodolfo-vasquezii. Here, we analyzed the relationship between tree size and age of two P. rodolfo-vasquezii forest stands located in the central Peruvian Andes at 11°S in latitude, and compared their growth patterns and climate sensitivity. We measured the height and diameter of each individual tree and collected tree core samples of living trees and cross sections of dead standing trees to generate two centennial tree-ring chronology at Toldopampa (1825–2015 CE) and at Pomamanta (1824–2014 CE) sites. The dendrochronological dates were evaluated by 14C analysis using the bomb-pulse methods analyzing a total of 9 calendar years that confirm the annual periodicity of this tree species. At the Toldopampa stand most trees ranged from 70 to 80 years old, with a 190-year old individual, being an older and better preserve forest than Pomamanta, with younger trees, probably because more human disturbances due to closer village proximity. No significant relationships were found between tree age and size in the oldest stand alerting that tree diameter should not be used as a metric for estimating tree ages as a general rule. The distinct growth patterns and the size-age relationship observed at the two forests may reflect distinct histories regarding human activities such as fire and logging. Nevertheless, both the Toldopampa and the Pomamanta tree-ring width chronologies exhibited common growth patterns and shared a similar positive response to temperature of the current growing season. Overall, our study confirmed the annual radial growth periodicity in P. rodofolfo-vasquezii trees using an independent method such as 14C analyses and a strong climate sensitivity of this tree species. These findings encourage the development of an extensive P. rodolfo-vasquezii tree-ring network for ecological and paleoclimate studies in the tropical Andes in South America.  相似文献   

5.
In temperate climates, tree growth dormancy usually ensures the annual nature of tree rings, but in tropical environments, determination of annual periodicity can be more complex. The purposes of the work are as follows: (1) to generate a reliable tree‐ring width chronology for Prioria copaifera Griseb. (Leguminoceae), a tropical tree species dwelling in the Atrato River floodplains, Colombia; (2) to assess the climate signal recorded by the tree‐ring records; and (3) to validate the annual periodicity of the tree rings using independent methods. We used standard dendrochronological procedures to generate the P. copaifera tree‐ring chronology. We used Pearson correlations to evaluate the relationship of the chronology with the meteorological records, climate regional indices, and gridded precipitation/sea surface temperature products. We also evaluated 24 high‐precision 14C measurements spread over a range of preselected tree rings, with assigned calendar years by dendrochronological techniques, before and after the bomb spike in order to validate the annual nature of the tree rings. The tree‐ring width chronology was statistically reliable, and it correlated significantly with local records of annual and October–December (OND) streamflow and precipitation across the upper river watershed (positive), and OND temperature (negative). It was also significantly related to the Oceanic Niño Index, Pacific Decadal Oscillation, and the Southern Oscillation Index, as well as sea surface temperatures over the Caribbean and the Pacific region. However, 14C high‐precision measurements over the tree rings demonstrated offsets of up to 40 years that indicate that P. copaifera can produce more than one ring in certain years. Results derived from the strongest climate–growth relationship during the most recent years of the record suggest that the climatic signal reported may be due to the presence of annual rings in some of those trees in recent years. Our study alerts about the risk of applying dendrochronology in species with challenging anatomical features defining tree rings, commonly found in the tropics, without an independent validation of annual periodicity of tree rings. High‐precision 14C measurements in multiple trees are a useful method to validate the identification of annual tree rings.  相似文献   

6.
Given the scarcity of instrumental climatic data in the South American tropics, it is valuable to explore the dendrochronological potential of the numerous tree species growing in the region. In this paper, we assessed for the first time the dendrochronological characteristics of Schinopsis brasiliensis, an arboreal species from the dry-tropical Cerrado and Chaco forests in Bolivia and adjacent countries. Similar to most woody species in the Cerrado and Chaco regions, growth rings of S. brasiliensis are delimited by the presence of thin but continuous lines of marginal parenchyma. Based on 22 samples from 15 trees, we present the first ring-width chronology for this species covering the period 1812–2011 (200 years). Additionally, a 106-year floating chronology from S. brasiliensis was developed using cores from four columns from the church of San Miguel, Santa Cruz, built in the period 1720–1740. Standard dendrochronological statistics indicate an important common signal in the radial growth of S. brasiliensis. The comparison of variations in regional climate and ring widths shows that tree growth is directly related to spring-summer rainfall and inversely related to temperature. Following the winter dry season, rainfall in late spring and early summer increases soil water supply, which activates tree growth. In contrast, above-average temperatures during the same period increase evapotranspiration, intensify the water deficit and reduce radial growth. The dependence of S. brasiliensis growth on water supply is evidence of its dendrochronological potential for reconstructing past precipitation variations in the extensive tropical Cerrado and Chaco forest formations in South America. Using wood from historical buildings opens the possibility of extending the chronologies of S. brasiliensis over the past 400–500 years.  相似文献   

7.
The annual growth and wood characteristics of tree species at southern Mediterranean countries, and its relationship with climate variables are recently two important topics for the researchers in this region. Although Moringa peregrina (Forssk.) Fiori is a key species in Africa due to its medicinal and economic values (e.g. as fuel, food and water purifier), little is known about its annual growth or its response to climate variables. In this study, we analyze its dendrochronological potential, macroscopic and microscopic wood structure, and correlation with climate. Wood discs were collected from two desert sites in Egypt: Saint Catherine (SC) and Hurghada (HG). Wood discs and micro-slides were prepared, and the distinctness and pattern of rings, vessels, and ray structure were examined microscopically. The ring boundaries of M. peregrina were distinct and marked by thick-walled and flattened fibers. For the HG site, the resulting ring-width chronology spans 16 years, from 2001 to 2016. A significant positive relationship was found between tree growth at HG and precipitation prior to the vegetation period (January-March). April temperature of the year prior to growth had a significant positive relationship with M. peregrina growth. In contrast, April and May-August temperatures of the current growing season had a significant negative relationship with tree growth. We could not develop a chronology for M. peregrina at SC site due to the presence of growth anomalies in the collected wood discs from the site. Consequently, we did not get a clear picture on the climate- annual growth relationship for M. peregrina trees at this site. At SC, M. peregrina trees respond to stressful environmental conditions by adjusting their anatomical structure to produce a high number of small vessels. Moreover, there was spatial variability in the architecture of ray parenchyma that reflected the degree of stress in both sites. The results of this study improve our understanding of the growth-climate relationship in sub-tropical trees and the potential role of ray parenchyma in stressed environments.  相似文献   

8.
In this study, we present the first tree-ring chronology for the tropical tree species Copaifera lucens and its climatic signal in southeastern Brazil. Tree-ring width series were compared with local climate indices using a drought index (Standardized Precipitation Evapotranspiration Index —SPEI), in monthly, bi-monthly and four-monthly scales. We also calculated negative pointer years over the time-span of the tree-ring width. The radial growth of C. lucens showed a positive correlation with the SPEI of the current summer and autumn in all the three analyzed time scales, while the negative pointer years matched with drier years. The species was highly sensitive to very low summer precipitation, which may lead to a 49% reduction in growth. We conclude that the long-living C. lucens has a great potential for dendrochronological studies as it shows a marked climatic signal. Our study also reinforces the importance of rainfall in regulating radial growth in tropical forests and sheds light on the local climate influence on tree growth in recent decades.  相似文献   

9.
Upper Mustang is a land of extraordinary, precious, tangible and intangible cultural heritage deeply rooted in the Tibetan culture and tradition of Buddhism as well as the Bön religion. The unique architecture provides a great source of timber suitable for dendrochronological research. Century-old fortresses, palaces, Buddhist monasteries and temples, houses and chörtens reflect the great importance of wood as a building material (used alongside clay and stone). We present pioneering research on historical wood from Upper Mustang. The objectives of the study were to determine the wood species used in the traditional architecture of the region, to make an attempt to date materials from Upper Mustang using existing tree-ring chronologies developed for neighbouring geographical regions and to determine the need and the chance of creating separate tree-ring chronologies for Upper Mustang. For the presented study we collected 191 samples from the oldest buildings preserved in Upper Mustang. Anatomical studies of samples resulted in the identification of four species of conifer wood: Himalayan pine – Pinus wallichiana A.B. Jacks, Himalayan fir – Abies spectabilis D.Don, Juniperus spp. and Larix spp. The main achievement of our research was the development of an Upper Mustang master chronology covering the period from 1317 to 1943. The chronology is based on data derived from Pinus wallichiana A.B. Jacks.  相似文献   

10.
The Seasonally Dry Tropical Forests (SDTF) present very high biodiversity and a number of tree species that are adapted to prolonged periods of water stress. Considering tree ring formation is mainly driven by seasonal variation in precipitation in tropical environments, tree-ring studies from STDF can provide important contributions to understanding how these forests are responding to climate variations. In the present study, we demonstrate the influence of edaphoclimatic variables (precipitation, air temperature and soil water deficit-SWD) and the ocean teleconnections (Tropical Southern Atlantic-TSA, Atlantic Multidecadal Oscillation-AMO, Western Hemisphere Warm Pool-WHWP and El Niño 3.4) on Cedrela odorata L. growth from a SDTF of northeastern Brazil. We used standard dendrochronological methods to develop an 89-year-long ring-width index chronology. The climate sensitivity of C. odorata was assessed through Pearson's correlation tests and linear regressions, which allowed to identify the determinant months (cause-effect) of each variable on the chronology. Tree growth was positively correlated with precipitation and negatively correlated with air temperature and SWD, particularly during the rainy season (March to August). In parallel, we identified that extremely dry years can contribute to missing rings, exposing the lack of growth in C. odorata caused by water stress. Among the oceanic variables, all of them showed a negative effect on radial growth of C. odorata, except for TSA, which had no significant effect. Tree growth is constrained in years with strong El Niño and high values of AMO index during the rainy months (May, June and October). However, the WHWP showed a more pronounced negative effect in the beginning of the dry season (September). Our findings add valuable information on C. odorata responses to hydrological seasonality from SDTF and the fluctuations in oceanic teleconnections, which in turn, influence the rainfall dynamics in northeastern Brazil.  相似文献   

11.

Background and Aims

Shrubs and dwarf shrubs are wider spread on the Tibetan Plateau than trees and hence offer a unique opportunity to expand the present dendrochronological network into extreme environments beyond the survival limit of trees. Alpine shrublands on the Tibetan Plateau are characterized by rhododendron species. The dendrochronological potential of one alpine rhododendron species and its growth response to the extreme environment on the south-east Tibetan Plateau were investigated.

Methods

Twenty stem discs of the alpine snowy rhododendron (Rhododendron nivale) were collected close to the tongue of the Zuoqiupu Glacier in south-east Tibet, China. The skeleton plot technique was used for inter-comparison between samples to detect the growth pattern of each stem section. The ring-width chronology was developed by fitting a negative exponential function or a straight line of any slope. Bootstrapping correlations were calculated between the standard chronology and monthly climate data.

Key Results

The wood of snowy rhododendron is diffuse-porous with evenly distributed small-diameter vessels. It has well-defined growth rings. Most stem sections can be visually and statistically cross-dated. The resulting 75-year-long standard ring-width chronology is highly correlated with a timberline fir chronology about 200 km apart, providing a high degree of confidence in the cross-dating. The climate/growth association of alpine snowy rhododendron and of this timberline fir is similar, reflecting an impact of monthly mean minimum temperatures in November of the previous year and in July during the year of ring formation.

Conclusions

The alpine snowy rhododendron offers new research directions to investigate the environmental history of the Tibetan Plateau in those regions where up to now there was no chance of applying dendrochronology.Key words: South-east Tibetan Plateau, Rhododendron nivale, alpine shrub, growth ring, cross-dating, dendroclimatological potential, climate/growth association  相似文献   

12.

Key message

Relevance of spring temperatures for tree-ring growth steadily increased since 1950s. Closely linked tree-ring growth and net CO 2 exchange driven by spring temperatures.

Abstract

We investigated long-term (over 100 years) tree-ring width (TRW) variabilities as well as short-term (10 years) variations in net ecosystem productivity (NEP) in response to climate to assess the driving factors for stem growth of Norway spruce in a subalpine forest at Davos in Switzerland. A tree-ring width index (TRWi) chronology for the period from 1750 to 2006 was constructed and linked with climate data from 1876 to 2006, and with NEP available for the period from 1997 to 2006. Based on TRWi, we found that only two out of the 257 years exhibited extreme negative TRWi, compared to 29 years with extreme positive anomalies, observed mainly in recent decades. Annual temperature, annual precipitation, as well as autumn and winter temperature signals were well preserved in the TRWi chronology over the last 130 years. Spring temperatures became increasingly relevant for TRWi, explaining less than 1 % of the variation in TRWi for the period from 1876 to 2006, but 8 % for the period from 1950 to 2006 (p = 0.032), and even 47 % for 1997–2006 (p = 0.028). We also observed a strong positive relationship between annual TRWi and annual NEP (r = 0.661; p = 0.037), both strongly related to spring temperatures (r = 0.687 and r = 0.678 for TRWi and NEP, respectively; p = 0.028; p = 0.032). Moreover, we found strong links between monthly NEP of March and annual TRWi (r = 0.912; p = 0.0001), both related to March temperatures (r = 0.767, p = 0.010 and r = 0.724, p = 0.018, respectively). Thus, under future climate warming, we expect stem growth of these subalpine trees and also ecosystem carbon (C) sequestration to increase, as long as water does not become a limiting factor.  相似文献   

13.
We developed the first tree-ring width chronology from Quercus brantii Lindel for the period 1796–2015 in the southern Zagros Mountains, Iran, using standard dendrochronological procedures. Climate-growth relationships revealed that DecemberöFebruary precipitation has strong positive effects (r = 0.66; P < 0.01) on the species’ growth while mean temperature during the growing season has strong negative effects. Spatial correlations with Palmer Drought Severity Index (PDSI) and gridded precipitation data revealed that the chronology contains regional climate signals and tree growth variations may represent precipitation fluctuations over large areas of the Middle East. The linear regression model accounts for 44% of the actual DecemberöFebruary precipitation variance. The reconstructed precipitation revealed that over the period 1850–2015 extreme dry years occurred in 1870-71, 1898, 1960 and 1963-64, and extreme wet years occurred in 1851, 1885, 1916 and 1921 in the southern Zagros region. The longest dry period lasted 16 years and occurred from 1958 to 1973. Two-year consecutive wet and dry events showed the highest frequencies and the average length of dry and wet events were 2.9 and 3.6 years over the reconstructed period. Correlations between the long-term reconstructed precipitation and the North Atlantic Oscillation (NAO), Southern Oscillation Index (SOI), and Pacific Decadal Oscillation (PDO) confirmed the effects of teleconnection patterns on precipitation in the southern Zagros region.  相似文献   

14.
We present a 523-year (A.D. 1481–2003) tree-ring width index chronology of Teak (Tectona grandis L.F.) from Kerala, Southern India, prepared from three forest sites. Dendroclimatological investigations indicate a significant positive relationship between the tree-ring index series and Indian summer monsoon rainfall (ISMR) and related global parameters like the Southern Oscillation Index (SOI). A higher frequency of occurrence of low tree growth is observed in years of deficient Indian monsoon rainfall (droughts) associated with El Niño since the late 18th century. Prior to that time, many low tree growth years are detected during known El Niño events, probably related to deficient Indian monsoon rainfall. The general relationship between ISMR and El Niño is known to be negative and the spatial correlations between our Kerala tree-ring chronology and sea surface temperatures (SSTs) over the Niño regions follow similar patterns as those for ISMR. This relationship indicates strong ENSO-related monsoon signals in the tree-ring records. These tree-ring chronologies with a high degree of sensitivity to monsoon climate are useful tools to understand the vagaries of monsoon rainfall prior to the period of recorded data.  相似文献   

15.
Long-term climate–growth relationships, were examined in tree rings of four co-occurring tree species from semi-arid Acacia savanna woodlands in Ethiopia. The main purpose of the study was to prove the presence of annual tree rings, evaluate the relationship between radial growth and climate parameters, and evaluate the association of El Niño and drought years in Ethiopia. The results showed that all species studied form distinct growth boundaries, though differences in distinctiveness were revealed among the species. Tree rings of the evergreen Balanites aegyptiaca were separated by vessels surrounding a thin parenchyma band and the growth boundary of the deciduous acacias was characterized by thin parenchyma bands. The mean annual diameter increment ranged from 3.6 to 5.0 mm. Acacia senegal and Acacia seyal showed more enhanced growth than Acacia tortilis and B. aegyptiaca. High positive correlations were found between the tree-ring width chronologies and precipitation data, and all species showed similar response to external climate forcing, which supports the formation of one tree-ring per year. Strong declines in tree-ring width correlated remarkably well with past El Niño Southern Oscillation (ENSO) events and drought/famine periods in Ethiopia. Spectral analysis of the master tree-ring chronology indicated occurrences of periodic drought events, which fall within the spectral peak equivalent to 2–8 years. Our results proved the strong linkage between tree-ring chronologies and climate, which sheds light on the potential of dendrochronological studies developing in Ethiopia. The outcome of this study has important implications for paleoclimatic reconstructions and in restoration of degraded lands.  相似文献   

16.
The stable oxygen isotope (δ 18O) composition of Austrocedrus chilensis (D. Don) Endl. (Cupressaceae) tree rings potentially provide retrospective views of changes in environment and climate in the semi-arid lands of Patagonia. We report the development of the first annually resolved δ 18O tree-ring chronology obtained from natural forests of the foothills of the northwestern Patagonian Andes. The isotope record spans between 1890 and 1994 AD. We explore the probable links between this record and the climate of the region. Air temperatures during summer conditions are significantly, but not strongly, inversely correlated with annual δ 18O values from Austrocedrus tree rings. The strongest correlations are between the southern oscillation index (SOI) and the tree rings. The existence of millennial-age Austrocedrus trees in northern Patagonia provides interesting possibilities for examining these climate-related isotopic signals over most of the last 1,000 years.  相似文献   

17.
《Dendrochronologia》2014,32(1):71-77
We used dendrochronological techniques to develop a tree-ring chronology (AD 1874–2009) from live trees and investigated the temporal stability of regional climate signals in the heavily disturbed red spruce (Picea rubens Sarg.) and Fraser fir [Abies fraseri (Pursh) Poir.] forest of Roan Mountain, Tennessee and North Carolina, USA. We performed bootstrapped correlation analyses in split data sets and moving intervals analyses to detect shifts in climatic sensitivity during periods of changing forest structure following disturbances. Most notably, a significant shift in red spruce temperature sensitivity occurred post-1930s, where positive growth responses to warm temperatures shifted to negative responses, and this shift coincided with a period of clearcut harvesting. As exogenous disturbances (i.e. ice storms, wind throw, and acidic deposition) are expected to continue altering the structure of this forest throughout the region, the climatic sensitivity of these species may become increasingly unstable.  相似文献   

18.
Tree growth decline has been reported in many places around the globe under the context of increasingly warming climate, and strengthening drought intensity is detected to be the primary factor for such decline, particularly in northern forest sites, as well as arid and semi-arid areas. Yet, the forest growth decline in high altitude, high mountain sites certainly merits investigation. Here, we reported faxon fir (Abies fargesii var. faxoniana) forest growth decline (slope = -0.64) at the tree line (4150 m above sea level) in Miyaluo Forest Reserve (MFR) at the Western Sichuan Plateau, southwestern China since 2000. We investigated the cause of tree growth decline by applying dendrochronological approaches. We took tree-ring samples from fir trees at the tree line and developed tree-ring width (TRW) chronology. The tree growth – climate relationship analysis showed that maximum temperature (Tmax) was the primary factor limiting the radial growth of fir trees in the investigated area. The moving correlation analysis indicated the strengthening positive influence of Tmax, spring precipitation, and cloud cover during winter and monsoon period on radial growth since 2000s. Our results have shown that both thermal and hydraulic constrains accounted for the radial growth decline of fir trees at the tree line of MFR in the western Sichuan Plateau.  相似文献   

19.
Developing an understanding of the impact of climate on Australia's alpine flora is critical in anticipating the impacts of climate change. The dendroclimatological analysis of the Australian mainland's only alpine conifer, Podocarpus lawrencei Hook.f., may have particular significance in this regard. Unfortunately, eccentric tree-ring widths and frequent ring wedging have previously prevented dendroclimatic investigation of the species using core samples. In this study, we overcome this limitation by using full stem cross-sections collected from individuals killed during wildfire in 2003. Despite this advantage, ring wedging and poor circuit uniformity meant that crossdating was successful for portions or complete sections of only 56% of samples. Nevertheless, we constructed a crossdated chronology spanning 114-years (1888–2001) – the first for P. lawrencei. Climatological analysis revealed significant positive correlations with air temperature during spring of the growing season and significant negative correlations with monthly and seasonal snow variables as well as spring precipitation. Further analyses using 50-year moving windows reveal that responses to minimum air temperature and precipitation are unstable and periodically non-significant. Nevertheless, whilst correlation with mean maximum temperature during October and November (spring) of the growing season as well as the seasonal integration of snow cover exhibits variability throughout the analysis period, this variability appears to be independent of trends in both mean temperature and snow cover. We conclude, given the species longevity, its sensitivity to climate as well as the availability of sample material throughout the Australian Alps, that P. lawrencei holds a hitherto unrealised potential for climate reconstruction in south-east Australia. Further dendrochronological investigation of the species is currently underway throughout the Australian Alps to exploit this potential.  相似文献   

20.
Aim To identify the dominant spatial and temporal patterns of Nothofagus pumilio radial growth over its entire latitudinal range in Chile, and to find how these patterns relate to temperature and precipitation variation from instrumental records. Location This study comprises 48 tree line or high elevation N. pumilio sites in the Chilean Andes between 35° 36′ and 55° S. Nothofagus pumilio is a deciduous tree species that dominates the upper tree line of the Chilean and Argentinean Andes in this latitudinal range. Methods At each of the sampled sites, two cores from 15 to 40 living trees were collected using increment borers. Cores were processed, tree rings were measured and cross‐dated, using standard dendrochronological procedures. Radii from nearby sites were grouped into 13 study regions. A composite tree‐ring width chronology was developed for each region in order to capture and integrate the common growth patterns. For the identification of the dominant patterns of growth, as well as temperature and precipitation variation, we used principal components (PCs) analysis. Correlation analysis was used for the study of the relationship of N. pumilio tree‐ring growth with temperature and precipitation records. Results Nothofagus pumilio tree line elevation is 1600 m in the northernmost region and gradually decreases to 400 m in the southernmost region. Despite local differences along the transect, the decrease in tree line elevation is fairly constant, averaging c. 60 m per degree of latitude (111 km). Tree growth at the northernmost regions shows a positive correlation with annual precipitation (PC1‐prec) and negative correlation with mean annual temperature (PC2‐temp), under a Mediterranean‐type climate where water availability is a major limiting factor. Conversely, tree growth is positively correlated with mean annual temperature (PC1‐temp) in the southern portion of the gradient, under a relatively cooler climate with little seasonality in precipitation. Main conclusions Our findings indicate that temperature has a spatially larger control of N. pumilio growth than precipitation, as indicated by a significant (P < 0.05) either positive or negative correlation of tree growth and PC1‐temp and/or PC2‐temp for nine of the 13 regional chronologies (69.2% of the total), whereas precipitation is significantly correlated with only two chronologies (15.4% of the total). Temporal patterns of N. pumilio tree growth reflected in PC1‐growth for the period between 1778 and 1996 indicate an increasing trend with above the mean values after 1963, showing high loadings in the southern part of the gradient. This trend may be explained by a well‐documented increase in temperature in southern Patagonia. Ongoing and future research on N. pumilio growth patterns and their relationship to climate covering the Chilean and Argentinean Andes will improve the understanding of long‐term climate fluctuations of the last three to four centuries, and their relationship to global change at a wide range of spatial and temporal scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号