首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
6-Aminohexanoic acid (6AHA) is a vital polymer building block for Nylon 6 production and an FDA-approved orphan drug. However, its production from cyclohexane is associated with several challenges, including low conversion and yield, and severe environmental issues. We aimed at overcoming these challenges by developing a bioprocess for 6AHA synthesis. A mixed-species approach turned out to be most promising. Thereby, Pseudomonas taiwanensis VLB120 strains harbouring an upstream cascade converting cyclohexane to either є-caprolactone (є-CL) or 6-hydroxyhexanoic acid (6HA) were combined with Escherichia coli JM101 strains containing the corresponding downstream cascade for the further conversion to 6AHA. ε-CL was found to be a better ‘shuttle molecule’ than 6HA enabling higher 6AHA formation rates and yields. Mixed-species reaction performance with 4 g l-1 biomass, 10 mM cyclohexane, and an air-to-aqueous phase ratio of 23 combined with a repetitive oxygen feeding strategy led to complete substrate conversion with 86% 6AHA yield and an initial specific 6AHA formation rate of 7.7 ± 0.1 U gCDW-1. The same cascade enabled 49% 7-aminoheptanoic acid yield from cycloheptane. This combination of rationally engineered strains allowed direct 6AHA production from cyclohexane in one pot with high conversion and yield under environmentally benign conditions.  相似文献   

2.
Aerobic production-scale processes are constrained by the technical limitations of maximum oxygen transfer and heat removal. Consequently, microbial activity is often controlled via limited nutrient feeding to maintain it within technical operability. Here, we present an alternative approach based on a newly engineered Escherichia coli strain. This E. coli HGT (high glucose throughput) strain was engineered by modulating the stringent response regulation program and decreasing the activity of pyruvate dehydrogenase. The strain offers about three-fold higher rates of cell-specific glucose uptake under nitrogen-limitation (0.6 gGlc gCDW−1 h−1) compared to that of wild type, with a maximum glucose uptake rate of about 1.8 gGlc gCDW−1 h−1 already at a 0.3 h−1 specific growth rate. The surplus of imported glucose is almost completely available via pyruvate and is used to fuel pyruvate and lactate formation. Thus, E. coli HGT represents a novel chassis as a host for pyruvate-derived products.  相似文献   

3.
Oxygenase‐containing cyanobacteria constitute promising whole‐cell biocatalysts for oxyfunctionalization reactions. Photosynthetic water oxidation thereby delivers the required cosubstrates, that is activated reduction equivalents and O2, sustainably. A recombinant Synechocystis sp. PCC 6803 strain showing unprecedentedly high photosynthesis‐driven oxyfunctionalization activities is developed, and its technical applicability is evaluated. The cells functionally synthesize a heterologous cytochrome P450 monooxygenase enabling cyclohexane hydroxylation. The biocatalyst‐specific reaction rate is found to be light‐dependent, reaching 26.3 ± 0.6 U gCDW?1 (U = μmol min?1 and cell dry weight [CDW]) at a light intensity of 150 µmolphotons m?2 s?1. In situ substrate supply via a two‐liquid phase system increases the initial specific activity to 39.2 ± 0.7 U gCDW?1 and stabilizes the biotransformation by preventing cell toxification. This results in a tenfold increased specific product yield of 4.5 gcyclohexanol gCDW?1 as compared to the single aqueous phase system. Subsequently, the biotransformation is scaled from a shake flask to a 3 L stirred‐tank photobioreactor setup. In situ O2 generation via photosynthetic water oxidation allows a nonaerated process operation, thus circumventing substrate evaporation as the most critical factor limiting the process performance and stability. This study for the first time exemplifies the technical applicability of cyanobacteria for aeration‐independent light‐driven oxyfunctionalization reactions involving highly toxic and volatile substrates.  相似文献   

4.
3-Hydroxypropionic acid (3-HP) is a platform molecule whose biological production was carried out by the bacterium Limosilactobacillus reuteri according to a two-step process: first, a growth phase in batch mode on glucose, then a glycerol bioconversion into 3-HP in fed-batch mode. With the objective of improving 3-HP bioproduction, this study aimed at defining the operating conditions during the bioconversion phase that increases the bioproduction performance. A central composite rotatable design allowed testing various pH levels and specific glycerol feeding rates. By establishing response surfaces, optimal conditions have been identified that were different depending on the considered output variable (final 3-HP quantity, 3-HP production yield and production rate). Of them, 3-HP final quantity and 3-HP production yield were maximized at pH 6.0 and at specific glycerol feeding rates of 60 and 55 mggly gCDW−1 h−1, respectively. The specific 3-HP production rate was the highest at the upper limit of the specific substrate feeding rate (80 mggly gCDW−1 h−1) but was not affected by the pH. An additional experiment was carried out at pH 6.0 and a specific glycerol feeding rate of 80 mggly gCDW−1 h−1 to validate the previous observations. In conclusion, the results showed a significant improvement of 3-HP concentration by 13%, of specific production rate by 34% and of 3-HP volumetric productivity by 39%, as compared to the initial values.  相似文献   

5.
Low-molecular-weight hyaluronan (LMW-HA) has attracted much attention because of its many potential applications. Here, we efficiently produced specific LMW-HAs from sucrose in Bacillus subtilis. By coexpressing the identified committed genes (tuaD, gtaB, glmU, glmM, and glmS) and downregulating the glycolytic pathway, HA production was significantly increased from 1.01 g L−1 to 3.16 g L−1, with a molecular weight range of 1.40×106–1.83×106 Da. When leech hyaluronidase was actively expressed after N-terminal engineering (1.62×106 U mL−1), the production of HA was substantially increased from 5.96 g L−1 to 19.38 g L−1. The level of hyaluronidase was rationally regulated with a ribosome-binding site engineering strategy, allowing the production of LMW-HAs with a molecular weight range of 2.20×103–1.42×106 Da. Our results confirm that this strategy for the controllable expression of hyaluronidase, together with the optimization of the HA synthetic pathway, effectively produces specific LMW-HAs, and could also be used to produce other LMW polysaccharides.  相似文献   

6.
This paper describes the kinetic characterization of a recombinant whole-cell biocatalyst for the stereoselective Baeyer–Villiger type oxidation of bicyclo[3.2.0]hept-2-en-6-one to its corresponding regio-isomeric lactones (−)-(1S,5R)-2-oxabicyclo[3.3.0]oct-6-en-3-one and (−)-(1R,5S)-3-oxabicyclo[3.3.0]oct-6-en-2-one. Escherichia coli TOP10 [pQR239], expressing cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus (NCIMB 9871), was shown to be suitable for this biotransformation since it expressed CHMO at a high level, was simple to produce, contained no contaminating lactone hydrolase activity and allowed the intracellular recycle of NAD(P)H necessary for the biotransformation. A small-scale biotransformation reactor (20 ml) was developed to allow rapid collection of intrinsic kinetic data. In this system, the optimized whole-cell biocatalyst exhibited a significantly lower specific lactone production activity (55–60 μmol min−1 g−1 dry weight) than that of sonicated cells (500 μmol min−1 g−1 dry weight). It was shown that this shortfall was comprised of a difference in the pH optima of the two biocatalyst forms and mass transfer limitations of the reactant and/or product across the cell barrier. Both reactant and product inhibition were evident. The optimum ketone concentration was between 0.2 and 0.4 g l−1 and at product concentrations above 4.5–5 g l−1 the specific activity of the whole cells was zero. These results suggest that a reactant feeding strategy and in situ product removal should be considered in subsequent process design.  相似文献   

7.
Bio-upcycling of plastics is an upcoming alternative approach for the valorization of diverse polymer waste streams that are too contaminated for traditional recycling technologies. Adipic acid and other medium-chain-length dicarboxylates are key components of many plastics including polyamides, polyesters, and polyurethanes. This study endows Pseudomonas putida KT2440 with efficient metabolism of these dicarboxylates. The dcaAKIJP genes from Acinetobacter baylyi, encoding initial uptake and activation steps for dicarboxylates, were heterologously expressed. Genomic integration of these dca genes proved to be a key factor in efficient and reliable expression. In spite of this, adaptive laboratory evolution was needed to connect these initial steps to the native metabolism of P. putida, thereby enabling growth on adipate as sole carbon source. Genome sequencing of evolved strains revealed a central role of a paa gene cluster, which encodes parts of the phenylacetate metabolic degradation pathway with parallels to adipate metabolism. Fast growth required the additional disruption of the regulator-encoding psrA, which upregulates redundant β-oxidation genes. This knowledge enabled the rational reverse engineering of a strain that can not only use adipate, but also other medium-chain-length dicarboxylates like suberate and sebacate. The reverse engineered strain grows on adipate with a rate of 0.35 ± 0.01 h−1, reaching a final biomass yield of 0.27 ± 0.00 gCDW gadipate−1. In a nitrogen-limited medium this strain produced polyhydroxyalkanoates from adipate up to 25% of its CDW. This proves its applicability for the upcycling of mixtures of polymers made from fossile resources into biodegradable counterparts.  相似文献   

8.
 Enzymatic hydrolysis of corncob and ethanol fermentation from cellulosic hydrolysate were investigated. After corncob was pretreated by 1% H2SO4 at 108 °C for 3 h, the cellulosic residue was hydrolyzed by cellulase from Trichoderma reesei ZU-02 and the hydrolysis yield was 67.5%. Poor cellobiase activity in T. reesei cellulase restricted the conversion of cellobiose to glucose, and the accumulation of cellobiose caused severe feedback inhibition to the activities of β-1,4-endoglucanase and β-1,4-exoglucanase in cellulase system. Supplementing cellobiase from Aspergillus niger ZU-07 greatly reduced the inhibitory effect caused by cellobiose, and the hydrolysis yield was improved to 83.9% with enhanced cellobiase activity of 6.5 CBU g−1 substrate. Fed-batch hydrolysis process was started with a batch hydrolysis containing 100 g l−1 substrate, with cellulosic residue added at 6 and 12 h twice to get a final substrate concentration of 200 g l−1. After 60 h of reaction, the reducing sugar concentration reached 116.3 g l−1 with a hydrolysis yield of 79.5%. Further fermentation of cellulosic hydrolysate containing 95.3 g l−1 glucose was performed using Saccharomyces cerevisiae 316, and 45.7 g l−1 ethanol was obtained within 18 h. The research results are meaningful in fuel ethanol production from agricultural residue instead of grain starch.  相似文献   

9.
Pectin-rich plant biomass residues represent underutilized feedstocks for industrial biotechnology. The conversion of the oxidized monomer d-galacturonic acid (d-GalUA) to highly reduced fermentation products such as alcohols is impossible due to the lack of electrons. The reduced compound glycerol has therefore been considered an optimal co-substrate, and a cell factory able to efficiently co-ferment these two carbon sources is in demand. Here, we inserted the fungal d-GalUA pathway in a strain of the yeast S. cerevisiae previously equipped with an NAD-dependent glycerol catabolic pathway. The constructed strain was able to consume d-GalUA with the highest reported maximum specific rate of 0.23 g gCDW−1 h−1 in synthetic minimal medium when glycerol was added. By means of a 13C isotope-labelling analysis, carbon from both substrates was shown to end up in pyruvate. The study delivers the proof of concept for a co-fermentation of the two ‘respiratory’ carbon sources to ethanol and demonstrates a fast and complete consumption of d-GalUA in crude sugar beet pulp hydrolysate under aerobic conditions. The future challenge will be to achieve co-fermentation under industrial, quasi-anaerobic conditions.  相似文献   

10.
《Process Biochemistry》2014,49(10):1606-1611
The filamentous fungus Paecilomyces lilacinus was grown on n-hexadecane in submerged (SmC) and solid-state (SSC) cultures. The maximum CO2 production rate in SmC (Vmax = 11.7 mg CO2 Lg−1 day−1) was three times lower than in SSC (Vmax = 40.4 mg CO2 Lg−1 day−1). The P. lilacinus hydrophobin (PLHYD) yield from the SSC was 1.3 mg PLHYD g protein−1, but in SmC, this protein was not detected. The PLHYD showed a critical micelle concentration of 0.45 mg mL−1. In addition, the PLHYD modified the hydrophobicity of Teflon from 130.1 ± 2° to 47 ± 2°, forming porous structures with some filaments <1 μm and globular aggregates <0.25 μm diameter. The interfacial studies of this PLHYD could be the basis for the use of the protein to modify surfaces and to stabilize compounds in emulsions.  相似文献   

11.
Escherichia coli is one of the major microorganisms for recombinant protein production because it has been best characterized in terms of molecular genetics and physiology, and because of the availability of various expression vectors and strains. The synthesis of proteins is one of the most energy consuming processes in the cell, with the result that cellular energy supply may become critical. Indeed, the so called metabolic burden of recombinant protein synthesis was reported to cause alterations in the operation of the host's central carbon metabolism.To quantify these alterations in E. coli metabolism in dependence of the rate of recombinant protein production, 13C-tracer-based metabolic flux analysis in differently induced cultures was used. To avoid dilution of the 13C-tracer signal by the culture history, the recombinant protein produced was used as a flux probe, i.e., as a read out of intracellular flux distributions. In detail, an increase in the generation rate rising from 36 mmolATP gCDW−1 h−1 for the reference strain to 45 mmolATP gCDW−1 h−1 for the highest yielding strain was observed during batch cultivation. Notably, the flux through the TCA cycle was rather constant at 2.5 ± 0.1 mmol gCDW−1 h−1, hence was independent of the induced strength for gene expression. E. coli compensated for the additional energy demand of recombinant protein synthesis by reducing the biomass formation to almost 60%, resulting in excess NADPH. Speculative, this excess NADPH was converted to NADH via the soluble transhydrogenase and subsequently used for ATP generation in the electron transport chain. In this study, the metabolic burden was quantified by the biomass yield on ATP, which constantly decreased from 11.7 gCDW mmolATP−1 for the reference strain to 4.9 gCDW mmolATP−1 for the highest yielding strain. The insights into the operation of the metabolism of E. coli during recombinant protein production might guide the optimization of microbial hosts and fermentation conditions.  相似文献   

12.
《Aquatic Botany》2005,81(4):326-342
The effects of NH4+ or NO3 on growth, resource allocation and nitrogen (N) uptake kinetics of two common helophytes Phragmites australis (Cav.) Trin. ex Steudel and Glyceria maxima (Hartm.) Holmb. were studied in semi steady-state hydroponic cultures. At a steady-state nitrogen availability of 34 μM the growth rate of Phragmites was not affected by the N form (mean RGR = 35.4 mg g−1 d−1), whereas the growth rate of Glyceria was 16% higher in NH4+-N cultures than in NO3-N cultures (mean = 66.7 and 57.4 mg g−1 d−1 of NH4+ and NO3 treated plants, respectively). Phragmites and Glyceria had higher S/R ratio in NH4+ cultures than in NO3 cultures, 123.5 and 129.7%, respectively.Species differed in the nitrogen utilisation. In Glyceria, the relative tissue N content was higher than in Phragmites and was increased in NH4+ treated plants by 16%. The tissue NH4+ concentration (mean = 1.6 μmol g fresh wt−1) was not affected by N treatment, whereas NO3 contents were higher in NO3 (mean = 1.5 μmol g fresh wt−1) than in NH4+ (mean = 0.4 μmol g fresh wt−1) treated plants. In Phragmites, NH4+ (mean = 1.6 μmol g fresh wt−1) and NO3 (mean = 0.2 μmol g fresh wt−1) contents were not affected by the N regime. Species did not differ in NH4+ (mean = 56.5 μmol g−1 root dry wt h−1) and NO3 (mean = 34.5 μmol g−1 root dry wt h−1) maximum uptake rates (Vmax), and Vmax for NH4+ uptake was not affected by N treatment. The uptake rate of NO3 was low in NH4+ treated plants, and an induction phase for NO3 was observed in NH4+ treated Phragmites but not in Glyceria. Phragmites had low Km (mean = 4.5 μM) and high affinity (10.3 l g−1 root dry wt h−1) for both ions compared to Glyceria (Km = 6.3 μM, affinity = 8.0 l g−1 root dry wt h−1). The results showed different plasticity of Phragmites and Glyceria toward N source. The positive response to NH4+-N source may participates in the observed success of Glyceria at NH4+ rich sites, although other factors have to be considered. Higher plasticity of Phragmites toward low nutrient availability may favour this species at oligotrophic sites.  相似文献   

13.
Two mutants of Rhodobacter Capsulatus (JP91 and IR3), a photosynthetic purple non-sulfur bacterium, were grown in a batch photobioreactor under illumination with 30 mmol l−1 dl-lactate and 5 mmol l−1 l-glutamate as carbon and nitrogen source, respectively. Bacterial growth was measured by monitoring the increase in absorbance at 660 nm. The photosynthetic growth processes under different cultivated temperatures are well fitted by a specific logistic model to analyze the kinetics of photosynthetic growth of two strains, thus the apparent growth rates (k) of these photosynthetic bacteria, the variations of cell dry weight (CDW) as well as their relationship with temperature are obtained. In present work, k is (0.1465 ± 0.0146), (0.2266 ± 0.0207) and (0.3963 ± 0.0257) h−1 for JP91 and (0.1117 ± 0.0122), (0.1218 ± 0.0133) and (0.2223 ± 0.0152) h−1 for IR3 at 26, 30 and 34 °C, respectively. And the difference between CDWmax and CDW0 is (0.8997 ± 0.0097), (0.8585 ± 0.0093) and (0.9241 ± 0.0099) g l−1 for JP91 and (0.8167 ± 0.0089), (0.7878 ± 0.0086) and (0.8358 ± 0.0091) g l−1 for IR3 at 26, 30 and 34 °C, respectively. Also real-time monitoring of hydrogen production rates is acquired by recording the flow rates of photohydrogen for these two strains under different temperatures. The effects of temperature on the bacteria growth, hydrogen production capability and substrate conversion efficiency are discussed based on these results. The most preferment temperature, 30 °C, showed good substrate conversion efficiency of 52.7 and 68.2% for JP91 and IR3, respectively.  相似文献   

14.
The photosynthetic light reaction in cyanobacteria constitutes a highly attractive tool for productive biocatalysis, as it can provide redox reactions with high-energy reduction equivalents using sunlight and water as sources of energy and electrons, respectively. Here, we describe the first artificial light-driven redox cascade in Synechocystis sp. PCC 6803 to convert cyclohexanone to the polymer building block 6-hydroxyhexanoic acid (6-HA). Co-expression of a Baeyer-Villiger monooxygenase (BVMO) and a lactonase, both from Acidovorax sp. CHX100, enabled this two-step conversion with an activity of up to 63.1 ± 1.0 U/gCDW without accumulating inhibitory ε-caprolactone. Thereby, one of the key limitations of biocatalytic reactions, that is, reactant inhibition or toxicity, was overcome. In 2 L stirred-tank-photobioreactors, the process could be stabilized for 48 h, forming 23.50 ± 0.84 mm (3.11 ± 0.12 g/L) 6-HA. The high specificity enabling a product yield (YP/S) of 0.96 ± 0.01 mol/mol and the remarkable biocatalyst-related yield of 3.71 ± 0.21 g6-HA/gCDW illustrate the potential of producing this non-toxic product in a synthetic cascade. The fine-tuning of the energy burden on the catalyst was found to be crucial, which indicates a limitation by the metabolic capacity of the cells possibly being compromised by biocatalysis-related reductant withdrawal. Intriguingly, energy balancing revealed that the biotransformation could tap surplus electrons derived from the photosynthetic light reaction and thereby relieve photosynthetic sink limitation. This study shows the feasibility of light-driven biocatalytic cascade operation in cyanobacteria and highlights respective metabolic limitations and engineering targets to unleash the full potential of photosynthesis.  相似文献   

15.
《Aquatic Botany》2005,81(2):157-173
The main photosynthesis and respiration parameters (dark respiration rate, light saturated production rate, saturation irradiance, photosynthetic efficiency) were measured on a total of 23 macrophytes of the Thau lagoon (2 Phanerogams, 5 Chlorophyceae, 10 Rhodophyceae and 6 Phaeophyceae). Those measurements were performed in vitro under controlled conditions, close to the natural ones, and at several seasons. Concomitantly, measurements of pigment concentrations, carbon, phosphorous and nitrogen contents in tissues were performed. Seasonal intra-specific variability of photosynthetic parameters was found very high, enlightening an important acclimatation capacity. The highest photosynthetic capacities were found for Chlorophyceae (e.g. Monostroma obscurum thalli at 17 °C, 982 μmol O2 g−1 dw h−1 and 9.1 μmol O2 g−1 dw h−1/μmol photons m−2 s−1, respectively for light saturated net production rate and photosynthetic efficiency) and Phanerogams (e.g. Nanozostera noltii leaves at 25 °C, 583 μmol O2 g−1 dw h−1 and 2.6 μmol O2 g−1 dw h−1/μmol photons m−2 s−1 respectively for light saturated net production rate and photosynthetic efficiency). As expected, species with a high surface/volume ratio were found to be more productive than coarsely branched thalli and thick blades shaped species. Contrary to Rd (ranging 6.7–794 μmol O2 g−1 dw h−1, respectively for Rytiphlaea tinctoria at 7 °C and for Dasya sessilis at 25 °C) for which a positive relationship with water temperature was found whatever the species studied, the evolution of P/I curves with temperature exhibited different responses amongst the species. The results allowed to show summer nitrogen limitation for some species (Gracilaria bursa-pastoris and Ulva spp.) and to propose temperature preferences based on the photosynthetic parameters for some others (N. noltii, Zostera marina, Chaetomorpha linum).  相似文献   

16.
The influence of enzyme supplementation on performance and intestinal viscosity of male broiler chickens fed with diets containing high amount of wheat was examined in three experiments. In the first experiment, addition with an enzyme preparation including different cell wall degrading enzymes to diets containing 63 g kg−1 and 72 g kg−1 of wheat improved (P<0.05) feed conversion efficiency in the 72 g kg−1 wheat diet. In addition, intestinal viscosity of chickens fed with the 72 g kg−1 wheat diet was reduced (P<0.05). Weight gain and feed intake were not influenced by enzyme addition. In Experiments 2 and 3, the inclusion level of wheat in the diets was more than 80 g kg−1 and four different enzyme preparations were used (two xylanase preparations, two mixed preparations). Overall, a significant effect on performance and intestinal viscosity of chickens was obtained as a result of enzyme supplementation in both experiments. In the first 21 days, improvements (P<0.05) in weight gain and feed conversion efficiency were found to be on average 5% and 6% in Experiment 2 and 7% and 8% in Experiment 3, respectively. When weight gain and feed conversion efficiency were examined on a weekly basis it was shown that the significant response of enzyme addition was confined to the first 4 weeks. However, the effect of enzyme supplementation was still significant in the whole period from 21–42 days. Feed intake was not influenced by enzyme addition. The viscosity of intestinal content in both the jejunum and ileum was in general reduced (P<0.05) with enzyme supplementation, the xylanase preparations proving to be the most efficient. It was concluded that enzyme supplementation of wheat-based diets resulted in improved performance of broiler chickens, which was related to a concomitant reduction in intestinal viscosity. However, the response of enzyme supplementation was most pronounced in diets with a wheat content higher than 80 g kg−1.  相似文献   

17.
Continuous anaerobic fermentations were performed in a novel external-recycle, biofilm reactor using d-glucose and CO2 as carbon substrates. Succinic acid (SA) yields were found to be an increasing function of glucose consumption with the succinic acid to acetic acid ratio increasing from 2.4 g g−1 at a glucose consumption of 10 g L−1, to 5.7 g g−1 at a glucose consumption of 50 g L−1. The formic acid to acetic acid ratio decreased from an equimolar value (0.77 g g−1) at a glucose consumption of 10 g L−1 to a value close to zero at 50 g L−1. The highest SA yield on glucose and highest SA titre obtained were 0.91 g g−1 and 48.5 g L−1 respectively. Metabolic flux analysis based on the established C3 and C4 metabolic pathways of Actinobacillus succinogenes revealed that the increase in the succinate to acetate ratio could not be attributed to the decrease in formic acid and that an additional source of NADH was present. The fraction of unaccounted NADH increased with glucose consumption, suggesting that additional reducing power is present in the medium or is provided by the activation of an alternative metabolic pathway.  相似文献   

18.
The MCNPX code was used to calculate the TG-43U1 recommended parameters in water and prostate tissue in order to quantify the dosimetric impact in 30 patients treated with 125I prostate implants when replacing the TG-43U1 formalism parameters calculated in water by a prostate-like medium in the planning system (PS) and to evaluate the uncertainties associated with Monte Carlo (MC) calculations. The prostate density was obtained from the CT of 100 patients with prostate cancer. The deviations between our results for water and the TG-43U1 consensus dataset values were −2.6% for prostate V100, −13.0% for V150, and −5.8% for D90; −2.0% for rectum V100, and −5.1% for D0.1; −5.0% for urethra D10, and −5.1% for D30. The same differences between our water and prostate results were all under 0.3%. Uncertainties estimations were up to 2.9% for the gL(r) function, 13.4% for the F(r,θ) function and 7.0% for Λ, mainly due to seed geometry uncertainties. Uncertainties in extracting the TG-43U1 parameters in the MC simulations as well as in the literature comparison are of the same order of magnitude as the differences between dose distributions computed for water and prostate-like medium. The selection of the parameters for the PS should be done carefully, as it may considerably affect the dose distributions. The seeds internal geometry uncertainties are a major limiting factor in the MC parameters deduction.  相似文献   

19.
《Process Biochemistry》2007,42(4):740-744
The conversion of glycerol to 1,3-propanediol (PDO) using Klebsiella pneumoniae M5al under anaerobic condition was scaled up from scale 5 to 5000 l in series. A simple strategy for scale-up was to transfer the optimized conditions of a lab scale bioreactor to pilot-scale fermentation. Multistage inocula were developed and their fermentation abilities were assessed in a small-scale fermenter. The experimental results showed that inoculum development in the early steps of a scale-up process could influence the outcomes of a large scale fermentation. Through three-stage liquid inoculum development and a pulse addition of (NH4)2SO4 and yeast extract at 30 h of fermentation, the best results in a 5000 l fermentation were achieved leading to 58.8 g l−1 1,3-propanediol with a yield of 0.53 mol mol−1 glycerol and productivity of 0.92 g l−1 h−1. This is the first report on pilot-scale 1,3-propanediol production using K. pneumoniae.  相似文献   

20.
Large pore ordered mesoporous silica FDU-1 with three-dimensional (3D) face-centered cubic, Fm3m arrangement of mesopores, was synthesized under strong acid media using B-50-6600 poly(ethylene oxide)–poly(butylene oxide)–poly(ethylene oxide) triblock copolymer (EO39BO47EO39), tetraethyl orthosilicate (TEOS) and trimethyl-benzene (TMB). Large pore FDU-1 silica was obtained by using the following gel composition 1TEOS:0.00735B50-6600:0.00735TMB:6HCl:155H2O. The pristine material exhibited a BET specific surface area of 684 m2 g−1, total pore volume of 0.89 cm3 g−1, external surface area of 49 m2 g−1 and microporous volume of 0.09 cm3 g−1. The enzyme activity was determined by the Flow Injection Analysis-Chemiluminescence (FIA-CL) method. For GOD immobilized on the FDU-1 silica, GOD supernatant and GOD solution, the FIA-CL results were 9.0, 18.6 and 34.0 U, respectively. The value obtained for the activity of the GOD solution with FIA-CL method is in agreement with the 35 U, obtained by spectrophotometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号