首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human immunodeficiency virus type 1 (HIV‐1) infection of the central nervous system (CNS) affects cross‐talk between the individual cell types of the neurovascular unit, which then contributes to disruption of the blood–brain barrier (BBB) and the development of neurological dysfunctions. Although the toxicity of HIV‐1 on neurons, astrocytes and brain endothelial cells has been widely studied, there are no reports addressing the influence of HIV‐1 on pericytes. Therefore, the purpose of this study was to evaluate whether or not pericytes can be infected with HIV‐1 and how such an infection affects the barrier function of brain endothelial cells. Our results indicate that human brain pericytes express the major HIV‐1 receptor CD4 and co‐receptors CXCR4 and CCR5. We also determined that HIV‐1 can replicate, although at a low level, in human brain pericytes as detected by HIV‐1 p24 ELISA. Pericytes were susceptible to infection with both the X4‐tropic NL4‐3 and R5‐tropic JR‐CSF HIV‐1 strains. Moreover, HIV‐1 infection of pericytes resulted in compromised integrity of an in vitro model of the BBB. These findings indicate that human brain pericytes can be infected with HIV‐1 and suggest that infected pericytes are involved in the progression of HIV‐1‐induced CNS damage.  相似文献   

2.
As HIV infected individuals live longer, the prevalence of HIV associated neurocognitive disorders is increasing, despite successful antiretroviral therapy. CD14+CD16+ monocytes are critical to the neuropathogenesis of HIV as they promote viral seeding of the brain and establish neuroinflammation. The mechanisms by which HIV infected and uninfected monocytes cross the blood brain barrier and enter the central nervous system are not fully understood. We determined that HIV infection of CD14+CD16+ monocytes resulted in their highly increased transmigration across the blood brain barrier in response to CCL2 as compared to uninfected cells, which did not occur in the absence of the chemokine. This exuberant transmigration of HIV infected monocytes was due, at least in part, to increased CCR2 and significantly heightened sensitivity to CCL2. The entry of HIV infected and uninfected CD14+CD16+ monocytes into the brain was facilitated by significantly increased surface JAM-A, ALCAM, CD99, and PECAM-1, as compared to CD14+ cells that are CD16 negative. Upon HIV infection, there was an additional increase in surface JAM-A and ALCAM on CD14+CD16+ monocytes isolated from some individuals. Antibodies to ALCAM and JAM-A inhibited the transmigration of both HIV infected and uninfected CD14+CD16+ monocytes across the BBB, demonstrating their importance in facilitating monocyte transmigration and entry into the brain parenchyma. Targeting CCR2, JAM-A, and ALCAM present on CD14+CD16+ monocytes that preferentially infiltrate the CNS represents a therapeutic strategy to reduce viral seeding of the brain as well as the ongoing neuroinflammation that occurs during HIV pathogenesis.  相似文献   

3.
4.
Research indicates that many people do not use condoms consistently but instead rely on intuition to identify sexual partners high at risk for HIV infection. The present studies examined neural correlates for first impressions of HIV risk and determined the association of perceived HIV risk with other trait characteristics. Participants were presented with 120 self-portraits retrieved from a popular online photo-sharing community (www.flickr.com). Factor analysis of various explicit ratings of trait characteristics yielded two orthogonal factors: (1) a 'valence-approach' factor encompassing perceived attractiveness, healthiness, valence, and approach tendencies, and (2) a 'safeness' factor, entailing judgments of HIV risk, trustworthiness, and responsibility. These findings suggest that HIV risk ratings systematically relate to cardinal features of a high-risk HIV stereotype. Furthermore, event-related brain potential recordings revealed neural correlates of first impressions about HIV risk. Target persons perceived as risky elicited a differential brain response in a time window from 220-340 ms and an increased late positive potential in a time window from 350-700 ms compared to those perceived as safe. These data suggest that impressions about HIV risk can be formed in a split second and despite a lack of information about the actual risk profile. Findings of neural correlates of risk impressions and their relationship to key features of the HIV risk stereotype are discussed in the context of the 'risk as feelings' theory.  相似文献   

5.
6.
7.
The neurological complications associated with infection by the AIDS virus, HIV, occurs at an early stage of the disease and often indicate a poor prognosis. A dementia, known as AIDS Dementia Complex, is the most common feature observed, and is found in a majority of patients. The effects of gp120, the external protein envelope of HIV, on cerebral glucose utilization were studied in rats. Intracerebroventricular injection of gp120 significantly reduced glucose utilization in the lateral habenula and the suprachiasmatic nucleus, two regions rich in receptors for Vasoactive Intestinal Peptide (VIP) and the whole brain metabolism showed a significant decrease. The findings suggest that gp120 may alter neuronal function, thereby contributing to sequelae of HIV infection of the brain, and that attachment of HIV particles may involve, for a part, VIP receptors.  相似文献   

8.
Changes in the fine balance between matrix metalloproteinases and their tissue inhibitors, which drives extracellular matrix turnover, may be critical to central nervous system inflammation in HIV infection as well as in neurotoxicity. Although they do not produce virus when infected by HIV, astrocytes may be directly affected by the virion, because some viral proteins are known to transduce signaling in brain cells and are also sensitive to the major proinflammatory cytokine TNFalpha. We therefore studied the effects of HIV and TNFalpha on MMP-2, MMP-9 and their inhibitors, TIMP-1 and TIMP-2, in astrocytes, by zymography and ELISA, respectively, or by RT-PCR for both of them. HIV slightly increased the production of pro-MMP-2 and pro-MMP-9 by astrocytes, in a dose-dependent manner. TNFalpha strongly induced pro-MMP-9. TIMP-1 and TIMP-2 levels were affected only slightly, if at all, by HIV and TNFalpha. Thus, astrocyte/HIV contact may lead to extracellular matrix activation, which may be strongly amplified by the inflammatory response. Our data strongly suggest that, besides their physiological production of MMP-2, astrocytes would be a major source of MMP-9 in the inflamed brain.  相似文献   

9.

Objectives

Cognitive impairment remains frequent in HIV, despite combination antiretroviral therapy (cART). Leading theories implicate peripheral monocyte HIV DNA reservoirs as a mechanism for spread of the virus to the brain. These reservoirs remain present despite cART. The objective of this study was to determine if the level of HIV DNA in CD14+ enriched monocytes predicted cognitive impairment and brain injury.

Methods

We enrolled 61 cART-naïve HIV-infected Thais in a prospective study and measured HIV DNA in CD14+ enriched monocyte samples in a blinded fashion. We determined HAND diagnoses by consensus panel and all participants underwent magnetic resonance spectroscopy (MRS) to measure markers of brain injury. Immune activation was measured via cytokines in cerebrospinal fluid (CSF).

Results

The mean (SD) age was 35 (6.9) years, CD4 T-lymphocyte count was 236 (139) and log10 plasma HIV RNA was 4.8 (0.73). Twenty-eight of 61 met HAND criteria. The log10 CD14+ HIV DNA was associated with HAND in unadjusted and adjusted models (p = 0.001). There was a 14.5 increased odds ratio for HAND per 1 log-value of HIV DNA (10-fold increase in copy number). Plasma CD14+ HIV DNA was associated with plasma and CSF neopterin (p = 0.023) and with MRS markers of neuronal injury (lower N-acetyl aspartate) and glial dysfunction (higher myoinositol) in multiple brain regions.

Interpretation

Reservoir burden of HIV DNA in monocyte-enriched (CD14+) peripheral blood cells increases risk for HAND in treatment-naïve HIV+ subjects and is directly associated with CSF immune activation and both brain injury and glial dysfunction by MRS.  相似文献   

10.
Human immunodeficiency virus (HIV) infection of the central nervous system (CNS) is a significant cause of morbidity. The requirements for HIV adaptation to the CNS for neuropathogenesis and the value of CSF virus as a surrogate for virus activity in brain parenchyma are not well established. We studied 18 HIV-infected subjects, most with advanced immunodeficiency and some neurocognitive impairment but none with evidence of opportunistic infection or malignancy of the CNS. Clonal sequences of C2-V3 env and population sequences of pol from HIV RNA in cerebrospinal fluid (CSF) and plasma were correlated with clinical and virologic variables. Most (14 of 18) subjects had partitioning of C2-V3 sequences according to compartment, and 9 of 13 subjects with drug resistance exhibited discordant resistance patterns between the two compartments. Regression analyses identified three to seven positions in C2-V3 that discriminated CSF from plasma HIV. The presence of compartmental differences at one or more of the identified positions in C2-V3 was highly associated with the presence of discordant resistance (P = 0.007), reflecting the autonomous replication of HIV and the independent evolution of drug resistance in the CNS. Discordance of resistance was associated with severity of neurocognitive deficits (P = 0.07), while low nadir CD4 counts were linked both to the severity of neurocognitive deficits and to discordant resistance patterns (P = 0.05 and 0.09, respectively). These observations support the study of CSF HIV as an accessible surrogate for HIV virions in the brain, confirm the high frequency of discordant resistance in subjects with advanced disease in the absence of opportunistic infection or malignancy of the CNS, and begin to identify genetic patterns in HIV env associated with adaptation to the CNS.  相似文献   

11.
In addition to immunodeficiency, human immunodeficiency virus type 1 (HIV-1) can cause cognitive impairment and dementia through direct infection of the brain. To investigate the adaptive process and timing of HIV-1 entry into the central nervous system, we carried out an extensive genetic characterization of variants amplified from different regions of the brain and determined their relatedness to those in lymphoid tissue. HIV-1 genomes infecting different regions of the brain of one study subject with HIV encephalitis (HIVE) had a mosaic structure, being assembled from different combinations of evolutionarily distinct lineages in p17(gag), pol, individual hypervariable regions of gp120 (V1/V2, V3, V4, and V5), and gp41/nef. Similar discordant phylogenetic relationships were observed between p17(gag) and V3 sequences of brain and lymphoid tissue from three other individuals with HIVE. The observation that different parts of the genome of HIV infecting a particular tissue can have different evolutionary histories necessarily limits the conclusions that can be drawn from previous studies of the compartmentalization of distinct HIV populations in different tissues, as these have been generally restricted to sequence comparisons of single subgenomic regions. The complexity of viral populations in the brain produced by recombination could provide a powerful adaptive mechanism for the spread of virus with new phenotypes, such as antiviral resistance or escape from cytotoxic T-cell recognition into existing tissue-adapted virus populations.  相似文献   

12.
《Research in virology》1991,142(2-3):139-144
Infection of foetal or embryonic brain cells and cell lines from human astrocytomas and gliomas with HIV1 derived from T-lymphoma cultures leads to the expression of HIV in about 1 to 2% of the cells in culture. Single-cell cloning of astrocytoma cells shortly after infection resulted in the establishment of persistently HIV1-infected cell lines. These cultures were characterized by low production of virus and moderate intra- and extracellular expression of structural proteins. However, high expression of the nef regulatory protein was found. The virus could be rescued by cocultivation with T cells and primary macrophages giving rise to typical syncytia formation.In contrast to infection with HIV-infected T-lymphoma lines, cocultivation with HIV1-infected primary macrophages or monocytic cell lines induced a reduction in the growth of astrocytes and failed to induce productive infection. These in vitro observations support the hypothesis that astrocytes and glial cells may be a reservoir for HIV in the central nervous system and that macrophages may not carry the virus to the brain, but rather may be infected in the brain after having penetrated the blood-brain barrier.  相似文献   

13.
Although HIV is accepted as the etiologic agent in AIDS, other factors have been implicated in accelerating the disease. Human cytomegalovirus (HCMV) in particular has been implicated as a cofactor in the progression from AIDS-related complex (ARC) to AIDS. HCMV infection of the central nervous system (CNS) (brain, retina) has been reported in at least 50% of AIDS patients, and has been implicated in producing encephalitis and sight-threatening retinitis. HCMV exhibits strict species specificity and animal models for human HCMV are conspicuous by their absence. We have developed a human brain cell line (mixed glial/neuronal) and a multipotential human retinal precursor cell line (neuronal in nature). We have tested the suitability of these cell lines as models for the study of HCMV infectibility. In this study, we report that these cell lines are optimal for the study of HCMV infectibility and pathogenesis in tissues of neural origin and appropriate to study HIV-HCMV interaction. Immortalized human brain and retinal cell lines were infected with a laboratory strain of HCMV (AD 169, Towne) at a multiplicity of infection moi (1-5) and viral infectibility and cell specificity monitored by: (a) phenotypic analysis (multinucleate cells, syncytium formation, etc.), (b) antigen expression (IE, E, late) by immunohistochemistry, Western blot analysis, (c) presence of viral particles by TEM, and (d) expression of indicator plasmids (HIV-LTR-CAT). We report that both human retinal and brain cell lines are permissive for HCMV infectibility. Cell specificity was not seen; both cells expressing glial/neuronal cell markers were positive for the presence of HCMV early/late antigens. Formation of multinucleate giant cells with nuclear inclusion bodies and syncytia were seen. Productive viral infection was confirmed by the ability of cell-free supernatant from the third passage of infected cells to produce pathogenicity and express viral particles, when added to fresh cultures. Using indicator plasmids, HIV-LTR, and CAT, we have shown that HIV and HCMV interact at the cellular level. We have also shown that HIV production in retinal and brain cell lines transfected with cloned HIV was enhanced by HCMV-IE genes. We did not see any differences in HCMV. AD 169, Towne isolate, and data from both strains is presented in this paper. This model could prove extremely useful for the study of cell specificity/cellular and molecular interaction between HIV/HCMV and to test antiviral therapies.  相似文献   

14.
15.
Although the incidence of HIV-associated dementia (HAD) has declined, HIV-associated neurocognitive disorders (HAND) remain a significant health problem despite use of highly active antiretroviral therapy. In addition, the incidence and/or severity of HAND/HAD are increased with concomitant use of drugs of abuse, such as cocaine, marijuana, and methamphetamine. Furthermore, exposure to most drugs of abuse increases brain levels of dopamine, which has been implicated in the pathogenesis of HIV. This review evaluates the potential role of dopamine in the potentiation of HAND/HAD by drugs of abuse. In the brain, multiplication of HIV in infected macrophages/microglia could result in the release of HIV proteins such as gp120 and Tat, which can bind to and impair dopamine transporter (DAT) functions, leading to elevated levels of dopamine in the dopaminergic synapses in the early asymptomatic stage of HIV infection. Exposure of HIV-infected patients to drugs of abuse, especially cocaine and methamphetamine, can further increase synaptic levels of dopamine via binding to and subsequently impairing the function of DAT. This accumulated synaptic dopamine can diffuse out and activate adjacent microglia through binding to dopamine receptors. The activation of microglia may result in increased HIV replication as well as increased production of inflammatory mediators such as tumor necrosis factor (TNF)-alpha and chemokines. Increased HIV replication can lead to increased brain viral load and increased shedding of HIV proteins, gp120 and Tat. These proteins, as well as TNF-alpha, can induce cell death of adjacent dopaminergic neurons via apoptosis. Autoxidation and metabolism of accumulated synaptic dopamine can lead to generation of reactive oxygen species (hydrogen peroxide), quinones, and semiquinones, which can also induce apoptosis of neurons. Increased cell death of dopaminergic neurons can eventually lead to dopamine deficit that may exacerbate the severity and/or accelerate the progression of HAND/HAD.  相似文献   

16.
HIV associated neurocognitive disorders and their histopathological correlates largely depend on the continuous seeding of the central nervous system with immune activated leukocytes, mainly monocytes/macrophages from the periphery. The blood-brain-barrier plays a critical role in this never stopping neuroinvasion, although it appears unaltered until the late stage of HIV encephalitis. HIV flux that moves toward the brain thus relies on hijacking and exacerbating the physiological mechanisms that govern blood brain barrier crossing rather than barrier disruption. This review will summarize the recent data describing neuroinvasion by HIV with a focus on the molecular mechanisms involved.  相似文献   

17.
18.
19.
HIV involvement of the CNS continues to be a significant problem despite successful use of combination antiretroviral therapy (cART). Drugs of abuse can act in concert with HIV proteins to damage glia and neurons, worsening the neurotoxicity caused by HIV alone. Methamphetamine (METH) is a highly addictive psychostimulant drug, abuse of which has reached epidemic proportions and is associated with high-risk sexual behavior, increased HIV transmission, and development of drug resistance. HIV infection and METH dependence can have synergistic pathological effects, with preferential involvement of frontostriatal circuits. At the molecular level, epigenetic alterations have been reported for both HIV-1 infection and drug abuse, but the neuropathological pathways triggered by their combined effects are less known. We investigated epigenetic changes in the brain associated with HIV and METH. We analyzed postmortem frontal cortex tissue from 27 HIV seropositive individuals, 13 of which had a history of METH dependence, in comparison to 14 cases who never used METH. We detected changes in the expression of DNMT1, at mRNA and protein levels, that resulted in the increase of global DNA methylation. Genome-wide profiling of DNA methylation in a subset of cases, showed differential methylation on genes related to neurodegeneration; dopamine metabolism and transport; and oxidative phosphorylation. We provide evidence for the synergy of HIV and METH dependence on the patterns of DNA methylation on the host brain, which results in a distinctive landscape for the comorbid condition. Importantly, we identified new epigenetic targets that might aid in understanding the aggravated neurodegenerative, cognitive, motor and behavioral symptoms observed in persons living with HIV and addictions.  相似文献   

20.
Summary 1. Alterations of brain microvasculature and the disruption of the blood–brain barrier (BBB) integrity are commonly associated with human immunodeficiency virus type 1 (HIV-1) infection. These changes are most frequently found in human immunodeficiency virus-related encephalitis (HIVE) and in human immunodeficiency virus-associated dementia (HAD).2. It has been hypothesized that the disruption of the BBB occurs early in the course of HIV-1 infection and can be responsible for HIV-1 entry into the CNS.3. The current review discusses the mechanisms of injury to brain endothelial cells and alterations of the BBB integrity in HIV-infection with focus on the vascular effects of HIV Tat protein. In addition, this review describes the mechanisms of the BBB disruption due to HIV-1 or Tat protein interaction with selected risk factors for HIV infection, such as substance abuse and aging.This revised article was published online in May 2005 with a February 2005 cover date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号