首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 612 毫秒
1.
The aim of the study was to review systematically the literature available on electromyographic (EMG) variables of the golf swing. From the 19 studies found, a high variety of EMG methodologies were reported. With respect to EMG intensity, the right erector spinae seems to be highly activated, especially during the acceleration phase, whereas the oblique abdominal muscles showed moderate to low levels of activation. The pectoralis major, subscapularis and latissimus dorsi muscles of both sides showed their peak activity during the acceleration phase. High muscle activity was found in the forearm muscles, especially in the wrist flexor muscles demonstrating activity levels above the maximal voluntary contraction. In the lower limb higher muscle activity of the trail side was found. There is no consensus on the influence of the golf club used on the neuromuscular patterns described. Furthermore, there is a lack of studies on average golf players, since most studies were executed on professional or low handicap golfers.Further EMG studies are needed, especially on lower limb muscles, to describe golf swing muscle activation patterns and to evaluate timing parameters to characterize neuromuscular patterns responsible for an efficient movement with lowest risk for injury.  相似文献   

2.
Trunk muscle onset and cessation in golfers with and without low back pain   总被引:1,自引:0,他引:1  
The knowledge of the onset and cessation timing of the paraspinal muscles that surround the lumbar spine is an important area of research for the understanding of low back pain. This study examined the timing of the erector spinae and external oblique muscle activity in a group of golfers with and without low back pain. The study compared the results of surface electromyography measurements for two groups of golfers. Twelve male golfers who had reported a mild or greater level of pain in the lower back that was experienced while playing golf were examined. A further fifteen male golfers who had reported no history of lower back pain in the previous 12 months were recruited as controls. The results showed that the low-back-pain golfers switched on their erector spinae muscle significantly in advance of the start of the backswing. This finding was not evident in the group who did not have low back pain symptoms. Low-back-pain golfers, therefore, may use the erector spinae muscle as a primary spinal stabiliser instead of the stronger deeper muscles such as transversus abdominis and multifidus. These results may have important implications for conditioning programmes for golfers with low back pain.  相似文献   

3.
Central Nervous System modulates the motor activities of all trunk muscles to concurrently regulate the intra-abdominal and intra-thoracic pressures. The study aims to evaluate the effect of inspiratory and expiratory loads on abdominal muscle activity during breathing in healthy subjects. Twenty-three higher education students (21.09 ± 1.56 years; 8 males) breathed at a same rhythm (inspiration: two seconds; expiration: four seconds) without load and with 10% of the maximal inspiratory or expiratory pressures, in standing. Surface electromyography was performed to assess the activation intensity of rectus abdominis, external oblique and transversus abdominis/internal oblique muscles, during inspiration and expiration. During inspiration, transversus abdominis/internal oblique activation intensity was significantly lower with inspiratory load when compared to without load (p = 0.009) and expiratory load (p = 0.002). During expiration, the activation intensity of all abdominal muscles was significantly higher with expiratory load when compared to without load (p < 0.05). The activation intensity of external oblique (p = 0.036) and transversus abdominis/internal oblique (p = 0.022) was significantly higher with inspiratory load when compared to without load. Transversus abdominis/internal oblique activation intensity was significantly higher with expiratory load when compared to inspiratory load (p < 0.001).Transversus abdominis/internal oblique seems to be the most relevant muscle to modulate the intra-abdominal pressure for the breathing mechanics.  相似文献   

4.

Purpose

To determine the volume and degree of asymmetry of the musculus rectus abdominis (RA) in professional tennis players.

Methods

The volume of the RA was determined using magnetic resonance imaging (MRI) in 8 professional male tennis players and 6 non-active male control subjects.

Results

Tennis players had 58% greater RA volume than controls (P = 0.01), due to hypertrophy of both the dominant (34% greater volume, P = 0.02) and non-dominant (82% greater volume, P = 0.01) sides, after accounting for age, the length of the RA muscle and body mass index (BMI) as covariates. In tennis players, there was a marked asymmetry in the development of the RA, which volume was 35% greater in the non-dominant compared to the dominant side (P<0.001). In contrast, no side-to-side difference in RA volume was observed in the controls (P = 0.75). The degree of side-to-side asymmetry increased linearly from the first lumbar disc to the pubic symphysis (r = 0.97, P<0.001).

Conclusions

Professional tennis is associated with marked hypertrophy of the musculus rectus abdominis, which achieves a volume that is 58% greater than in non-active controls. Rectus abdominis hypertrophy is more marked in the non-dominant than in the dominant side, particularly in the more distal regions. Our study supports the concept that humans can differentially recruit both rectus abdominis but also the upper and lower regions of each muscle. It remains to be determined if this disequilibrium raises the risk of injury.  相似文献   

5.

Purpose

To determine the volume and degree of asymmetry of the rectus abdominis muscle (RA) in professional soccer players.

Methods

The volume of the RA was determined using magnetic resonance imaging (MRI) in 15 professional male soccer players and 6 non-active male control subjects.

Results

Soccer players had 26% greater RA volume than controls (P<0.05), due to hypertrophy of both the dominant (28% greater volume, P<0.05) and non-dominant (25% greater volume, P<0.01) sides, after adjusting for age, length of the RA muscle and body mass index (BMI) as covariates. Total volume of the dominant side was similar to the contralateral in soccer players (P = 0.42) and in controls (P = 0.75) (Dominant/non-dominant = 0.99, in both groups). Segmental analysis showed a progressive increase in the degree of side-to-side asymmetry from the first lumbar disc to the pubic symphysis in soccer players (r = 0.80, P<0.05) and in controls (r = 0.75, P<0.05). The slope of the relationship was lower in soccer players, although this trend was not statistically significant (P = 0.14).

Conclusions

Professional soccer is associated with marked hypertrophy of the rectus abdominis muscle, which achieves a volume that is 26% greater than in non-active controls. Soccer induces the hypertrophy of the non-dominant side in proximal regions and the dominant side in regions closer to pubic symphysis, which attenuates the pattern of asymmetry of rectus abdominis observed in non-active population. It remains to be determined whether the hypertrophy of rectus abdominis in soccer players modifies the risk of injury.  相似文献   

6.
People with a history of low back pain (LBP) are at high risk to encounter additional LBP episodes. During LBP remission, altered trunk muscle control has been suggested to negatively impact spinal health. As sudden LBP onset is commonly reported during trunk flexion, the aim of the current study is to investigate whether dynamic trunk muscle recruitment is altered in LBP remission. Eleven people in remission of recurrent LBP and 14 pain free controls performed cued trunk flexion during a loaded and unloaded condition. Electromyographic activity was recorded from paraspinal (lumbar and thoracic erector spinae, latissimus dorsi, deep and superficial multifidus) and abdominal muscles (obliquus internus, externus and rectus abdominis) with surface and fine-wire electrodes. LBP participants exhibited higher levels of co-contraction of flexor/extensor muscles, lower agonistic abdominal and higher antagonistic paraspinal muscle activity than controls, both when data were analyzed in grouped and individual muscle behavior. A sub-analysis in people with unilateral LBP (n = 6) pointed to opposing changes in deep and superficial multifidus in relation to the pain side. These results suggest that dynamic trunk muscle control is modified during LBP remission, and might possibly increase spinal load and result in earlier muscle fatigue due to intensified muscle usage. These negative consequences for spinal health could possibly contribute to recurrence of LBP.  相似文献   

7.
Objective:The purpose of this study was to investigate the difference in back extensor muscle endurance before and after kinesiology tape application to all back stabilizer muscles and to the erector spinae alone.Methods:We assessed 32 adults (16 men and 16 women), randomly divided into two groups. In the erector spinae taping (EST) group, kinesiology tape was applied only to the erector spinae, and in the total muscle taping (TMT) group, kinesiology tape was applied to the erector spinae, latissimus dorsi, lower trapezius, internal oblique abdominis, and external oblique abdominis.Results:Both groups showed significant difference in terms of back extensor muscle endurance after kinesiology tape application (p<0.05). Between-group comparison revealed that the TMT group had more back extensor muscle endurance than the EST group (p<0.05) after kinesiology tape application.Conclusions:These findings indicate that, to improve back extensor muscle endurance, kinesiology tape should be applied to all back stabilizer muscles, rather than to the erector spinae muscles alone.  相似文献   

8.
The purpose of this study was to determine the effects of an 8-week golf-specific exercise program on physical characteristics, swing mechanics, and golf performance. Fifteen trained male golfers (47.2 +/- 11.4 years, 178.8 +/- 5.8 cm, 86.7 +/- 9.0 kg, and 12.1 +/- 6.4 U.S. Golf Association handicap) were recruited. Trained golfers was defined operationally as golfers who play a round of golf at least 2-3 times per week and practice at the driving range at least 2-3 times per week during the regular golf season. Subjects performed a golf-specific conditioning program 3-4 times per week for 8 weeks during the off-season in order to enhance physical characteristics. Pre- and posttraining testing of participants included assessments of strength (torso, shoulder, and hip), flexibility, balance, swing mechanics, and golf performance. Following training, torso rotational strength and hip abduction strength were improved significantly (p < 0.05). Torso, shoulder, and hip flexibility improved significantly in all flexibility measurements taken (p < 0.05). Balance was improved significantly in 3 of 12 measurements, with the remainder of the variables demonstrating a nonsignificant trend for improvement. The magnitude of upper-torso axial rotation was decreased at the acceleration (p = 0.015) and impact points (p =0.043), and the magnitude of pelvis axial rotation was decreased at the top (p = 0.031) and acceleration points (p = 0.036). Upper-torso axial rotational velocity was increased significantly at the acceleration point of the golf swing (p = 0.009). Subjects increased average club velocity (p = 0.001), ball velocity (p = 0.001), carry distance (p = 0.001), and total distance (p = 0.001). These results indicate that a golf-specific exercise program improves strength, flexibility, and balance in golfers. These improvements result in increased upper-torso axial rotational velocity, which results in increased club head velocity, ball velocity, and driving distance.  相似文献   

9.
PurposeField study, cross-sectional study to measure the posture and sEMG of the lumbar spine during office work for a better understanding of the lumbar spine within such conditions.ScopeThere is high incidence of low back pain in office workers. Currently there is little information about lumbar posture and the activity of lumbar muscles during extended office work.MethodsThirteen volunteers were examined for around 2 h of their normal office work. Typical tasks were documented and synchronised to a portable long term measuring device for sEMG and posture examination. The correlation of lumbar spine posture and sEMG was tested statistically.ResultsThe majority of time spent in office work was sedentary (82%). Only 5% of the measured time was undertaken in erect body position (standing or walking). The sEMG of the lumbar muscles under investigation was task dependent. A strong relation to lumbar spine posture was found within each task. The more the lumbar spine was flexed, the less there was activation of lumbar muscles (P < .01). Periods of very low or no activation of lumbar muscles accounted for about 30% of relaxed sitting postures.ConclusionBecause of very low activation of lumbar muscles while sitting, the load is transmitted by passive structures like ligaments and intervertebral discs. Due to the viscoelasticity of passive structures and low activation of lumbar muscles, the lumbar spine may incline into de-conditioning. This may be a reason for low back pain.  相似文献   

10.

Background

Non-specific low back pain (LBP) has been one of the most frequently occurring musculoskeletal problems. Impairment in the mechanical stability of the lumbar spine has been known to lower the safety margin of the spine musculature and can result in the occurrence of pain symptoms of the low back area. Previously, changes in spinal stability have been identified by investigating recruitment patterns of low back and abdominal muscles in laboratory experiments with controlled postures and physical activities that were hard to conduct in daily life. The main objective of this study was to explore the possibility of developing a reliable spine stability assessment method using surface electromyography (EMG) of the low back and abdominal muscles in common physical activities.

Methods

Twenty asymptomatic young participants conducted normal walking, plank, and isometric back extension activities prior to and immediately after maintaining a 10-min static upper body deep flexion on a flat bed. EMG data of the erector spinae, external oblique, and rectus abdominals were collected bilaterally, and their mean normalized amplitude values were compared between before and after the static deep flexion. Changes in the amplitude and co-contraction ratio values were evaluated to understand how muscle recruitment patterns have changed after the static deep flexion.

Results

Mean normalized amplitude of antagonist muscles (erector spinae muscles while conducting plank; external oblique and rectus abdominal muscles while conducting isometric back extension) decreased significantly (P < 0.05) after the 10-min static deep flexion. Normalized amplitude of agonist muscles did not vary significantly after deep flexion.

Conclusions

Results of this study suggest the possibility of using surface EMG in the evaluation of spinal stability and low back health status in simple exercise postures that can be done in non-laboratory settings. Specifically, amplitude of antagonist muscles was found to be more sensitive than agonist muscles in identifying changes in the spinal stability associated with the 10-min static deep flexion. Further research with various loading conditions and physical activities need to be performed to improve the reliability and utility of the findings of the current study.  相似文献   

11.
Vitamin C plays key roles in cell homeostasis, acting as a potent antioxidant as well as a positive modulator of cell differentiation. In skeletal muscle, the vitamin C/sodium co-transporter SVCT2 is preferentially expressed in oxidative slow fibers. Besides, SVCT2 is up-regulated upon the early fusion of primary myoblasts. However, our knowledge of the postnatal expression profile of SVCT2 remains scarce. Here we have analyzed the expression of SVCT2 during postnatal development of the chicken slow anterior and fast posterior latissimus dorsi muscles, ranging from day 7 to adulthood. SVCT2 expression is consistently higher in the slow than in the fast muscle at all stages. After hatching, SVCT2 expression is significantly down-regulated in the anterior latissimus dorsi, which nevertheless maintains a robust slow phenotype. Taking advantage of the C2C12 cell line to recapitulate myogenesis, we confirmed that SVCT2 is expressed in a biphasic fashion, reaching maximal levels upon early myoblasts fusion and decreasing during myotube growth. Together, these findings suggest that the dynamic expression levels of SVCT2 could be relevant for different features of skeletal muscle physiology, such as muscle cell formation, growth and activity.  相似文献   

12.
BackgroundSince the unergonomic postures cannot be changed during a surgery, it seems reasonable to externally support the surgeon's posture in order to relieve the musculature. To evaluate this matter, we conducted a pilot study to investigate if a prototype of an external surgeon support system (S3) relieves the musculature in an objectively measurable manner.MethodsSimultaneous surface electromyography (EMG) was used alongside a combination of a laser Doppler flowmeter and a tissue spectrometer to record back and leg muscles during a simulated surgical situation.FindingsWith S3, muscle activity was significantly lower (p < 0.05) and also fatigue decreased when compared to without S3. Muscle blood flow and oxygenation were relatively close to baseline with S3, but increased without S3.InterpretationAn ergonomic S3 is a possible approach to reduce muscle activity and fatigue and may therefore prevent chronic back pain amongst surgeons in the long term.  相似文献   

13.
PurposeThis study was designed to evaluate the effects of botulinum toxin type-A (BoNTA) injection of the rectus femoris (RF) muscle on the electromyographic activity of the knee flexor and extensor and on knee and hip kinematics during gait in patients with hemiparesis exhibiting a stiff-knee gait.MethodTwo gait analyses were performed on fourteen patients: before and four weeks after BoNTA injection. Spatiotemporal, kinematic and electromyographic parameters were quantified for the paretic limb.ResultsBoNTA treatment improved gait velocity, stride length and cadence with an increase of knee angular velocity at toe-off and maximal knee flexion in the swing phase. Amplitude and activation time of the RF and co-activation duration between the RF and biceps femoris were significantly decreased. The instantaneous mean frequency of RF was predominantly lower in the pre-swing phase.ConclusionsThe results clearly show that BoNTA modified the EMG amplitude and frequency of the injected muscle (RF) but not of the synergist and antagonist muscles. The reduction in RF activation frequency could be related to increased activity of slow fibers. The frequency analysis of EMG signals during gait appears to be a relevant method for the evaluation of the effects of BoNTA in the injected muscle.  相似文献   

14.
Objectives: Four adult non‐human primates Papio ursinus were used to study induction of bone formation by recombinant human transforming growth factor‐β2 (hTGF‐β2) together with muscle‐derived stem cells. Materials and methods: The hTGF‐β2 was implanted in rectus abdominis muscles and in calvarial defects with and without addition of morcellized fragments of striated muscle, harvested from the rectus abdominis or temporalis muscles. Expression of osteogenic markers including osteogenic protein‐1, bone morphogenetic protein‐3 and type IV collagen mRNAs from generated specimens was examined by Northern blot analysis. Results: Heterotopic intramuscular implantation of 5 and 25 μg hTGF‐β2 combined with 100 mg of insoluble collagenous bone matrix yielded large corticalized mineralized ossicles by day 30 with remodelling and induction of haematopoietic marrow by day 90. Addition of morcellized rectus abdominis muscle to calvarial implants enhanced induction of bone formation significantly by day 90. Conclusions: In Papio ursinus, in marked contrast to rodents and lagomorphs, hTGF‐β2 induced large corticalized and vascularized ossicles by day 30 after implantation into the rectus abdominis muscle. This striated muscle contains responding stem cells that enhance the bone induction cascade of hTGF‐β2. Induction of bone formation by hTGF‐β2 in the non‐human primate Papio ursinus may occur as a result of expression of bone morphogenetic proteins on heterotopic implantation of hTGF‐β2; the bone induction cascade initiated by mammalian TGF‐β proteins in Papio ursinus needs to be re‐evaluated for novel molecular therapeutics for induction of bone formation in clinical contexts.  相似文献   

15.
PurposeThe purpose of the present study was to analyze the neuromuscular responses during the performance of a sit to stand [STS] task in water and on dry land.Scope10 healthy subjects, five males and five females were recruited for study. Surface electromyography sEMG was used for lower limb and trunk muscles maximal voluntarty contraction [MVC] and during the STS task.ResultsMuscle activity was significantly higher on dry land than in water normalized signals by MVC from the quadriceps-vastus medialis [17.3%], the quadriceps – rectus femoris [5.3%], the long head of the biceps femoris [5.5%], the tibialis anterior [13.9%], the gastrocnemius medialis [3.4%], the soleus [6.2%]. However, the muscle activity was higher in water for the rectus abdominis [?26.6%] and the erector spinae [?22.6%].ConclusionsThis study for the first time describes the neuromuscular responses in healthy subjects during the performance of the STS task in water. The differences in lower limb and trunk muscle activity should be considered when using the STS movement in aquatic rehabilitation.  相似文献   

16.
Introduction: Chronic low back pain (CLBP) and fear of movement (kinesiophobia) are associated with an overactivation of paravertebral muscles during forward bending. This impairs spine motor control and contributes to pain perpetuation. However, the abdominal muscles activation is engaged too in spine stabilization but its modulation with kinesiophobia remains unknown. Our study tested whether CLBP and kinesiophobia affected the activation pattern of abdominal muscles during trunk flexion/extension. Methods: Surface electromyographical recordings of the internal oblique/transversus abdominis (IO/TrA) and external oblique (EO) muscles were analyzed in 12 people with CLBP and 13 pain-free subjects during low-velocity forward bending back and forth from erected posture. Tampa Scale of Kinesiophobia was also administrated. Results: IO/TrA activation, but not EO, was modulated across the phases of movement in both groups, i.e. maximal at onset of flexion and end of extension, and minimal at full flexion. In CLBP group only, IO/TrA activation was increased near to full trunk flexion and in correlation with kinesiophobia. Conclusions: The phase-dependence of IO/TrA activation during trunk flexion/extension in standing may have a role in spine motor control. The influence of kinesiophobia in CLBP should be further investigated as an important target in CLBP management.  相似文献   

17.
Current marketing of golf clubs places great emphasis on the importance of the correct choice of shaft in relation to the golfer. The design of shafts is based on a body of received wisdom for which there appears to be little in the way of hard evidence, either of a theoretical or experimental nature. In this paper the behaviour of the shaft in the golf swing is investigated using a suitable dynamic computer simulation and by making direct strain gauge measurements on the shaft during actual golf swings. The conclusion is, contrary to popular belief, that shaft bending flexibility plays a minor dynamic role in the golf swing and that the conventional tests associated with shaft specification are peculiarly inappropriate to the swing dynamics; other tests are proposed. A concomitant conclusion is that it should be difficult for the golfer to actually identify shaft flexibility. It is found that if golfers are asked to hit golf balls with sets of clubs having different shafts but identical swingweights the success rate in identifying the shaft is surprisingly low.  相似文献   

18.
IntroductionBack muscle capacity is impaired in chronic low back pain patients but no motivation-free test exists to measure it. The aims of this study were to assess the reliability and criterion validity of electromyographic indices of muscle fatigue during an intermittent absolute endurance test.MethodsHealthy subjects (44 males and 29 females; age: 20–55 yrs) performed three maximal voluntary contractions (MVC) and a fatigue test while standing in a static dynamometer. Surface EMG signals were collected from four pairs of back muscles (multifidus at the L5 level, iliocostalis lumborum at L3, and longissimus at L1 and T10). The fatigue test, assessing absolute endurance (90-Nm torque), consisted in performing an intermittent extension task to exhaustion. Strength was defined as the peak MVC whereas our endurance criterion was defined as the time to reach exhaustion (Tend) during the fatigue test. From the first five min (females) or ten min (males) of EMG data, frequency and time-frequency domain analyses were applied to compute various spectral indices of muscle fatigue.ResultsThe EMG indices were more reliable when computed from the time-frequency domain than when computed from the frequency domain, but showed comparable correlation results (criterion validity) with Tend and Strength. Some EMG indices reached moderate to good correlation (range: 0.64–0.69) with Tend, lower correlations (range: 0.39–0.55) with Strength, and good to excellent between-day test-retest reliability results (intra-class correlation range: 0.75–0.83). The quantification of the spectral content more locally in different frequency bands of the power spectrum was less valid and reliable than the indices computed from the entire power spectrum. Differences observed among muscles were interpreted in light of specific neuromuscular activation levels that were observed during the endurance test. These findings supported the use of an intermittent and time-limited (5–10 min) absolute endurance test, that is a practical way to assess the back capacity of chronic low back pain subjects, to assess absolute endurance as well as strength with the use of electromyographic indices of muscle fatigue.  相似文献   

19.
The mechanism of ATP hydrolysis by myosin and actomyosin was investigated for the four major classes of vertebrate muscles: fast white (posterior latissimus dorsi), slow red (anterior latissimus dorsi), cardiac and smooth (gizzard). The kinetic behavior of all classes of muscle was consistent with the scheme developed previously for rabbit fast white muscle, but quantitative differences were observed for the rate constants of some of the steps in the hydrolysis cycle. The rate of the hydrolysis step of myosin subfragment-1 was similar for the striated muscles and two to three times smaller for smooth muscle. Two isomerizations of the enzyme occurred in the pathway leading to the formation of the myosin-products intermediate. The rate of dissociation of acto S–1 by ATP was slower for slow muscles and a maximum rate was observed at low temperature. The rate of association of the S-1-products intermediate with actin was equal to the turnover rate of acto S–1 ATPase at low concentrations of actin. The rate of dissociation of ADP from an acto S–1-ADP complex was also much slower for slow muscle. It was shown by Barany (1967) that the maximum turnover rate of actomyosin ATPase (VM) is proportional to the velocity of contraction of the muscle. The only step in the mechanism that is correlated with VM is the apparent second-order rate constant for the formation of a complex of the S-1-product state with actin. The evidence is discussed in terms of a mechanism in which the release of reaction products from actomyosin is the step that is of primary importance in determining the value of VM and the velocity of contraction.  相似文献   

20.
This study investigated changes in muscle activity when subjects are asked to maintain a constant cadence during an unloaded condition. Eleven subjects pedaled for five loaded conditions (220 W, 190 W, 160 W, 130 W, 100 W) and one unloaded condition at 80 rpm. Electromyographic (EMG) activity of six lower limb muscles, pedal forces and oxygen consumption were calculated for every condition. Muscle activity was defined by timing (EMG onset and offset) and level (integrated values of EMGrms calculated between EMG onset and EMG offset) of activation, while horizontal and vertical impulses were computed to characterize pedal forces. Muscle activity, pedal forces and oxygen consumption variables measured during the unloaded condition were compared with those extrapolated to 0 W from the loaded conditions, assuming a linear relationship. The muscle activity was changed during unloaded condition: EMG onset and/or offset of rectus femoris, biceps femoris, vastus medialis, and gluteus maximus muscles were delayed (p < 0.05); iEMGrms values of rectus femoris, biceps femoris, gastrocnemius medialis and tibialis anterior muscles were higher than those extrapolated to 0 W (p < 0.05). Vertical impulse over the extension phase was lower (p < 0.05) while backward horizontal impulse was higher (p < 0.05) during unloaded condition than those extrapolated to 0 W. Oxygen consumptions were higher during unloaded condition than extrapolated to 0W (750 ± 147 vs. 529 ± 297 mLO2.min?1; p < 0.05). Timing of activation of rectus femoris and biceps femoris was dramatically modified to optimize pedal forces and maintain a constant cadence, while systematic changes in the activation level of the bi-articular muscles induced a relative increase in metabolic expenditure when pedaling during an unloaded condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号