首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effect of pennate vs. fusiform muscle architecture on the rate of torque development (RTD) by examining the predominately fusiform elbow flexors (EF) and highly-pennate knee extensors (KE). Seventeen male volunteers (28.4 ± 6.2 years) performed explosive isometric EF and KE contractions (MVCs). Biceps brachii and vastus lateralis fascicle angles were measured to confirm their architecture, and both the rate of voluntary muscle activation (root-mean-square EMG in the 50 ms before contraction onset; EMG-50) and electromechanical delay (EMD; depicting muscle-tendon series elasticity) were assessed as control variables to account for their influence on RTD. MVC torque, early (RTD50) and late (RTD200) RTDs were calculated and expressed as absolute and normalized values. Absolute MVC torque (+412%), RTD50 (+215%), and RTD200 (+427%) were significantly (p < 0.001) higher in KE than EF. However, EF RTD50 was faster (+178%) than KE after normalization (p = 0.02). EMG-50 and EMD did not differ between muscle groups. The results suggest that the faster absolute RTD in KE is largely associated with its higher maximal torque capacity, however in the absence of differences in rates of muscle activation, fiber type, and EMD the fusiform architecture of EF may be considered a factor allowing its faster early RTD relative to strength capacity.  相似文献   

2.
Rapid force production is critical to improve performance and prevent injuries. However, changes in rate of force/torque development caused by the repetition of maximal contractions have received little attention. The aim of this study was to determine the relative influence of rate of torque development (RTD) and peak torque (Tpeak) on the overall performance (i.e. mean torque, Tmean) decrease during repeated maximal contractions and to investigate the contribution of contractile and neural mechanisms to the alteration of the various mechanical variables. Eleven well-trained men performed 20 sets of 6-s isokinetic maximal knee extensions at 240°·s-1, beginning every 30 seconds. RTD, Tpeak and Tmean as well as the Rate of EMG Rise (RER), peak EMG (EMGpeak) and mean EMG (EMGmean) of the vastus lateralis were monitored for each contraction. A wavelet transform was also performed on raw EMG signal for instant mean frequency (ifmean) calculation. A neuromuscular testing procedure was carried out before and immediately after the fatiguing protocol including evoked RTD (eRTD) and maximal evoked torque (eTpeak) induced by high frequency doublet (100 Hz). Tmean decrease was correlated to RTD and Tpeak decrease (R²=0.62; p<0.001; respectively β=0.62 and β=0.19). RER, eRTD and initial ifmean (0-225 ms) decreased after 20 sets (respectively -21.1±14.1, -25±13%, and ~20%). RTD decrease was correlated to RER decrease (R²=0.36; p<0.05). The eTpeak decreased significantly after 20 sets (24±5%; p<0.05) contrary to EMGpeak (-3.2±19.5 %; p=0.71). Our results show that reductions of RTD explained part of the alterations of the overall performance during repeated moderate velocity maximal exercise. The reductions of RTD were associated to an impairment of the ability of the central nervous system to maximally activate the muscle in the first milliseconds of the contraction.  相似文献   

3.
This study aimed to determine test–retest reliability of ankle plantar flexor neuromuscular properties in healthy people to improve understanding of additional measurement and analysis procedures that may be used in outcome assessment. Ten healthy participants (age 29.60 ± 5.36 years) volunteered. Isometric torquemax, rate of torque development (RTD), rate of electromyography rise (RER), impulse, electromechanical delay (EMD), torque steadiness, and torque sensing were obtained during two testing sessions 60 min apart. ICC values ranged from 0.81 to 0.99, indicating good to excellent test–retest reliability. Lower bands of the 95% CIs were all above 0.75 apart from the early phase measures (≤50 ms) derived from explosive torque-time and EMG-time curves, which were between 0.32 and 0.73, indicating poor to moderate reliability. Heteroscedasticity was observed for RTD, impulse, and EMD. LOA as a function of the mean (X̅) for these measures ranged from meandifference ± 0.25X̅ to ± 0.68X̅. EMD showed excellent reliability (ICC = 0.90; 95% CI [0.63, 0.98]). Torque sensing and torque steadiness showed good reliability (0.81 ≤ ICC ≤ 0.89). Thus, ankle plantar flexor neuromuscular properties showed good to excellent test–retest reliability. However, reliability of measures in the early phase of muscle contraction were consistently lower than the late phase.  相似文献   

4.
A relationship exists between muscles of the lumbar spine and those of the lower extremity where the quadriceps become more inhibited after lumbar paraspinal. The purpose of this experiment was to compare surface electromyography (sEMG) total frequency content after lumbar paraspinal fatiguing exercise. Scope: 50 subjects performed fatiguing lumbar extension exercise indexed by downward shifts in median frequency calculated from lumbar paraspinal sEMG signal. Before and after each exercise set we recorded maximal, isometric knee extension torque and quadriceps central activation ratio (QI) using the superimposed burst technique while recording vastus lateralis sEMG. We calculated total frequency content of the sEMG signal (fEMGTOTAL) as the area of the quadriceps sEMG frequency spectrum. Quadriceps fEMGTOTAL decreased from baseline following the first and second exercise sets. There was no significant change in quadriceps sEMG median frequency among baseline and post-exercise measures. The change in fEMGTOTAL was correlated with the change in QI following the first (r = ?0.41, P = 0.003) and second (r = ?0.32, P = 0.02) exercise sets. Conclusion: Quadriceps fEMGTOTAL decreased following fatiguing lumbar extension exercise, in the absence of a significant change in quadriceps median frequency.  相似文献   

5.
The superimposed burst technique is used to estimate quadriceps central activation ratio during a maximal voluntary isometric contraction, which is calculated from force data during an open-chain knee extension task. Assessing quadriceps activation in a closed-chain position would more closely simulate the action of the quadriceps during activity. Our aim was to determine the test–retest reliability of the quadriceps central activation ratio in the closed chain.MethodsTwenty-two healthy, active volunteers (13M/12F; age = 23.8 ± 3; height = 72.7 ± 14.5 cm; mass = 175.3 ± 9.6 kg) were recruited to participate. Knee extension MVIC torque and the peak torque during a superimposed electrical stimulus delivered to the quadriceps during an MVIC were measured to estimate quadriceps CAR. Interclass correlation coefficients were used to assess test–retest reliability between sessions, and Bland–Altman plots to graphically assess agreement between sessions.ResultsTest–retest reliability was fair for CAR (ICC2,k = 0.68; P = 0.005), with a mean difference of −2.8 ± 10.3%, and limits of agreement ranging −23.1–18.1%.ConclusionsCAR calculated using the superimposed burst technique is moderately reliable in a closed-chain position using technique-based instruction. Although acceptable reliability was demonstrated, wide limits of agreement suggest high variability between sessions.  相似文献   

6.
We re-examined the relationship between rate of torque development (RTD) and maximal voluntary contractions (MVC) torque, and investigated some possible neuromuscular determinants of early (≤100 ms) and late (≥200 ms) RTD. Seventeen healthy men performed maximal explosive isometric knee extensions at five joint angles, from which MVC torque, RTD at different time intervals (50–250 ms), and early quadriceps EMG activity (EMG50) were evaluated. Quadriceps muscle thickness (MT) was quantified by longitudinal ultrasonography. The relationship between MVC torque, EMG50 and MT against RTD was assessed with Pearson’s and repeated measures correlation coefficients. Moderate-to-strong correlation coefficients were observed between MVC torque and RTD (r = 0.50–0.88, p < 0.001), with stronger relationships for late RTD than for early RTD. Weak-to-strong correlation coefficients were observed amongst RTD and EMG50 (r = 0.37–0.83, p < 0.001), with stronger relationships for early RTD than for late RTD. Only late RTD was significantly correlated with MT, though only moderately (r = 0.50–0.52, p < 0.05). These findings suggest that early and late knee extension RTD are potentially governed by different neuromuscular factors. Neuromuscular activation seems to have a greater influence on early RTD than on late RTD, and vice versa for muscle mass.  相似文献   

7.
Quadriceps muscle weakness and the underlying neuromuscular deficits have been increasingly studied over the last few years in patients with knee osteoarthritis, but the applied methodologies have never been validated for this specific population. The aim of this study was to investigate test–retest reliability of several quadriceps muscle function outcomes in patients with knee osteoarthritis both before and after knee arthroplasty surgery. Ten preoperative and 20 postoperative patients participated in two identical testing sessions. A series of voluntary and/or electrically stimulated contractions of the involved quadriceps with concomitant torque and electromyographic recordings were used to characterize muscle strength, muscle activation and muscle contraction properties. Vastus lateralis morphology (thickness and fascicle pennation angle) was also assessed using ultrasonography. Overall, good reliability scores were observed for the majority of the 13 assessed variables (nine variables with intraclass correlation coefficients >0.75, 12 variables with coefficients of variation <15%). The most reliable testing protocol for patients with knee osteoarthritis would entail the assessment of (1) isometric maximal voluntary torque for evaluating muscle strength, with (2) simultaneous vastus lateralis electromyographic activity for evaluating muscle activation, (3) potentiated (resting) doublet peak torque for evaluating muscle contractility, and (4) vastus lateralis thickness for evaluating muscle size.  相似文献   

8.
This study aimed to evaluate the validity and test–retest reliability of trunk muscle strength testing performed with a latest-generation isokinetic dynamometer. Eccentric, isometric, and concentric peak torque of the trunk flexor and extensor muscles was measured in 15 healthy subjects. Muscle cross sectional area (CSA) and surface electromyographic (EMG) activity were respectively correlated to peak torque and submaximal isometric torque for erector spinae and rectus abdominis muscles. Reliability of peak torque measurements was determined during test and retest sessions. Significant correlations were consistently observed between muscle CSA and peak torque for all contraction types (r = 0.74−0.85; P < 0.001) and between EMG activity and submaximal isometric torque (r  0.99; P < 0.05), for both extensor and flexor muscles. Intraclass correlation coefficients were comprised between 0.87 and 0.95, and standard errors of measurement were lower than 9% for all contraction modes. The mean difference in peak torque between test and retest ranged from −3.7% to 3.7% with no significant mean directional bias. Overall, our findings establish the validity of torque measurements using the tested trunk module. Also considering the excellent test–retest reliability of peak torque measurements, we conclude that this latest-generation isokinetic dynamometer could be used with confidence to evaluate trunk muscle function for clinical or athletic purposes.  相似文献   

9.
In occupational and sports physiology, reduction of neuromuscular efficiency (NME) and elevation of amplitude characteristics, such as root mean square (RMS) or integral of surface electromyographic (EMG) signals detected during fatiguing submaximal contraction are often related to changes in neural drive. However, there is data showing changes in the EMG integral (IEMG) and RMS due to peripheral factors. Causes for these changes are not fully understood. On the basis of computer simulation, we demonstrate that lengthening of intracellular action potential (IAP) profile typical for fatiguing contraction could affect EMG amplitude characteristics stronger than alteration in neural drive (central factors) defined by number of active motor units (MUs) and their firing rates. Thus, relation of these EMG amplitude characteristics only to central mechanisms can be misleading. It was also found that to discriminate between changes in RMS or IEMG due to alterations in neural drive from changes due to alterations in peripheral factors it is better to normalize RMS of EMG signals to the RMS of M-wave. In massive muscles, such normalization is more appropriate than normalization to either peak-to-peak amplitude or area of M-wave proposed in literature.  相似文献   

10.
The aim of this work was to investigate the effects of age-related sarcopenia on the time and frequency domain properties of lower extremity muscles’ electromyographic and mechanomyographic activities. Healthy elderly (n=10, 64.5±4.5 yr) and young (n=10, 22.6±2.8 yr) were recruited as participants. Participants’ lean thigh volumes (LTV) and 1 RM (one repetition maximum) leg strength of quadriceps and maximum speed knee extension with different load levels (45%, 60% and 75% 1 RM) were recorded. The root mean square (RMS) and the mean frequency (MF) of the surface electromyography (EMGRMS, EMGMF) and mechanomyography (MMGRMS, MMGMF) signals were collected at vastus lateralis during concentric contraction with different intensity levels. Compared to the young, the elderly had significantly less LTV, absolute and relative maximal force, as well as absolute and relative maximal power (p<.05). EMGMF of the elderly and the young increased monotonically from 45% to 75% 1 RM testing conditions. While the MMGRMS of the young increased with testing intensities, the MMGRMS of the elderly increased only from 45% to 60% but leveled off from 60% to 75% 1 RM testing conditions. The results indicate the declines of muscle mass, force and power production capacity with aging. The observations could be explained by neuromuscular performance and change of MU activation patterns may result from age-related sarcopenia. Aging affected muscle power more than muscle strength, which could be due to fast fiber reduction. This is supported by our observations that the MMGRMS differences between the young and the elderly across all three intensity level where EMGRMS was only different at the greatest intensity. We suggest that MMG could be used as an important measurement in studying muscle contraction in age-related sarcopenia.  相似文献   

11.
The aims of this study were to investigate if low-frequency fatigue (LFF) dependent on the duration of repeated muscle contractions and to compare LFF in voluntary and electrically induced exercise. Male subjects performed three 9-min periods of repeated isometric knee extensions at 40% maximal voluntary contraction with contraction plus relaxation periods of 30 plus 60 s, 15 plus 30 s and 5 plus 10 s in protocols 1, 2 and 3, respectively. The same exercise protocols were repeated using feedback-controlled electrical stimulation at 40% maximal tetanic torque. Before and 15 min after each exercise period, knee extension torque at 1, 7, 10, 15, 20, 50 and 100 Hz was assessed. During voluntary exercise, electromyogram root mean square (EMGrms) of the vastus lateralis muscle was evaluated. The 20-Hz torque:100-Hz torque (20:100 Hz torque) ratio was reduced more after electrically induced than after voluntary exercise (P < 0.05). During electrically induced exercise, the decrease in 20:100 Hz torque ratio was gradually (P < 0.05) reduced as the individual contractions shortened. During voluntary exercise, the decrease in 20:100 Hz torque ratio and the increase in EMGrms were greater in protocol 1 (P < 0.01) than in protocols 2 and 3, which did not differ from each other. In conclusion, our results showed that LFF is dependent on the duration of individual muscle contractions during repetitive isometric exercise and that the electrically induced exercise produced a more pronounced LFF compared to voluntary exercise of submaximal intensity. It is suggested that compensatory recruitment of faster-contracting motor units is an additional factor affecting the severity of LFF during voluntary exercise. Accepted: 5 November 1997  相似文献   

12.
Elements of the human central nervous system (CNS) constantly oscillate. In addition, there are also methodological factors and changes in muscle mechanics during dynamic muscle contractions that threaten the stability and consistency of transcranial magnetic stimulation (TMS) and perpherial nerve stimulation (PNS) measures.

Purpose

To determine the repeatability of TMS and PNS measures during lengthening and shortening muscle actions in the intact human tibialis anterior.

Methods

On three consecutive days, 20 males performed lengthening and shortening muscle actions at 15, 25, 50 and 80% of maximal voluntary contraction (MVC). The amplitude of the Motor Evoked Potentials (MEPs) produced by TMS was measured at rest and during muscle contraction at 90° of ankle joint position. MEPs were normalised to Mmax determined with PNS. The corticospinal silent period was recorded at 80% MVC. Hoffman reflex (H-reflex) at 10% isometric and 25% shortening and lengthening MVCs, and V-waves during MVCs were also evoked on each of the three days.

Results

With the exception of MEPs evoked at 80% shortening MVC, all TMS-derived measures showed good reliability (ICC = 0.81–0.94) from days 2 to 3. Confidence intervals (CI, 95%) were lower between days 2 and 3 when compared to days 1 and 2. MEPs significantly increased at rest from days 1 to 2 (P = 0.016) and days 1 to 3 (P = 0.046). The H-reflex during dynamic muscle contraction was reliable across the three days (ICC = 0.76–0.84). V-waves (shortening, ICC = 0.77, lengthening ICC = 0.54) and the H-reflex at 10% isometric MVC (ICC = 0.66) was generally less reliable over the three days.

Conclusion

Although it is well known that measures of the intact human CNS exhibit moment-to-moment fluctuations, careful experimental arrangements make it possible to obtain consistent and repeatable measurements of corticospinal and spinal excitability in the actively lengthening and shortening human TA muscle.  相似文献   

13.
Recent findings suggest that not only the lack of physical activity, but also prolonged times of sedentary behaviour where major locomotor muscles are inactive, significantly increase the risk of chronic diseases. The purpose of this study was to provide details of quadriceps and hamstring muscle inactivity and activity during normal daily life of ordinary people. Eighty-four volunteers (44 females, 40 males, 44.1±17.3 years, 172.3±6.1 cm, 70.1±10.2 kg) were measured during normal daily life using shorts measuring muscle electromyographic (EMG) activity (recording time 11.3±2.0 hours). EMG was normalized to isometric MVC (EMGMVC) during knee flexion and extension, and inactivity threshold of each muscle group was defined as 90% of EMG activity during standing (2.5±1.7% of EMGMVC). During normal daily life the average EMG amplitude was 4.0±2.6% and average activity burst amplitude was 5.8±3.4% of EMGMVC (mean duration of 1.4±1.4 s) which is below the EMG level required for walking (5 km/h corresponding to EMG level of about 10% of EMGMVC). Using the proposed individual inactivity threshold, thigh muscles were inactive 67.5±11.9% of the total recording time and the longest inactivity periods lasted for 13.9±7.3 min (2.5–38.3 min). Women had more activity bursts and spent more time at intensities above 40% EMGMVC than men (p<0.05). In conclusion, during normal daily life the locomotor muscles are inactive about 7.5 hours, and only a small fraction of muscle''s maximal voluntary activation capacity is used averaging only 4% of the maximal recruitment of the thigh muscles. Some daily non-exercise activities such as stair climbing produce much higher muscle activity levels than brisk walking, and replacing sitting by standing can considerably increase cumulative daily muscle activity.  相似文献   

14.
Substantial evidence exists for the age-related decline in maximal strength and strength development. Despite the importance of knee extensor strength for physical function and mobility in the elderly, studies focusing on the underlying neuromuscular mechanisms of the quadriceps muscle weakness are limited.The aim of this study was to investigate the contributions of age-related neural and muscular changes in the quadriceps muscle to decreases in isometric maximal voluntary torque (iMVT) and explosive voluntary strength. The interpolated twitch technique and normalized surface electromyography (EMG) signal during iMVT were analyzed to assess changes in neural drive to the muscles of 15 young and 15 elderly volunteers. The maximal rate of torque development as well as rate of torque development, impulse and neuromuscular activation in the early phase of contraction were determined. Spinal excitability was estimated using the H reflex technique. Changes at the muscle level were evaluated by analyzing the contractile properties and lean mass.The age-related decrease in iMVT was accompanied by a decline in voluntary activation and normalized surface EMG amplitude. Mechanical parameters of explosive voluntary strength were reduced while the corresponding muscle activation remained primarily unchanged. The spinal excitability of the vastus medialis was not different while M wave latency was longer. Contractile properties and lean mass were reduced.In conclusion, the age-related decline in iMVT of the quadriceps muscle might be due to a reduced neural drive and changes in skeletal muscle properties. The decrease in explosive voluntary strength seemed to be more affected by muscular than by neural changes.  相似文献   

15.
The purpose of this study was to determine test-retest reliability for median frequency (MDF) and amplitude of surface EMG during sustained fatiguing contractions of the quadriceps. Twenty-two healthy subjects (11 males and 11 females) were tested on two days held one week apart. Surface EMG was recorded from rectus femoris (RF), vastus lateralis (VL) and vastus medialis (VM) during sustained isometric contractions at 80% and 20% of maximal voluntary contraction (MVC) held to exhaustion. Quadriceps fatigue was described using four measures for both MDF and amplitude of EMG: initial, final, normalized final and slope. For both MDF and amplitude, the initial, final and normalized EMG showed moderate to high reliability for all three muscle groups at both contraction levels (ICC=0.59-0.88 for MDF; ICC=0.58-0.99 for amplitude). Slope of MDF and amplitude was associated with a large degree of variability and low ICCs for the 80% but not the 20% MVC. MDF and amplitude of EMG during sustained contractions of the quadriceps are reproducible; normalized final values of MDF and amplitude show better reliability than slope.  相似文献   

16.
The antigravity soleus muscle (Sol) is crucial for compensation of stance perturbation. A corticospinal contribution to the compensatory response of the Sol is under debate. The present study assessed spinal, corticospinal, and cortical excitability at the peaks of short- (SLR), medium- (MLR), and long-latency responses (LLR) after posterior translation of the feet. Transcranial magnetic stimulation (TMS) and peripheral nerve stimulation were individually adjusted so that the peaks of either motor evoked potential (MEP) or H reflex coincided with peaks of SLR, MLR, and LLR, respectively. The influence of specific, presumably direct, corticospinal pathways was investigated by H-reflex conditioning. When TMS was triggered so that the MEP arrived in the Sol at the same time as the peaks of SLR and MLR, EMG remained unaffected. Enhanced EMG was observed when the MEP coincided with the LLR peak (P < 0.001). Similarly, conditioning of the H reflex by subthreshold TMS facilitated H reflexes only at LLR (P < 0.001). The earliest facilitation after perturbation occurred after 86 ms. The TMS-induced H-reflex facilitation at LLR suggests that increased cortical excitability contributes to the augmentation of the LLR peaks. This provides evidence that the LLR in the Sol muscle is at least partly transcortical, involving direct corticospinal pathways. Additionally, these results demonstrate that approximately 86 ms after perturbation, postural compensatory responses are cortically mediated.  相似文献   

17.
The influence of contraction type on the human ability to use the torque capacity of skeletal muscle during explosive efforts has not been documented. Fourteen male participants completed explosive voluntary contractions of the knee extensors in four separate conditions: concentric (CON) and eccentric (ECC); and isometric at two knee angles (101°, ISO101 and 155°, ISO155). In each condition, torque was measured at 25 ms intervals up to 150 ms from torque onset, and then normalized to the maximum voluntary torque (MVT) specific to that joint angle and angular velocity. Explosive voluntary torque after 50 ms in each condition was also expressed as a percentage of torque generated after 50 ms during a supramaximal 300 Hz electrically evoked octet in the same condition. Explosive voluntary torque normalized to MVT was more than 60 per cent larger in CON than any other condition after the initial 25 ms. The percentage of evoked torque expressed after 50 ms of the explosive voluntary contractions was also greatest in CON (ANOVA; p < 0.001), suggesting higher concentric volitional activation. This was confirmed by greater agonist electromyography normalized to M(max) (recorded during the explosive voluntary contractions) in CON. These results provide novel evidence that the ability to use the muscle's torque capacity explosively is influenced by contraction type, with concentric contractions being more conducive to explosive performance due to a more effective neural strategy.  相似文献   

18.
The aim of this study was to examine superficial quadriceps femoris (QF) EMG and torque at perceived voluntary contraction efforts. Thirty subjects (15 males, 15 females) performed 9, 5 s, sub-maximal contractions at prescribed levels of perceived voluntary effort at points 1-9 on an 11-point scale (0-10), in a random order. Surface electromyograms (EMG) of the vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscles, as well as QF peak torque (PT), average torque (AT), and torque coefficient of variation (C.V.), were sampled. The raw EMG signals were full-wave rectified and integrated over the middle three s of each contraction. The sampled EMG signals, and PT and AT at each perceived exertion level were normalized to the average of three maximal voluntary contractions. The normalized EMG and torque values at each perceived exertion level were then compared to equivalent percent values (i.e., 10% at a perceived level of 1). The results demonstrated that at all perceived exertion levels, with the exception of the RF at a level of 2 which was equivalent to 20%, and the VL and RF muscles at a level 1 in which activation was greater than 10%, activation was significantly less than the equivalent percent value at each point on the scale. VM EMG was found to be less than the VL and RF from contraction levels 3-9. PT was shown to be less than the equivalent percent values at contraction levels 6-9. The AT was found to be lower than the expected percent value at perceived effort levels 2-9. Torque C.V. was not found to be different across the range of perceived effort. The major findings of this study suggested that humans over-estimate voluntary QF muscle torque when guided by perceptual sensations. It is also suggested that the produced EMG signals revealed a reliance on the VL muscle for knee extensor torque generation at sub-maximal levels.  相似文献   

19.

Purpose

To examine quadriceps muscle fatigue and central motor output during fatiguing single joint exercise at 40% and 80% maximal torque output in resistance trained men.

Method

Ten resistance trained men performed fatiguing isometric knee extensor exercise at 40% and 80% of maximal torque output. Maximal torque, rate of torque development, and measures of central motor output and peripheral muscle fatigue were recorded at two matched volumes of exercise, and after a final contraction performed to exhaustion. Central motor output was quantified from changes in voluntary activation, normalized surface electromyograms (EMG), and V-waves. Quadriceps muscle fatigue was assessed from changes in the size and shape of the resting potentiated twitch (Q.pot.tw). Central motor output during the exercise protocols was estimated from EMG and interpolated twitches applied during the task (VAsub).

Results

Greater reductions in maximal torque and rate of torque development were observed during the 40% protocol (p<0.05). Maximal central motor output did not change for either protocol. For the 40% protocol reductions from pre-exercise in rate and amplitude variables calculated from the Q.pot.tw between 66.2 to 70.8% (p<0.001) exceeded those observed during the 80% protocol (p<0.01). V-waves only declined during the 80% protocol between 56.8 ± 35.8% to 53.6 ± 37.4% (p<0.05). At the end of the final 80% contraction VAsub had increased from 91.2 ± 6.2% to 94.9 ± 4.7% (p = 0.005), but a greater increase was observed during the 40% contraction where VAsub had increased from 67.1 ± 6.1% to 88.9 ± 9.6% (p<0.001).

Conclusion

Maximal central motor output in resistance trained men is well preserved despite varying levels of peripheral muscle fatigue. Upregulated central motor output during the 40% contraction protocol appeared to elicit greater peripheral fatigue. V-waves declines during the 80% protocol suggest intensity dependent modulation of the Ia afferent pathway.  相似文献   

20.
Antagonistic muscle pairs cannot be fully activated simultaneously, even with maximal effort, under conditions of voluntary co-contraction, and their muscular activity levels are always below those during agonist contraction with maximal voluntary effort (MVE). Whether the muscular activity level during the task has trainability remains unclear. The present study examined this issue by comparing the muscular activity level during maximal voluntary co-contraction for highly experienced bodybuilders, who frequently perform voluntary co-contraction in their training programs, with that for untrained individuals (nonathletes). The electromyograms (EMGs) of biceps brachii and triceps brachii muscles during maximal voluntary co-contraction of elbow flexors and extensors were recorded in 11 male bodybuilders and 10 nonathletes, and normalized to the values obtained during the MVE of agonist contraction for each of the corresponding muscles (% EMGMVE). The involuntary coactivation level in antagonist muscle during the MVE of agonist contraction was also calculated. In both muscles, % EMGMVE values during the co-contraction task for bodybuilders were significantly higher (P<0.01) than those for nonathletes (biceps brachii: 66±14% in bodybuilders vs. 46±13% in nonathletes, triceps brachii: 74±16% vs. 57±9%). There was a significant positive correlation between a length of bodybuilding experience and muscular activity level during the co-contraction task (r = 0.653, P = 0.03). Involuntary antagonist coactivation level during MVE of agonist contraction was not different between the two groups. The current result indicates that long-term participation in voluntary co-contraction training progressively enhances muscular activity during maximal voluntary co-contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号