首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
t-PA producing CHO cells have been shown to undergo a metabolic shift when the culture medium is supplemented with a mixture of glucose and galactose. This metabolic change is characterized by the reincorporation of lactate and its use as an additional carbon source. The aim of this work is to understand lactate metabolism. To do so, Chinese hamster ovary cells were grown in batch cultures in four different conditions consisting in different combinations of glucose and galactose. In experiments supplemented with glucose, only lactate production was observed. Cultures with glucose and galactose consumed glucose first and produced lactate at the same time, after glucose depletion galactose consumption began and lactate uptake was observed. Comparison of the metabolic state of cells with and without the shift by metabolic flux analysis show that the metabolic fluxes distribution changes mostly in the reactions involving pyruvate metabolism. When not enough pyruvate is being produced for cells to support their energy requirements, lactate dehydrogenase complex changes the direction of the reaction yielding pyruvate to feed the TCA cycle. The slow change from high fluxes during glucose consumption to low fluxes in galactose consumption generates intracellular conditions that allow the influx of lactate. Lactate consumption is possible in cell cultures supplemented with glucose and galactose due to the low rates at which galactose is consumed. Evidence suggests that an excessive production and accumulation of pyruvate during glucose consumption leads to lactate production and accumulation inside the cell. Other internal conditions such as a decrease in internal pH, forces the flow of lactate outside the cell. After metabolic shift the intracellular pool of pyruvate, lactate and H+ drops permitting the reversal of the monocarboxylate transporter direction, therefore leading to lactate uptake. Metabolic analysis comparing glucose and galactose consumption indicates that after metabolic shift not enough pyruvate is produced to supply energy metabolism and lactate is used for pyruvate synthesis. In addition, MFA indicates that most carbon consumed during low carbon flux is directed towards maintaining energy metabolism.  相似文献   

2.
Increased energy metabolism in the circulating blood platelet plays an essential role in platelet plug formation and clot retraction. This increased energy consumption is mainly due to enhanced anaerobic consumption of glucose via the glycolytic pathway. The aim of the present study was to determine the role of glucose transport as a potential rate-limiting step for human platelet glucose metabolism. We measured in isolated platelet preparations the effect of thrombin and ADP activation, on glucose transport (2-deoxyglucose uptake), and the cellular distribution of the platelet glucose transporter (GLUT), GLUT-3. Thrombin (0.5 U/ml) caused a pronounced shape change and secretion of most α-granules within 10 min. During that time glucose transport increased approximately threefold, concomitant with a similar increase in expression of GLUT-3 on the plasma membrane as observed by immunocytochemistry. A major shift in GLUT-3 labeling was observed from the α-granule membranes in resting platelets to the plasma membrane after thrombin treatment. ADP induced shape change but no significant α-granule secretion. Accordingly, ADP-treated platelets showed no increased glucose transport and no increased GLUT-3 labeling on the plasma membrane. These studies suggest that, in human blood platelets, increased energy metabolism may be precisely coupled to the platelet activation response by means of the translocation of GLUT-3 by regulated secretion of α-granules. Observations in megakaryocytes and platelets freshly fixed from blood confirmed the predominant GLUT-3 localization in α-granules in the isolated cells, except that even less GLUT-3 is present at the plasma membrane in the circulating cells (~15%), indicating that glucose uptake may be upregulated five to six times during in vivo activation of platelets.  相似文献   

3.
The central metabolic fluxes of Shewanella oneidensis MR-1 were examined under carbon-limited (aerobic) and oxygen-limited (microaerobic) chemostat conditions, using 13C-labeled lactate as the sole carbon source. The carbon labeling patterns of key amino acids in biomass were probed using both gas chromatography-mass spectrometry (GC-MS) and 13C nuclear magnetic resonance (NMR). Based on the genome annotation, a metabolic pathway model was constructed to quantify the central metabolic flux distributions. The model showed that the tricarboxylic acid (TCA) cycle is the major carbon metabolism route under both conditions. The Entner-Doudoroff and pentose phosphate pathways were utilized primarily for biomass synthesis (with a flux below 5% of the lactate uptake rate). The anaplerotic reactions (pyruvate to malate and oxaloacetate to phosphoenolpyruvate) and the glyoxylate shunt were active. Under carbon-limited conditions, a substantial amount (9% of the lactate uptake rate) of carbon entered the highly reversible serine metabolic pathway. Under microaerobic conditions, fluxes through the TCA cycle decreased and acetate production increased compared to what was found for carbon-limited conditions, and the flux from glyoxylate to glycine (serine-glyoxylate aminotransferase) became measurable. Although the flux distributions under aerobic, microaerobic, and shake flask culture conditions were different, the relative flux ratios for some central metabolic reactions did not differ significantly (in particular, between the shake flask and aerobic-chemostat groups). Hence, the central metabolism of S. oneidensis appears to be robust to environmental changes. Our study also demonstrates the merit of coupling GC-MS with 13C NMR for metabolic flux analysis to reduce the use of 13C-labeled substrates and to obtain more-accurate flux values.  相似文献   

4.
13C‐metabolic flux analysis was used to understand copper deficiency‐related restructuring of energy metabolism, which leads to excessive lactate production in recombinant protein‐producing CHO cells. Stationary‐phase labeling experiments with U‐13C glucose were conducted on CHO cells grown under high and limiting copper in 3 L fed‐batch bioreactors. The resultant labeling patterns of soluble metabolites were measured by GC‐MS and used to estimate metabolic fluxes in the central carbon metabolism pathways using OpenFlux. Fluxes were evaluated 300 times from stoichiometrically feasible random guess values and their confidence intervals calculated by Monte Carlo simulations. Results from metabolic flux analysis exhibited significant carbon redistribution throughout the metabolic network in cells under Cu deficiency. Specifically, glycolytic fluxes increased (25%–79% relative to glucose uptake) whereas fluxes through the TCA and pentose phosphate pathway (PPP) were lower (15%–23% and 74%, respectively) compared with the Cu‐containing condition. Furthermore, under Cu deficiency, 33% of the flux entering TCA via the pyruvate node was redirected to lactate and malate production. Based on these results, we hypothesize that Cu deficiency disrupts the electron transport chain causing ATP deficiency, redox imbalance, and oxidative stress, which in turn drive copper‐deficient CHO cells to produce energy via aerobic glycolysis, which is associated with excessive lactate production, rather than the more efficient route of oxidative phosphorylation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1179–1186, 2015  相似文献   

5.
Changes in the energy metabolism of washed human platelets were compared with the kinetics of secretion induced by thrombin (5 units/ml). A 50% decrease in the level of metabolic ATP (3H-labelled), which was essentially complete in 30s, was matched in rate by adenine nucleotide secretion from storage in dense granules. Incubation of platelets with antimycin before thrombin addition increased the rate of fall in metabolic ATP, but did not affect the rate of adenine nucleotide secretion. beta-N-Acetylglucosaminidase secretion, which was slower than adenine nucleotide secretion in control platelets, was noticeably inhibited by antimycin, confirming previous reports that different regulatory mechanisms exist for dense and alpha-granule secretion. The rates of rephosphorylation of metabolic ADP to ATP via glycolysis and oxidative phosphorylation were estimated by measuring lactate production and O2 consumption in resting and thrombin-stimulated platelets and compared to the level of metabolic ATP (9-10 nmol/mg of platelet protein in the resting state). The rate of ATP production was stimulated at least two fold from 12 nmol to 24 nmol/min/mg within seconds of thrombin addition. This increased rate was maintained over the observed period of 5 min although the level of metabolic ATP had decreased to 4-5 nmol/mg within 30 s; the turnover of the remaining metabolic ATP thus increased four fold over the resting state although the actual stimulation of energy production was only two fold.  相似文献   

6.
Changes in the energy metabolism of washed human platelets were compared with the kinetics of secretion induced by thrombin (5 units/ml). A 50% decrease in the level of metabolic ATP (3H-labelled), which was essentially complete in 30 s, was matched in rate by adenine nucleotide secretion from storage in dense granules. Incubation of platelets with antimycin before thrombin addition increased the rate of fall in metabolic ATP, but did not affect the rate of adenine nucleotide secretion. β-N-Acetylglucosaminidase secretion, which was slower than adenine nucleotide secretion in control platelets, was noticeably inhibited by antimycin, confirming previous reports that different regulatory mechanisms exist for dense and α-granule secretion. The rates of rephosphorylation of metabolic ADP to ATP via glycolysis and oxidative phosphorylation were estimated by measuring lactate production and O2 consumption in resting and thrombin-stimulated platelets and compared to the level of metabolic ATP (9–10 nmol/mg of platelet protein in the resting state). The rate of ATP production was stimulated at least two fold from 12 nmol to 24 nmol/min/mg within seconds of thrombin addition. This increased rate was maintained over the observed period of 5 min although the level of metabolic ATP had decreased to 4–5 nmol/mg within 30 s; the turnover of the remaining metabolic ATP thus increased four fold over the resting state although the actual stimulation of energy production was only two fold.  相似文献   

7.
The central metabolic fluxes of Shewanella oneidensis MR-1 were examined under carbon-limited (aerobic) and oxygen-limited (microaerobic) chemostat conditions, using 13C-labeled lactate as the sole carbon source. The carbon labeling patterns of key amino acids in biomass were probed using both gas chromatography-mass spectrometry (GC-MS) and 13C nuclear magnetic resonance (NMR). Based on the genome annotation, a metabolic pathway model was constructed to quantify the central metabolic flux distributions. The model showed that the tricarboxylic acid (TCA) cycle is the major carbon metabolism route under both conditions. The Entner-Doudoroff and pentose phosphate pathways were utilized primarily for biomass synthesis (with a flux below 5% of the lactate uptake rate). The anaplerotic reactions (pyruvate to malate and oxaloacetate to phosphoenolpyruvate) and the glyoxylate shunt were active. Under carbon-limited conditions, a substantial amount (9% of the lactate uptake rate) of carbon entered the highly reversible serine metabolic pathway. Under microaerobic conditions, fluxes through the TCA cycle decreased and acetate production increased compared to what was found for carbon-limited conditions, and the flux from glyoxylate to glycine (serine-glyoxylate aminotransferase) became measurable. Although the flux distributions under aerobic, microaerobic, and shake flask culture conditions were different, the relative flux ratios for some central metabolic reactions did not differ significantly (in particular, between the shake flask and aerobic-chemostat groups). Hence, the central metabolism of S. oneidensis appears to be robust to environmental changes. Our study also demonstrates the merit of coupling GC-MS with 13C NMR for metabolic flux analysis to reduce the use of 13C-labeled substrates and to obtain more-accurate flux values.  相似文献   

8.
Chinese hamster ovary (CHO) cells are the main platform for production of biotherapeutics in the biopharmaceutical industry. However, relatively little is known about the metabolism of CHO cells in cell culture. In this work, metabolism of CHO cells was studied at the growth phase and early stationary phase using isotopic tracers and mass spectrometry. CHO cells were grown in fed-batch culture over a period of six days. On days 2 and 4, [1,2-13C] glucose was introduced and the labeling of intracellular metabolites was measured by gas chromatography-mass spectrometry (GC–MS) at 6, 12 and 24 h following the introduction of tracer. Intracellular metabolic fluxes were quantified from measured extracellular rates and 13C-labeling dynamics of intracellular metabolites using non-stationary 13C-metabolic flux analysis (13C-MFA). The flux results revealed significant rewiring of intracellular metabolic fluxes in the transition from growth to non-growth, including changes in energy metabolism, redox metabolism, oxidative pentose phosphate pathway and anaplerosis. At the exponential phase, CHO cell metabolism was characterized by a high flux of glycolysis from glucose to lactate, anaplerosis from pyruvate to oxaloacetate and from glutamate to α-ketoglutarate, and cataplerosis though malic enzyme. At the stationary phase, the flux map was characterized by a reduced flux of glycolysis, net lactate uptake, oxidative pentose phosphate pathway flux, and reduced rate of anaplerosis. The fluxes of pyruvate dehydrogenase and TCA cycle were similar at the exponential and stationary phase. The results presented here provide a solid foundation for future studies of CHO cell metabolism for applications such as cell line development and medium optimization for high-titer production of recombinant proteins.  相似文献   

9.
Tao Y  Liu D  Yan X  Zhou Z  Lee JK  Yang C 《Journal of bacteriology》2012,194(2):274-283
The nonsulfur purple bacteria that exhibit unusual metabolic versatility can produce hydrogen gas (H(2)) using the electrons derived from metabolism of organic compounds during photoheterotrophic growth. Here, based on (13)C tracer experiments, we identified the network of glucose metabolism and quantified intracellular carbon fluxes in Rhodobacter sphaeroides KD131 grown under H(2)-producing conditions. Moreover, we investigated how the intracellular fluxes in R. sphaeroides responded to knockout mutations in hydrogenase and poly-β-hydroxybutyrate synthase genes, which led to increased H(2) yield. The relative contribution of the Entner-Doudoroff pathway and Calvin-Benson-Bassham cycle to glucose metabolism differed significantly in hydrogenase-deficient mutants, and this flux change contributed to the increased formation of the redox equivalent NADH. Disruption of hydrogenase and poly-β-hydroxybutyrate synthase resulted in a significantly increased flux through the phosphoenolpyruvate carboxykinase and a reduced flux through the malic enzyme. A remarkable increase in the flux through the tricarboxylic acid cycle, a major NADH producer, was observed for the mutant strains. The in vivo regulation of the tricarboxylic acid cycle flux in photoheterotrophic R. sphaeroides was discussed based on the measurements of in vitro enzyme activities and intracellular concentrations of NADH and NAD(+). Overall, our results provide quantitative insights into how photoheterotrophic cells manipulate the metabolic network and redistribute intracellular fluxes to generate more electrons for increased H(2) production.  相似文献   

10.
Since glucose is the main cerebral substrate, we have characterized the metabolism of various 13C glucose isotopomers in rat brain slices. For this, we have used our cellular metabolomic approach that combines enzymatic and carbon 13 NMR techniques with mathematical models of metabolic pathways. We identified the fate and the pathways of the conversion of glucose carbons into various products (pyruvate, lactate, alanine, aspartate, glutamate, GABA, glutamine and CO2) and determined absolute fluxes through pathways of glucose metabolism. After 60 min of incubation, lactate and CO2 were the main end-products of the metabolism of glucose which was avidly metabolized by the slices. Lactate was also used at high rates by the slices and mainly converted into CO2. High values of flux through pyruvate carboxylase, which were similar with glucose and lactate as substrate, were observed. The addition of glutamine, but not of acetate, stimulated pyruvate carboxylation, the conversion of glutamate into succinate and fluxes through succinate dehydrogenase, malic enzyme, glutamine synthetase and aspartate aminotransferase. It is concluded that, unlike brain cells in culture, and consistent with high fluxes through PDH and enzymes of the tricarboxylic acid cycle, rat brain slices oxidized both glucose and lactate at high rates.  相似文献   

11.
Fluxes of central carbon metabolism [glycolysis, pentose phosphate pathway (PPP), tricarboxylic acid cycle (TCA cycle), biomass formation] were determined for several Bacillus megaterium strains (DSM319, WH320, WH323, MS941) in C- and N-limited chemostat cultures by 13C labelling experiments. The labelling patterns of proteinogenic amino acids were analysed by GC/MS and therefrom flux ratios at important nodes within the metabolic network could be calculated. On the basis of a stoichiometric metabolic model flux distributions were estimated for the different B. megaterium strains used at various cultivation conditions. Generally all strains exhibited similar metabolic flux distributions, however, several significant changes were found in (1) the glucose flux entering the PPP via the oxidative branch, (2) the reversibilities within the PPP, (3) the relative fluxes of pyruvate and acetyl-CoA fed to the TCA cycle, (4) the fluxes around the pyruvate node involving a futile cycle.  相似文献   

12.
The response of the central carbon metabolism of Escherichia coli to temperature-induced recombinant production of human fibroblast growth factor was studied on the level of metabolic fluxes and intracellular metabolite levels. During production, E. coli TG1:plambdaFGFB, carrying a plasmid encoded gene for the recombinant product, revealed stress related characteristics such as decreased growth rate and biomass yield and enhanced by-product excretion (acetate, pyruvate, lactate). With the onset of production, the adenylate energy charge dropped from 0.85 to 0.60, indicating the occurrence of a severe energy limitation. This triggered an increase of the glycolytic flux which, however, was not sufficient to compensate for the increased ATP demand. The activation of the glycolytic flux was also indicated by the readjustment of glycolytic pool sizes leading to an increased driving force for the reaction catalyzed by phosphofructokinase. Moreover, fluxes through the TCA cycle, into the pentose phosphate pathway and into anabolic pathways decreased significantly. The strong increase of flux into overflow pathways, especially towards acetate was most likely caused by a flux redirection from pyruvate dehydrogenase to pyruvate oxidase. The glyoxylate shunt, not active during growth, was the dominating anaplerotic pathway during production. Together with pyruvate oxidase and acetyl CoA synthase this pathway could function as a metabolic by-pass to overcome the limitation in the junction between glycolysis and TCA cycle and partly recycle the acetate formed back into the metabolism.  相似文献   

13.
Platelet thrombus formation includes several integrated processes involving aggregation, secretion of granules, release of arachidonic acid and clot retraction, but it is not clear which metabolic fuels are required to support these events. We hypothesized that there is flexibility in the fuels that can be utilized to serve the energetic and metabolic needs for resting and thrombin-dependent platelet aggregation. Using platelets from healthy human donors, we found that there was a rapid thrombin-dependent increase in oxidative phosphorylation which required both glutamine and fatty acids but not glucose. Inhibition of fatty acid oxidation or glutamine utilization could be compensated for by increased glycolytic flux. No evidence for significant mitochondrial dysfunction was found, and ATP/ADP ratios were maintained following the addition of thrombin, indicating the presence of functional and active mitochondrial oxidative phosphorylation during the early stages of aggregation. Interestingly, inhibition of fatty acid oxidation and glutaminolysis alone or in combination is not sufficient to prevent platelet aggregation, due to compensation from glycolysis, whereas inhibitors of glycolysis inhibited aggregation approximately 50%. The combined effects of inhibitors of glycolysis and oxidative phosphorylation were synergistic in the inhibition of platelet aggregation. In summary, both glycolysis and oxidative phosphorylation contribute to platelet metabolism in the resting and activated state, with fatty acid oxidation and to a smaller extent glutaminolysis contributing to the increased energy demand.  相似文献   

14.
The changes in the intermediary metabolism of plant cells were quantified according to growth conditions at three different stages of the growth cycle of tomato cell suspension. Eighteen fluxes of central metabolism were calculated from (13)C enrichments after near steady-state labeling by a metabolic model similar to that described in Dieuaide-Noubhani et al. (Dieuaide-Noubhani, M., Raffard, G., Canioni, P., Pradet, A., and Raymond, P. (1995) J. Biol. Chem. 270, 13147-13159), and 10 net fluxes were obtained directly from end-product accumulation rates. The absolute flux values of central metabolic pathways gradually slowed down with the decrease of glucose influx into the cells. However, the relative fluxes of glycolysis, the pentose-P pathway, and the tricarboxylic acid cycle remained unchanged during the culture cycle at 70, 28, and 40% of glucose influx, respectively, and the futile cycle of sucrose remained high at about 6-fold the glucose influx, independently from carbon nutritional conditions. This natural resistance to flux alterations is referred to as metabolic stability. The numerous anabolic pathways, including starch synthesis, hexose accumulation, biosynthesis of wall polysaccharides, and amino and organic acid biosynthesis were comparatively low and variable. The phosphoenolpyruvate carboxylase flux decreased 5-fold in absolute terms and 2-fold in relation to the glucose influx rate during the culture cycle. We conclude that anabolic fluxes constitute the flexible part of plant cell metabolism that can fluctuate in relation to cell demands for growth.  相似文献   

15.
The network structure and the metabolic fluxes in central carbon metabolism were characterized in aerobically grown cells of Saccharomyces cerevisiae. The cells were grown under both high and low glucose concentrations, i.e., either in a chemostat at steady state with a specific growth rate of 0.1 h(-1) or in a batch culture with a specific growth rate of 0.37 h(-1). Experiments were carried out using [1-(13)C]glucose as the limiting substrate, and the resulting summed fractional labelings of intracellular metabolites were measured by gas chromatography coupled to mass spectrometry. The data were used as inputs to a flux estimation routine that involved appropriate mathematical modelling of the central carbon metabolism of S. cerevisiae. The results showed that the analysis is very robust, and it was possible to quantify the fluxes in the central carbon metabolism under both growth conditions. In the batch culture, 16.2 of every 100 molecules of glucose consumed by the cells entered the pentose-phosphate pathway, whereas the same relative flux was 44.2 per 100 molecules in the chemostat. The tricarboxylic acid cycle does not operate as a cycle in batch-growing cells, in contrast to the chemostat condition. Quantitative evidence was also found for threonine aldolase and malic enzyme activities, in accordance with published data. Disruption of the MIG1 gene did not cause changes in the metabolic network structure or in the flux pattern.  相似文献   

16.
Adipose tissue plays a major role in regulating lipid and energy homeostasis by storing excess nutrients, releasing energetic substrates through lipolysis, and regulating metabolism of other tissues and organs through endocrine and paracrine signaling. Adipocytes within fat tissues store excess nutrients through increased cell number (hyperplasia), increased cell size (hypertrophy), or both. The differentiation of pre-adipocytes into mature lipid-accumulating adipocytes requires a complex interaction of metabolic pathways that is still incompletely understood. Here, we applied parallel labeling experiments and 13C-metabolic flux analysis to quantify precise metabolic fluxes in proliferating and differentiated 3T3-L1 cells, a widely used model to study adipogenesis. We found that morphological and biomass composition changes in adipocytes were accompanied by significant shifts in metabolic fluxes, encompassing all major metabolic pathways. In contrast to proliferating cells, differentiated adipocytes 1) increased glucose uptake and redirected glucose utilization from lactate production to lipogenesis and energy generation; 2) increased pathway fluxes through glycolysis, oxidative pentose phosphate pathway and citric acid cycle; 3) reduced lactate secretion, resulting in increased ATP generation via oxidative phosphorylation; 4) rewired glutamine metabolism, from glutaminolysis to de novo glutamine synthesis; 5) increased cytosolic NADPH production, driven mostly by increased cytosolic malic enzyme flux; 6) increased production of monounsaturated C16:1; and 7) activated a mitochondrial pyruvate cycle through simultaneous activity of pyruvate carboxylase, malate dehydrogenase and malic enzyme. Taken together, these results quantitatively highlight the complex interplay between pathway fluxes and cell function in adipocytes, and suggest a functional role for metabolic reprogramming in adipose differentiation and lipogenesis.  相似文献   

17.
18.
19.
The activation of immune cells in response to a pathogen involves a succession of signaling events leading to gene and protein expression, which requires metabolic changes to match the energy demands. The metabolic profile associated with the MAPK cascade (ERK1/2, p38, and JNK) in macrophages was studied, and the effect of its inhibition on the specific metabolic pattern of LPS stimulation was characterized. A [1,2-[(13)C](2)]glucose tracer-based metabolomic approach was used to examine the metabolic flux distribution in these cells after MEK/ERK inhibition. Bioinformatic tools were used to analyze changes in mass isotopomer distribution and changes in glucose and glutamine consumption and lactate production in basal and LPS-stimulated conditions in the presence and absence of the selective inhibitor of the MEK/ERK cascade, PD325901. Results showed that PD325901-mediated ERK1/2 inhibition significantly decreased glucose consumption and lactate production but did not affect glutamine consumption. These changes were accompanied by a decrease in the glycolytic flux, consistent with the observed decrease in fructose-2,6-bisphosphate concentration. The oxidative and nonoxidative pentose phosphate pathways and the ratio between them also decreased. However, tricarboxylic acid cycle flux did not change significantly. LPS activation led to the opposite responses, although all of these were suppressed by PD325901. However, LPS also induced a small decrease in pentose phosphate pathway fluxes and an increase in glutamine consumption that were not affected by PD325901. We concluded that inhibition of the MEK/ERK cascade interferes with central metabolism, and this cross-talk between signal transduction and metabolism also occurs in the presence of LPS.  相似文献   

20.
Signalling cascades are regulated both positively and negatively by tyrosine phosphorylation. Integrin mediated platelet adhesion triggers signal transduction cascades involving translocation of proteins and tyrosine phosphorylation events, ultimately causing large signalling complexes to be assembled. In resting platelets, a small number of phosphorylated proteins are evident with molecular mass of 50-62 kDa and 120-130 kDa. In thrombin activated human platelets, however, there is a large increase in the number of tyrosine phosphorylated signalling proteins detected. These proteins include pCas (130 kDa), FAK (125 kDa), PI(3)k (85 kDa) and src (85 kDa). However, it is unlikely that this list of proteins represents all the dynamic changes that occur after platelet activation and it is understood that more proteins remain unidentified. In this study, we propose a method for the isolation of the phosphotyrosine proteome from both resting and thrombin activated human platelets. All the dynamic phosphotyrosine events that occur in the platelet after thrombin activation were isolated by immunoprecipitation, using the monoclonal antibody 4G10, allowing us to obtain higher concentrations of relatively low abundant proteins. The resulting phosphotyrosine proteomes were separated by two-dimensional gel electrophoresis. Sixty-seven proteins were reproducibly found to be unique in the thrombin activated platelet proteome when compared to resting platelets. We have positively identified ten of these proteins by Western blotting and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry and these include FAK, Syk, ALK-4, P2X6 and MAPK kinase kinase. This proteomics approach to understanding the signalling events following platelet activation may elucidate potential drug targets for the treatment of coronary thrombosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号