首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Microbial production of 1,5-diaminopentane (DAP) from renewable feedstock is a promising and sustainable approach for the production of polyamides. In this study, we constructed a β-glucosidase (BGL)-secreting Corynebacterium glutamicum and successfully used this strain to produce DAP from cellobiose and glucose. First, C. glutamicum was metabolically engineered to produce l -lysine (a direct precursor of DAP), followed by the coexpression of l -lysine decarboxylase and BGL derived from Escherichia coli and Thermobifida fusca YX (Tfu0937), respectively. This new engineered C. glutamicum strain produced 27 g/L of DAP from cellobiose in CGXII minimal medium using fed-batch cultivation. The yield of DAP was 0.43 g/g glucose (1 g of cellobiose corresponds to 1.1 g of glucose), which is the highest yield reported to date. These results demonstrate the feasibility of DAP production from cellobiose or cellooligosaccharides using an engineered C. glutamicum strain.  相似文献   

2.
α-Ketoglutarate (aKG) represents a central intermediate of cell metabolism. It is used for medical treatments and as a chemical building block. Enzymatic cascade reactions have the potential to sustainably synthesize this natural product. Here we report a systems biocatalysis approach for an in vitro reaction set-up to produce aKG from glucuronate using the oxidative pathway of uronic acids. Because of two dehydrations, a decarboxylation, and reaction conditions favoring oxidation, the pathway is driven thermodynamically towards complete product formation. The five enzymes (including one for cofactor recycling) were first investigated individually to define optimal reaction conditions for the cascade reaction. Then, the kinetic parameters were determined under these conditions and the inhibitory effects of substrate, intermediates, and product were evaluated. As cofactor supply is critical for the cascade reaction, various set-ups were tested: increasing concentrations of the recycling enzyme, different initial NAD+ concentrations, as well as the use of a bubble reactor for faster oxygen diffusion. Finally, we were able to convert 10 g L−1 glucuronate with 92% yield of aKG within 5 h. The maximum productivity of 2.8 g L−1 h−1 is the second highest reported in the biotechnological synthesis of aKG.  相似文献   

3.
β-Alanine is mainly produced by chemical methods in current industrial processes. Here, panD from Corynebacterium glutamicum encoding l-aspartate-α-decarboxylase (ADC) was cloned and expressed in Escherichia coli BL21(DE3). ADC C.g catalyzes the α-decarboxylation of l-aspartate to β-alanine. The purified ADC C.g was optimal at 55 °C and pH 6 with excellent stability at 16–37 °C and pH 4–7. A pH–stat directed, fed-batch feeding strategy was developed for enzymatic synthesis of β-alanine to keep the pH value within 6–7.2 and thus attenuate substrate inhibition. A maximum conversion of 97.2 % was obtained with an initial 5 g l-aspartate/l and another three feedings of 0.5 % (w/v) l-aspartate at 8 h intervals. The final β-alanine concentration was 12.85 g/l after 36 h. This is the first study concerning the enzymatic production of β-alanine by using ADC.  相似文献   

4.
Synthetic biology seeks to reprogram microbial cells for efficient production of value-added compounds from low-cost renewable substrates. A great challenge of chemicals biosynthesis is the competition between cell metabolism and target product synthesis for limited cellular resource. Dynamic regulation provides an effective strategy for fine-tuning metabolic flux to maximize chemicals production. In this work, we created a tunable growth phase-dependent autonomous bifunctional genetic switch (GABS) by coupling growth phase responsive promoters and degrons to dynamically redirect the carbon flux for metabolic state switching from cell growth mode to production mode, and achieved high-level GABA production from low-value glycerol in Corynebacterium glutamicum. A ribosome binding sites (RBS)-library-based pathway optimization strategy was firstly developed to reconstruct and optimize the glycerol utilization pathway in C. glutamicum, and the resulting strain CgGly2 displayed excellent glycerol utilization ability. Then, the initial GABA-producing strain was constructed by deleting the GABA degradation pathway and introducing an exogenous GABA synthetic pathway, which led to 5.26 g/L of GABA production from glycerol. In order to resolve the conflicts of carbon flux between cell growth and GABA production, we used the GABS to reconstruct the GABA synthetic metabolic network, in which the competitive modules of GABA biosynthesis, including the tricarboxylic acid (TCA) cycle module and the arginine biosynthesis module, were dynamically down-regulated while the synthetic modules were dynamically up-regulated after sufficient biomass accumulation. Finally, the resulting strain G7-1 accumulated 45.6 g/L of GABA with a yield of 0.4 g/g glycerol, which was the highest titer of GABA ever reported from low-value glycerol. Therefore, these results provide a promising technology to dynamically balance the metabolic flux for the efficient production of other high value-added chemicals from a low-value substrate in C. glutamicum.  相似文献   

5.
The β-ketoadipate pathway, a primarily chromo-somally encoded catabolic route that plays a signifi-cant role in the degradation of aromatic compounds, is widely distributed in soil bacteria and fungi[1]. This pathway consists of two parallel branches of which the aromatic rings are cleaved by either protocatechuate 3,4-dioxygenase or catechol 1,2-dioxygenase. The two branches converge at β-ketoadipate enol-lactone in bacteria, and three additional steps complete the con-version of the latter…  相似文献   

6.
β-alanine is an important biomolecule used in nutraceuticals, pharmaceuticals, and chemical synthesis. The relatively eco-friendly bioproduction of β-alanine has recently attracted more interest than petroleum-based chemical synthesis. In this work, we developed two types of in vivo high-throughput screening platforms, wherein one was utilized to identify a novel target ribonuclease E (encoded by rne) as well as a redox-cofactor balancing module that can enhance de novo β-alanine biosynthesis from glucose, and the other was employed for screening fermentation conditions. When combining these approaches with rational upstream and downstream module engineering, an engineered E. coli producer was developed that exhibited 3.4- and 6.6-fold improvement in β-alanine yield (0.85 mol β-alanine/mole glucose) and specific β-alanine production (0.74 g/L/OD600), respectively, compared to the parental strain in a minimal medium. Across all of the strains constructed, the best yielding strain exhibited 1.08 mol β-alanine/mole glucose (equivalent to 81.2% of theoretic yield). The final engineered strain produced 6.98 g/L β-alanine in a batch-mode bioreactor and 34.8 g/L through a whole-cell catalysis. This approach demonstrates the utility of biosensor-enabled high-throughput screening for the production of β-alanine.  相似文献   

7.
Summary A process for l-leucine production was studied using Corynebacterium glutamicum for the conversion of -ketoisocaproate. When this precursor was added to the culture medium in a concentration of 20 g/l about 16 g/l l-leucine were formed after a fermentation time of 57 h and the molar yield was 91%. Using a fed-batch culture it was possible to produce 24 g/l of l-leucine from 32 g/l of -ketoisocaproate within 23 h. Enzymatic studies indicate that in this glutamate-producing bacterium -ketoisocaproate is converted into l-leucine via the transaminase B reaction and l-glutamate is regenerated by the glutamate dehydrogenase. By the addition of -ketoisocaproate to the culture medium the specific activity of transaminase B was increased threefold.  相似文献   

8.
9.
Neoagarobiose (NA2) derived from agar marine biomass is a rare reagent that acts as an anti-melanogenesis reagent and moisturizer. Here, for the economical manufacturing of NA2, we developed the co-secretory production system of endo-type β-agarases (DagA) and exo-type β-agarases (EXB3) in Corynebacterium glutamicum. For this purpose, we first developed a secretory system of DagA via Tat pathway. To improve the secretion efficiency, we coexpressed two Tat pathway components (TatA and TatC), and to improve the purity of secreted DagA in the culture supernatant, two endogenous protein genes (Cg2052 and Cg1514) were removed. Using the engineered strain (C. glutamicum SP002), we confirmed that DagA as high as 1.53 g l-1 was successfully produced in the culture media with high purity (72.7% in the supernatant protein fraction). Next, we constructed the expression system (pHCP-CgR-DagA-EXB3) for the simultaneous secretion of EXB3 via Sec-pathway together with DagA, and it was clearly confirmed that DagA and EXB3 were successfully secreted as high as 54% and 24.5%, respectively. Finally, using culture medium containing DagA and EXB3, we successfully demonstrated the conversion of high-concentration agar (40 g l-1) into NA2 via a two-stage hydrolysis process.  相似文献   

10.
The development of microbial strains for the enhanced production of α-ketoglutarate (α-KG) was investigated using a strain of Corynebacterium glutamicum that overproduces of l-glutamate, by disrupting three genes involved in the α-KG biosynthetic pathway. The pathways competing with the biosynthesis of α-KG were blocked by knocking out aceA (encoding isocitrate lyase, ICL), gdh (encoding glutamate dehydrogenase, l-gluDH), and gltB (encoding glutamate synthase or glutamate-2-oxoglutarate aminotransferase, GOGAT). The strain with aceA, gltB, and gdh disrupted showed reduced ICL activity and no GOGAT and l-gluDH activities, resulting in up to 16-fold more α-KG production than the control strain in flask culture. These results suggest that l-gluDH is the key enzyme in the conversion of α-KG to l-glutamate; therefore, prevention of this step could promote α-KG accumulation. The inactivation of ICL leads the carbon flow to α-KG by blocking the glyoxylate pathway. However, the disruption of gltB did not affect the biosynthesis of α-KG. Our results can be applied in the industrial production of α-KG by using C. glutamicum as producer.  相似文献   

11.
The fed-batch culture system was employed to enhance production of α-ketoglutarate (α-KG) by the strainsof Corynebacterium glutamicum, whose genes encoding the key enzymes responsible for the biosynthesis of L-glutamate from α-KG were deleted. In a shake flask fermentation, C. glutamicum JH110 in which the 3 genes, gdh (encoding glutamate dehydrogenase), gltB (encoding glutamate synthase), and aceA (encoding isocitrate lyase) were disrupted showed the highest production of α-KG (12.4 g/L) compared to the strains JH102 (gdh mutant), JH103 (gltB mutant), and JH107 (gdh gltB double mutant). In the fed-batch cultures using a 5 L-jar fermenter, the strain JH107 produced more α-KG (19.5 g/L), but less glutamic acid (23.3 g/L) than those produced by the parent strain HH109, as well as JH102. The production of α-KG was significantly enhanced and the accumulation of glutamicacid was minimized by the ammonium-limited fed-batch cultures employing C. glutamicum JH107. Further improvement of α-KG production by the strain JH107 was achieved through the ammonium-limited fed-batch culture with the feeding of molasses, and the levels of α-KG and glutamic acid produced were 51.1 and 0.01 g/L, respectively.  相似文献   

12.
The Corynebacterium alkanolyticum xylEFGD gene cluster comprises the xylD gene that encodes an intracellular β-xylosidase next to the xylEFG operon encoding a substrate-binding protein and two membrane permease proteins of a xyloside ABC transporter. Cloning of the cluster revealed a recombinant β-xylosidase of moderately high activity (turnover for p-nitrophenyl-β-d-xylopyranoside of 111 ± 4 s−1), weak α-l-arabinofuranosidase activity (turnover for p-nitrophenyl-α-l-arabinofuranoside of 5 ± 1 s−1), and high tolerance to product inhibition (Ki for xylose of 67.6 ± 2.6 mM). Heterologous expression of the entire cluster under the control of the strong constitutive tac promoter in the Corynebacterium glutamicum xylose-fermenting strain X1 enabled the resultant strain X1EFGD to rapidly utilize not only xylooligosaccharides but also arabino-xylooligosaccharides. The ability to utilize arabino-xylooligosaccharides depended on cgR_2369, a gene encoding a multitask ATP-binding protein. Heterologous expression of the contiguous xylD gene in strain X1 led to strain X1D with 10-fold greater β-xylosidase activity than strain X1EFGD, albeit with a total loss of arabino-xylooligosaccharide utilization ability and only half the ability to utilize xylooligosaccharides. The findings suggest some inherent ability of C. glutamicum to take up xylooligosaccharides, an ability that is enhanced by in the presence of a functional xylEFG-encoded xyloside ABC transporter. The finding that xylEFG imparts nonnative ability to take up arabino-xylooligosaccharides should be useful in constructing industrial strains with efficient fermentation of arabinoxylan, a major component of lignocellulosic biomass hydrolysates.  相似文献   

13.
Poly-γ-glutamic acid (γ-PGA) is a natural biopolymer of glutamic acid. The repeating units of γ-PGA may be derived exclusively from d-glutamic acid, or l-glutamic acid, or both. The monomer units are linked by amide bonds between the α-amino group and the γ-carboxylic acid group. γ-PGA is biodegradable, edible and water-soluble. It has numerous existing and emerging applications in processing of foods, medicines and cosmetics. This review focuses on microbial production of γ-PGA via genetically and metabolically engineered recombinant bacteria. Strategies for improving production of γ-PGA include modification of its biosynthesis pathway, enhancing the production of its precursor (glutamic acid), and preventing loss of the precursor to competing byproducts. These and other strategies are discussed. Heterologous synthesis of γ-PGA in industrial bacterial hosts that do not naturally produce γ-PGA is discussed. Emerging trends and the challenges affecting the production of γ-PGA are reviewed.  相似文献   

14.
15.
16.
Metabolic engineering of the early non-mevalonate terpenoid pathway of Escherichia coli was carried out to increase the supply of prenyl pyrophosphates as precursor for carotenoid production. Transformation with the genes dxs for over-expression of 1-deoxy-d-xylulose 5-phosphate synthase, dxr for 1-deoxy-d-xylulose 5-phosphate reductoisomerase and idi encoding an isopentenyl pyrophosphate stimulated carotenogenesis up to 3.5-fold. Co-transformation of idi with either dxs or dxr had an additive effect on ß-carotene and zeaxanthin production which reached 1.6 mg g–1 dry wt.  相似文献   

17.
Corynebacterium glutamicum ATCC13032 and Brevibacterium flavum JV16 were engineered for l-valine production by over-expressing ilvEBN r C genes at 31?°C in 72?h fermentation. Different strategies were carried out to reduce the by-products’ accumulation in l-valine fermentation and also to increase the availability of precursor for l-valine biosynthesis. The native promoter of ilvA of C. glutamicum was replaced with a weak promoter MPilvA (P-ilvAM1CG) to reduce the biosynthetic rate of l-isoleucine. Effect of different relative dissolved oxygen on l-valine production and by-products’ formation was recorded, indicating that 15?% saturation may be the most appropriate relative dissolved oxygen for l-valine fermentation with almost no l-lactic acid and l-glutamate formed. To minimize l-alanine accumulation, alaT and/or avtA was inactivated in C. glutamicum and B. flavum, respectively. Compared to high concentration of l-alanine accumulated by alaT inactivated strains harboring ilvEBN r C genes, l-alanine concentration was reduced to 0.18?g/L by C. glutamicum ATCC13032MPilvAavtA pDXW-8-ilvEBN r C, and 0.22?g/L by B. flavum JV16avtA::Cm pDXW-8-ilvEBN r C. Meanwhile, l-valine production and conversion efficiency were enhanced to 31.15?g/L and 0.173?g/g by C. glutamicum ATCC13032MPilvAavtA pDXW-8-ilvEBN r C, 38.82?g/L and 0.252?g/g by B. flavum JV16avtA::Cm pDXW-8-ilvEBN r C. This study provides combined strategies to improve l-valine yield by minimization of by-products’ production.  相似文献   

18.
ATP and NADPH are two important cofactors for production of terpenoids compounds. Here we have constructed and optimized β-carotene synthetic pathway in Escherichia coli, followed by engineering central metabolic modules to increase ATP and NADPH supplies for improving β-carotene production. The whole β-carotene synthetic pathway was divided into five modules. Engineering MEP module resulted in 3.5-fold increase of β-carotene yield, while engineering β-carotene synthesis module resulted in another 3.4-fold increase. The best β-carotene yield increased 21%, 17% and 39% after modulating single gene of ATP synthesis, pentose phosphate and TCA modules, respectively. Combined engineering of TCA and PPP modules had a synergistic effect on improving β-carotene yield, leading to 64% increase of β-carotene yield over a high producing parental strain. Fed-batch fermentation of the best strain CAR005 was performed, which produced 2.1 g/L β-carotene with a yield of 60 mg/g DCW.  相似文献   

19.
Journal of Industrial Microbiology & Biotechnology - This study details a reliable and efficient method for CRISPR–Cas9 genome engineering in the high amino acid-producing strain of...  相似文献   

20.
Taking advantage of the catalytic promiscuity of pyrimidine-catabolism enzymes (dihydropyrimidinase (E.C. 3.5.2.2), N-carbamoyl-β-alanine amidohydrolase (E.C. 3.5.1.6)), the production of different β-alanine derivatives starting from 5- and 6-monosubstituted dihydrouracils has been evaluated using a mimesis approach. In this work, the S-enantioselective character of dihydropyrimidinase from Sinorizhobium meliloti toward 6-monosubstituted dihydrouracil derivatives has been shown. An inverted R-/S-enantioselectivity of N-carbamoyl-β-alanine amidohydrolase from Agrobacterium tumefaciens toward two different N-carbamoyl-β-amino acids has been proved. Our results have shown for the first time that this mimetic tandem constitutes an interesting biotechnological tool for the preparation of different β-alanine derivatives in an environmentally friendly way, allowing the production of enantioenriched (R)-α-phenyl-β-alanine (e.e. > 95%) and (R)-α-methyl-β-alanine (e.e. > 90%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号