首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The majority of mitochondrial proteins are nuclear-encoded and need to be transported into the mitochondria, including the proteins in the outer mitochondrial membrane. For β-barrel proteins, the preproteins are initially recognized and imported by the TOM complex, then shuttled to the SAM complex via small Tim proteins. For ⍺-helical proteins, some preproteins are recognized by the TOM complex and imported into the membrane by the MIM complex. In recent years multiple structures of the TOM complex and the SAM complex have been reported, increasing our understanding of the mechanism of protein biogenesis in the outer mitochondrial membrane.  相似文献   

2.
Certain transmembrane α-helices of multi-pass membrane proteins line substrate transport paths or catalytic pockets and, therefore, are partially hydrophilic. Sec61 alone is insufficient to insert these less hydrophobic segments into the membrane and needs to work with dedicated membrane chaperones. Three such membrane chaperones have been described in the literature—the endoplasmic reticulum membrane protein complex (EMC), the TMCO1 complex, and the PAT complex. Recent structural studies on these membrane chaperones have revealed their overall architecture, multi-subunit assembly, putative substrate transmembrane helix-binding pockets, and cooperative mechanisms with the ribosome and Sec61 translocon. These structures are providing initial insights into the poorly understood processes of multi-pass membrane protein biogenesis.  相似文献   

3.
Wang F  Whynot A  Tung M  Denic V 《Molecular cell》2011,43(5):738-750
Tail-anchored (TA) proteins access the secretory pathway via posttranslational insertion of their C-terminal transmembrane domain into the endoplasmic reticulum (ER). Get3 is an ATPase that delivers TA proteins to the ER by interacting with the Get1-Get2 transmembrane complex, but how Get3's nucleotide cycle drives TA protein insertion remains unclear. Here, we establish that nucleotide binding to Get3 promotes Get3-TA protein complex formation by recruiting Get3 to a chaperone that hands over TA proteins to Get3. Biochemical reconstitution and mutagenesis reveal that the Get1-Get2 complex comprises the minimal TA protein insertion machinery with functionally critical cytosolic regions. By engineering a soluble heterodimer of Get1-Get2 cytosolic domains, we uncover the mechanism of TA protein release from Get3: Get2 tethers Get3-TA protein complexes into proximity with the ATPase-dependent, substrate-releasing activity of Get1. Lastly, we show that ATP enhances Get3 dissociation from the membrane, thus freeing Get1-Get2 for new rounds of substrate insertion.  相似文献   

4.
TA (tail-anchored) proteins utilize distinct biosynthetic pathways, including TRC40 (transmembrane domain recognition complex of 40 kDa)-mediated, chaperone-dependent and/or unassisted routes to the ER (endoplasmic reticulum) membrane. We have addressed the flexibility of cytosolic components participating in these pathways, and explored the thermodynamic constraints of their membrane insertion, by exploiting recombinant forms of Sec61β and Cytb5 (cytochrome b5) bearing covalent modifications within their TA region. In both cases, efficient membrane insertion relied on cytosolic factors capable of accommodating a surprising range of covalent modifications to the TA region. For Sec61β, we found that both SGTA (small glutamine-rich tetratricopeptide repeat-containing protein α) and TRC40 can bind this substrate with a singly PEGylated TA region. However, by introducing two PEG [poly(ethylene glycol)] moieties, TRC40 binding can be prevented, resulting in a block of subsequent membrane integration. Although TRC40 can bind Sec61β polypeptides singly PEGylated at different locations, membrane insertion is more sensitive to the precise location of PEG attachment. Modelling and experimentation indicate that this post-TRC40 effect results from an increased energetic cost of inserting different PEGylated TA regions into the lipid bilayer. We therefore propose that the membrane integration of TA proteins delivered via TRC40 is strongly dependent upon underlying thermodynamics, and speculate that their insertion is via a phospholipid-mediated process.  相似文献   

5.
Discovered two decades ago, Piwi-interacting RNAs (piRNAs) play critical roles in gene regulation, transposon element repression, and antiviral defense. Dysregulation of piRNAs has been noted in diverse human diseases including cancers. Recently, extensive studies have revealed that many more proteins are involved in piRNA biogenesis. This review will summarize the recent progress in piRNA biogenesis and functions, especially the molecular mechanisms by which piRNA biogenesis-related proteins contribute to piRNA processing.  相似文献   

6.
Iron-sulfur-protein biogenesis in eukaryotes   总被引:16,自引:0,他引:16  
Iron-sulfur (Fe-S) clusters (ISCs) are versatile, ancient co-factors of proteins that are involved in electron transport, enzyme catalysis and regulation of gene expression. The synthesis of ISCs and their insertion into apoproteins involves the function of complex cellular machineries. In eukaryotes, the mitochondrial ISC-assembly machinery is involved in the maturation of all cellular iron-sulfur proteins. A mitochondrial export machinery and a recently discovered cytosolic assembly system specifically participate in the maturation of cytosolic and nuclear iron-sulfur proteins. Of the approximately 20 assembly components, more than ten are encoded by essential genes, which indicates that the process is indispensable for life. Mutations in two of the assembly components lead to neurological diseases. The essential character of Fe-S-protein biogenesis in eukaryotes and its importance for human disease identifies this evolutionary ancient process as one of the most important biosynthetic pathways of life.  相似文献   

7.
Numerous proteins that have hydrophobic transmembrane domains (TMDs) traverse the cytosol and posttranslationally insert into cellular membranes. It is unclear how these hydrophobic membrane proteins evade recognition by the cytosolic protein quality control (PQC), which typically recognizes exposed hydrophobicity in misfolded proteins and marks them for proteasomal degradation by adding ubiquitin chains. Here, we find that tail-anchored (TA) proteins, a vital class of membrane proteins, are recognized by cytosolic PQC and are ubiquitinated as soon as they are synthesized in cells. Surprisingly, the ubiquitinated TA proteins are not routed for proteasomal degradation but instead are handed over to the targeting factor, TRC40, and delivered to the ER for insertion. The ER-associated deubiquitinases, USP20 and USP33, remove ubiquitin chains from TA proteins after their insertion into the ER. Thus, our data suggest that deubiquitinases rescue posttranslationally targeted membrane proteins that are inappropriately ubiquitinated by PQC in the cytosol.  相似文献   

8.
《Molecular cell》2021,81(16):3400-3409.e3
  1. Download : Download high-res image (196KB)
  2. Download : Download full-size image
  相似文献   

9.
The accurate duplication of cellular organelles is important to ensure propagation through successive generations. The semi-conserved replication of DNA and DNA-containing organelles has been well studied, but the mechanisms used to duplicate most other organelles remain elusive. These include the centrosomes, which act as microtubule organizing centres during interphase and orient the mitotic spindle poles during mitosis. Centrosomes can also act as basal bodies, nucleating the growth of cilia or flagella. Even less understood are the mechanisms used to duplicate membrane-bound organelles that do not contain DNA. These include organelles involved in the secretory pathway such as the endoplasmic reticulum and the Golgi apparatus. This review will summarize the current knowledge of Golgi biogenesis in simple eukaryotic organisms, in particular, two protozoan parasites, Toxoplasma gondii and Trypanosoma brucei.  相似文献   

10.
Cytosolic components and pathways have been identified that are involved in inserting tail-anchored (TA) membrane proteins into the yeast or mammalian endoplasmic reticulum (ER) membrane. Searching for regulatory mechanisms of TA protein biogenesis, we found that Ca(2+)-calmodulin (CaM) inhibits the insertion of TA proteins into mammalian ER membranes and that this inhibition is prevented by trifluoperazine, a CaM antagonist that interferes with substrate binding of Ca(2+)-CaM. The effects of Ca(2+)-CaM on cytochrome b(5) and Synaptobrevin 2 suggest a direct interaction between Ca(2+)-CaM and TA proteins. Thus, CaM appears to regulate TA insertion into the ER membrane in a Ca(2+) dependent manner.  相似文献   

11.
Bacteria produce functional amyloid fibers called curli in a controlled, noncytotoxic manner. These extracellular fimbriae enable biofilm formation and promote pathogenicity. Understanding curli biogenesis is important for appreciating microbial lifestyles and will offer clues as to how disease-associated human amyloid formation might be ameliorated. Proteins encoded by the curli specific genes (csgA-G) are required for curli production. We have determined the structure of CsgC and derived the first structural model of the outer-membrane subunit translocator CsgG. Unexpectedly, CsgC is related to the N-terminal domain of DsbD, both in structure and oxido-reductase capability. Furthermore, we show that CsgG belongs to the nascent class of helical outer-membrane macromolecular exporters. A cysteine in a CsgG transmembrane helix is a potential target of CsgC, and mutation of this residue influences curli assembly. Our study provides the first high-resolution structural insights into curli biogenesis.  相似文献   

12.
Eukaryotic tail‐anchored (TA) membrane proteins are inserted into the endoplasmic reticulum by a post‐translational TRC40 pathway, but no comparable pathway is known in other domains of life. The crystal structure of an archaebacterial TRC40 sequence homolog bound to ADP?AlF4? reveals characteristic features of eukaryotic TRC40, including a zinc‐mediated dimer and a large hydrophobic groove. Moreover, archaeal TRC40 interacts with the transmembrane domain of TA substrates and directs their membrane insertion. Thus, the TRC40 pathway is more broadly conserved than previously recognized.  相似文献   

13.
Alpha-helical transmembrane proteins in bacteria are localized within the plasma membrane. The membrane assembly of these proteins requires protein devices for insertion into the lipid bilayer. In E. coli, membrane proteins require the SRP pathway components Ffh, 4.5S RNA and FtsY for membrane targeting and the SecYEGDF translocase and, in some cases, SecA, for translocation of hydrophilic domains. In addition, YidC, a recently discovered membrane protein, mediates the membrane integration and folding of hydrophobic domains of membrane proteins. In this review, we will describe the current status of the protein targeting and membrane integration pathways.  相似文献   

14.
Gram-negative bacteria contain a double membrane which serves for both protection and for providing nutrients for viability. The outermost of these membranes is called the outer membrane (OM), and it contains a host of fully integrated membrane proteins which serve essential functions for the cell, including nutrient uptake, cell adhesion, cell signalling and waste export. For pathogenic strains, many of these outer membrane proteins (OMPs) also serve as virulence factors for nutrient scavenging and evasion of host defence mechanisms. OMPs are unique membrane proteins in that they have a β-barrel fold and can range in size from 8 to 26 strands, yet can still serve many different functions for the cell. Despite their essential roles in cell survival and virulence, the exact mechanism for the biogenesis of these OMPs into the OM has remained largely unknown. However, the past decade has witnessed significant progress towards unravelling the pathways and mechanisms necessary for moulding a nascent polypeptide into a functional OMP within the OM. Here, we will review some of these recent discoveries that have advanced our understanding of the biogenesis of OMPs in Gram-negative bacteria, starting with synthesis in the cytoplasm to folding and insertion into the OM.  相似文献   

15.
  相似文献   

16.
de Gier JW  Luirink J 《EMBO reports》2003,4(10):939-943
In the bacterium Escherichia coli, inner membrane proteins (IMPs) are generally targeted through the signal recognition particle pathway to the Sec translocon, which is capable of both linear transport into the periplasm and lateral transport into the lipid bilayer. Lateral transport seems to be assisted by the IMP YidC. In this article, we discuss recent observations that point to a key role for the ribosome in IMP targeting and to the diverse roles of YidC in IMP assembly.  相似文献   

17.
  1. Download : Download high-res image (323KB)
  2. Download : Download full-size image
  相似文献   

18.
Plant variegations are characterized by the presence of white sectors in normally green tissues and organs. Whereas the white sectors contain defective plastids that lack coloured pigments, the green sectors contain morphologically normal chloroplasts. Variegation mutants are defective in chloroplast developmental processes and arise due to mutations in nuclear or organellar genes. Despite their widespread occurrence in nature, only a few variegations have been studied at the molecular level. In this review, recent progress toward understanding two Arabidopsis variegations, immutans (im) and var2 is summarized. Both im and var2 are caused by nuclear recessive mutations and the responsible genes have been cloned and characterized. IMMUTANS functions as a chloroplast terminal oxidase that transfers electrons from the plastoquinol pool to oxygen. It appears to be a versatile electron sink, especially early in chloroplast development, when its function is crucial for carotenoid biosynthesis, and in excess light, when it serves as a 'safety valve'. IM also probably functions in chlororespiration. VAR2 encodes a chloroplast FtsH metalloprotease (termed AtFtsH2). Along with other AtFtsH proteins (AtFtsH1, 5 and 8), it forms complexes in the thylakoid membrane that are probably involved in the process of PSII repair during photoinhibition. A model has been proposed to explain the mechanism of var2 variegation, which suggests that threshold levels of FtsH complexes are required for green sector formation. It is concluded that studies on im and var2 have provided novel insights into nuclear-chloroplast interactions and, especially, into mechanisms of photoprotection.  相似文献   

19.
PURPOSE OF REVIEW: The interest for the human HDL system was recently revived by the identification of the ABCA1 as a critical component in the formation and maintenance of plasma HDL levels. The present review focuses on recent progress in our understanding of the basic mechanisms underlying HDL biogenesis pathways. RECENT FINDINGS: Several novel mechanisms governing ABCA1/apoA-I interactions have recently been identified: apolipoprotein A-I activates ABCA1 phosphorylation through the cAMP/protein kinase A-dependent pathway; the majority of ABCA1 exists as a tetramer in human living cell, supporting the concept that the homotetrameric ABCA1 complex constitutes the minimum functional unit for the formation of nascent HDL particles; apolipoprotein A-I has been shown to have a recycling retroendocytic pathway with uptake and resecretion of the lipidated nascent HDL particles by the cell, most likely through the ABCA1 transporter pathway; there is evidence that the speciation of nascent HDL into pre-beta and alpha-HDL is linked to specific cell lines, and occurs by both ABCA1-dependent and independent pathways. SUMMARY: The fundamental mechanisms underlying the biogenesis, speciation and maturation of HDL remain complex and not well understood. Understanding the mechanisms governing HDL genesis at the cellular level could provide novel insights into the human atheroprotective system in health and disease.  相似文献   

20.
Peroxisomes are single-membrane organelles essential for cell metabolism including the β-oxidation of fatty acids, synthesis of etherlipid plasmalogens, and redox homeostasis. Investigations into peroxisome biogenesis and the human peroxisome biogenesis disorders (PBDs) have identified 14 PEX genes encoding peroxins involved in peroxisome biogenesis and the mutation of PEX genes is responsible for the PBDs. Many recent findings have further advanced our understanding of the biology, physiology, and consequences of a functional deficit of peroxisomes. In this Review, we discuss cell defense mechanisms that counteract oxidative stress by 1) a proapoptotic Bcl-2 factor BAK-mediated release to the cytosol of H2O2-degrading catalase from peroxisomes and 2) peroxisomal import suppression of catalase by Ser232-phosphorylation of Pex14, a docking protein for the Pex5–PTS1 complex. With respect to peroxisome division, the important issue of how the energy-rich GTP is produced and supplied for the division process was recently addressed by the discovery of a nucleoside diphosphate kinase-like protein, termed DYNAMO1 in a lower eukaryote, which has a mammalian homologue NME3. In regard to the mechanisms underlying the pathogenesis of PBDs, a new PBD model mouse defective in Pex14 manifests a dysregulated brain-derived neurotrophic factor (BDNF)-TrkB pathway, an important signaling pathway for cerebellar morphogenesis. Communications between peroxisomes and other organelles are also addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号