首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine the effects of shoulder muscle fatigue on three dimensional scapulothoracic and glenohumeral kinematics. Twenty healthy subjects participated in this study. Three-dimensional scapulothoracic and glenohumeral kinematics were determined from electromagnetic sensors attached to the scapula, humerus, and thorax. Surface electromyographic (EMG) data were collected from the upper and lower trapezius, serratus anterior, anterior and posterior deltoid, and infraspinatus muscles. Median power frequency (MPF) values were derived from the raw EMG data and were used to indicate the degree of local muscle fatigue. Kinematic and EMG measures were collected prior to and immediately following the performance of a shoulder elevation fatigue protocol. Following the performance of the fatigue protocol subjects demonstrated more upward and external rotation of the scapula, more clavicular retraction, and less humeral external rotation during arm elevation. All muscles with the exception of the lower trapezius showed EMG signs of fatigue, the most notable being the infraspinatus and deltoid muscles. In general, greater scapulothoracic motion and less glenohumeral motion was observed following muscle fatigue. Further studies are needed to determine what effects these changes have on the soft tissues and mechanics of the shoulder complex.  相似文献   

2.
The gold standard exercise for recruitment of the lower trapezius is the Y prone exercise which is performed above 90° of shoulder elevation. However, clinicians often prescribe exercises that avoid high elevation postures during early stages of rehabilitation. Comparatively little data exists on relative muscle recruitment during lower arm elevation exercises. This study examined the EMG activity of four shoulder girdle muscles during four exercises accomplished below 90° of shoulder elevation and compared them to the Y prone while considering sex effects. Variance across exercises of the ratio between upper trapezius and lower trapezius was also explored. 32 healthy participants completed standardized muscle-specific MVCs and two repetitions of each exercise. The side lying external rotation and the wall slide exercises produced the highest peak EMG for the lower trapezius, both 33 and 29% lower than the Y Prone. For the upper trapezius to lower trapezius ratio, the side lying external rotation elicited the lowest value, followed by the Y prone and wall slide (53 and 59% respectively higher). Sex influenced some EMG values, typically interacting with exercise type. Thus, side lying external rotation and the wall slide are recommended for targeting the lower trapezius muscle during early rehabilitation.  相似文献   

3.
BackgroundMuscle imbalance between serratus anterior (SA), upper trapezius (UA), middle trapezius (MT), and lower trapezius (LT) muscles has been observed in subjects with subacromial impingement syndrome (SAIS).Objective(1) To investigate the effect of electromyography (EMG) biofeedback training on muscle balance ratios and scapular kinematics in healthy adults and subjects with SAIS. (2) To investigate whether the effects of EMG biofeedback on muscle balance ratios are different between groups.DesignTwelve healthy adults and 13 subjects with SAIS were recruited in this study. EMG was used to record the activity of scapular muscles. The ratios (UT/SA, UT/MT, and UT/LT) during exercises with/without EMG biofeedback were calculated. Scapular kinematics were recorded before and after exercises with/without EMG biofeedback.ResultsFor the subjects with SAIS, muscle balance ratios were lower during forward flexion with EMG biofeedback than during exercise only (UT/SA: 70.3–45.2; UT/LT: 124.8–94.6). Additionally, similar results were found during side-lying external rotation (UT/MT: 58.5–36.4). For the scapular upward rotation and tipping in both groups, there were no significant differences with and without EMG biofeedback.ConclusionEMG biofeedback improved the scapular muscular balance during training exercises in both groups. Further clinical trials should investigate the long-term effects of EMG biofeedback.  相似文献   

4.
PurposeThe aim of the study was to compare the kinematic parameters and the on–off pattern of the muscles of patients with multidirectional instability (MDI) treated by physiotherapy or by capsular shift and postoperative physiotherapy before and after treatment during elevation in the scapular plane.ScopeThe study was carried out on 32 patients with MDI of the shoulder treated with physiotherapy, 19 patients with MDI of the shoulder treated by capsular shift and postoperative physiotherapy, and 25 healthy subjects. The motion of skeletal elements was modeled by the range of humeral elevation, scapulothoracic angle and glenohumeral angle, scapulothoracic (ST) and glenohumeral (GH) rhythms, and relative displacement between the rotation centers of the humerus and scapula. The muscle pattern was modeled by the on–off pattern of muscles around the shoulder, which summarizes the activity duration of the investigated muscles.ResultsThe different ST and GH rhythms and the increased relative displacement between the rotation centers of the scapula and the humerus were observed in MDI patients. The physiotherapy strengthened the rotator cuff, biceps brachii, triceps brachii, deltoid muscles, and increase the neuromuscular control of the shoulder joints. Capsular shift and physiotherapy enabled bilinear ST and GH rhythms and the normal relative displacement between the rotation centers of the scapula and humerus to be restored. After surgery and physiotherapy, the duration of muscular activity was almost normal.ConclusionThe significant alteration in shoulder kinematics observed in MDI patients cannot be restored by physiotherapy only. After the capsular shift and postoperative physiotherapy angulation at 60° of ST and GH rhythms, the relative displacement between the rotation centers of the scapula and humerus and the duration of muscular activity were restored.  相似文献   

5.
BackgroundVarious studies have investigated scapulothoracic muscle activity and recruitment patterns in relation to shoulder complaints in different populations, but a consensus review is lacking.Hypothesis/purposeTo systematically review the state of the art regarding scapulothoracic muscle activity and recruitment timing in subjects with shoulder pain compared to pain free controls.Study designSystematic review.MethodsThe search for relevant articles was performed in Pubmed and Web of Science, including Web of Knowledge, using key words related to shoulder pain, scapulothoracic muscle activity or recruitment timing. Articles were included till November 2012. Case-control studies concerning the scapulothoracic region and muscle recruitment using electromyography (EMG) were included. Articles regarding rotator cuff muscles or neck-shoulder pathologies or studies handling a treatment outcome, were excluded. The methodological quality of the articles was assessed using appropriate risk of bias criteria for case-control studies.ResultsA total of 12 articles were included in the systematic review, containing patients with Shoulder Impingement Syndrome (SIS) or glenohumeral instability. In patients with SIS 3 out of 6 articles showed increased upper trapezius muscle (UT) activity, 3 out of 5 studies showed decreased lower trapezius muscle (LT) activity and 3 out of 5 articles showed decreased serratus anterior muscle (SA) activity. Patients with glenohumeral instability showed contradictory results on scapulothoracic muscle activity patterns. In both SIS and glenohumeral instability patients, no consensus was found on muscle recruitment timing.ConclusionPatients with SIS and glenohumeral instability display numerous variations in scapulothoracic muscle activity compared to healthy controls. In the SIS-group, the LT and SA muscle activity is decreased. In addition, the UT muscle activity is increased among the SIS patients, whereas no clear change is seen among patients with glenohumeral instability. Although the scapulothoracic muscle activity changed, no consensus could be made regarding muscle recruitment timing.  相似文献   

6.
The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual’s anthropometry. We compared the model to “gold standard” bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models.  相似文献   

7.
Static optimization is commonly employed in musculoskeletal modeling to estimate muscle and joint loading; however, the ability of this approach to predict antagonist muscle activity at the shoulder is poorly understood. Antagonist muscles, which contribute negatively to a net joint moment, are known to be important for maintaining glenohumeral joint stability. This study aimed to compare muscle and joint force predictions from a subject-specific neuromusculoskeletal model of the shoulder driven entirely by measured muscle electromyography (EMG) data with those from a musculoskeletal model employing static optimization. Four healthy adults performed six sub-maximal upper-limb contractions including shoulder abduction, adduction, flexion, extension, internal rotation and external rotation. EMG data were simultaneously measured from 16 shoulder muscles using surface and intramuscular electrodes, and joint motion evaluated using video motion analysis. Muscle and joint forces were calculated using both a calibrated EMG-driven neuromusculoskeletal modeling framework, and musculoskeletal model simulations that employed static optimization. The EMG-driven model predicted antagonistic muscle function for pectoralis major, latissimus dorsi and teres major during abduction and flexion; supraspinatus during adduction; middle deltoid during extension; and subscapularis, pectoralis major and latissimus dorsi during external rotation. In contrast, static optimization neural solutions showed little or no recruitment of these muscles, and preferentially activated agonistic prime movers with large moment arms. As a consequence, glenohumeral joint force calculations varied substantially between models. The findings suggest that static optimization may under-estimate the activity of muscle antagonists, and therefore, their contribution to glenohumeral joint stability.  相似文献   

8.
The purpose of this study was to determine if performing isometric 3-point kneeling exercises on a Swiss ball influenced the isometric force output and EMG activities of the shoulder muscles when compared with performing the same exercises on a stable base of support. Twenty healthy adults performed the isometric 3-point kneeling exercises with the hand placed either on a stable surface or on a Swiss ball. Surface EMG was recorded from the posterior deltoid, pectoralis major, biceps brachii, triceps brachii, upper trapezius, and serratus anterior muscles using surface differential electrodes. All EMG data were reported as percentages of the average root mean square (RMS) values obtained in maximum voluntary contractions for each muscle studied. The highest load value was obtained during exercise on a stable surface. A significant increase was observed in the activation of glenohumeral muscles during exercises on a Swiss ball. However, there were no differences in EMG activities of the scapulothoracic muscles. These results suggest that exercises performed on unstable surfaces may provide muscular activity levels similar to those performed on stable surfaces, without the need to apply greater external loads to the musculoskeletal system. Therefore, exercises on unstable surfaces may be useful during the process of tissue regeneration.  相似文献   

9.
The purpose of this study investigated which biofeedback (BF) training enables efficient activation of the infraspinatus muscle that affect joint position sense (JPS) and force sense (FS) of the shoulder joint. Twenty healthy males participated and performed three external rotation (ER) exercises under three randomly assigned training conditions: 1) non-biofeedback (NBF), 2) BF and 3) force biofeedback (FBF). Each exercise was performed at intervals of one week between training conditions. After performed the ER exercise under each training condition, the relative error (RE) was calculated at shoulder ER 45° and 80°, and then shoulder ER force were measured to determine the JPS error and FS error, respectively. Muscle activity of infraspinatus and posterior deltoid were measured and compared between training conditions. The RE of shoulder ER 45° and 80° were significantly lower under the FBF conditions than other training conditions (P < 0.05). The RE of shoulder ER force were also significantly lower under the FBF conditions compared to those under the other training conditions (P < 0.05). The activity of the infraspinatus muscle was significantly higher under the FBF conditions during all three ER exercises than other training conditions (p < 0.05). We suggest that BF trainings can be useful to improve the proprioception of shoulder joint as well as activation of infraspinatus muscle while performing the ER exercises.  相似文献   

10.
PurposeWe compared electromyography (EMG) recorded from the shoulder joint muscles in the same position for different movement directions.MethodsFifteen healthy subjects participated. They performed shoulder elevation from 0° to 120°, shoulder depression from 120° to 0°, shoulder horizontal adduction from ?15° to 105°, and shoulder horizontal abduction from 105° to ?15°. The target positions were 90° shoulder elevation in the 0°, 30°, 60°, and 90° planes (0°, 30°, 60°, and 90° positions). EMG signals were recorded from the supraspinatus (SSP) muscle by fine-wire electrodes. EMG signals from the infraspinatus (ISP), anterior deltoid, middle deltoid, and posterior deltoid muscles were recorded using active surface electrodes.ResultsDuring elevation and horizontal abduction, the SSP showed significantly higher activity than that shown during depression and during horizontal adduction in the 0°, 30°, and 60° positions. During elevation, the ISP showed significantly higher activity than during depression and during horizontal adduction in the 90° position. During horizontal abduction, the ISP showed significantly higher activity than during depression in the 90° position.ConclusionsWhen the movement tasks were performed in different movement directions at the same speed, each muscle showed characteristic activity.  相似文献   

11.
Background: Plyometric shoulder exercises are commonly used to progress from slow analytical strength training to more demanding high speed power training in the return to play phase after shoulder injury. The aim of this study was first, to investigate scapular muscle activity in plyometric exercises to support exercise selection in practice and second, to enhance understanding of how scapular muscles are recruited during the back and forth movement phase of these exercises. Methods: Thirty-two healthy subjects performed 10 plyometric exercises while surface EMG-activity of the scapular muscles (upper (UT), middle (MT) and lower trapezius (LT) and serratus anterior (SA)) was registered. A high speed camera tracked start and end of the back and forth movement. Results: Mean scapular EMG activity during the 10 exercises ranged from 14.50% to 76.26%MVC for UT, from 15.19% to 96.55%MVC for MT, from 13.18% to 94.35%MVC for LT and from 13.50% to 98.50%MVC for SA. Anova for repeated measures showed significant differences in scapular muscle activity between exercises (p < 0.001) and between the back and forth movement (p < 0.001) within exercises. Conclusion: Plyometric shoulder exercises require moderate (31–60%MVC) to high (>60%MVC) scapular muscle activity. Highest MT/LT activity was present in prone plyometric external rotation and flexion. Highest SA activity was found in plyometric external rotation and flexion with Xco and plyometric push up on Bosu. Specific exercises can be selected that recruit minimal levels of UT activity (<15%): side lying plyometric external rotation and horizontal abduction or plyometric push up on the Bosu. The results of this study support exercise selection for clinical practice.  相似文献   

12.
This study described the three-dimensional shoulder motion during the arm elevation in individuals with isolated acromioclavicular osteoarthritis (ACO) and ACO associated with rotator cuff disease (RCD), as compared to controls. Seventy-four participants (ACO = 23, ACO + RCD = 25, Controls = 26) took part of this study. Disability was assessed with the DASH, three-dimensional kinematics were collected during arm elevation in the sagittal and scapular planes, and pain was assessed with the 11-point numeric pain rating scale. For each kinematic variable and demographic variables, separate linear mixed-model 2-way ANOVAs were performed to compare groups. Both ACO groups had higher DASH and pain scores. At the scapulothoracic joint, the isolated ACO group had greater internal rotation than control, and the ACO + RCD group had greater upward rotation than both other groups. At the sternoclavicular joint, both groups with ACO had less retraction, and the isolated ACO group had less elevation and posterior rotation. At the acromioclavicular joint, the isolated ACO group had greater upward rotation, and both ACO groups had greater posterior tilting. Patients with ACO had altered shoulder kinematics, which may represent compensatory responses to reduce pain and facilitate arm motion during arm elevation and lowering.  相似文献   

13.
Recent studies indicate that rotator cuff (RC) muscles are recruited in a reciprocal, direction-specific pattern during shoulder flexion and extension exercises. The main purpose of this study was to determine if similar reciprocal RC recruitment occurs during bench press (flexion-like) and row (extension-like) exercises. In addition, shoulder muscle activity was comprehensively compared between bench press and flexion; row and extension; and bench press and row exercises. Electromyographic (EMG) activity was recorded from 9 shoulder muscles sites in 15 normal volunteers. All exercises were performed at 20, 50 and 70% of subjects’ maximal load. EMG data were normalized to standard maximal voluntary contractions. Infraspinatus activity was significantly higher than subscapularis during bench press, with the converse pattern during the row exercise. Significant differences in activity levels were found in pectoralis major, deltoid and trapezius between the bench press and flexion exercises and in lower trapezius between the row and extension exercises. During bench press and row exercises, the recruitment pattern in each active muscle did not vary with load. During bench press and row exercises, RC muscles contract in a reciprocal direction-specific manner in their role as shoulder joint dynamic stabilizers to counterbalance antero-posterior translation forces.  相似文献   

14.
PurposeThis study tested the hypothesis that muscle and interaction torques can be altered independently in order to improve in specific kinematics performance observed following practice. We also tested the hypothesis that a simple set of rules of EMG-control and kinetic-control models could explain the EMG and kinetic changes due to practice of movements with reversal.ScopeKinematics of the upper arm with reversal, performed over three distances, was reconstructed using motion analysis. The muscle and interaction torques were calculated using inverse-dynamics. EMG activities of the major arm muscles were also recorded. The results demonstrate that improved performance is facilitated by an increase in muscle torque (and therefore acceleration) at the proximal joint (shoulder) and by an increase in the interaction torque at the distal joint (elbow). No changes were observed in the amount of muscle activity underlying these kinetic modifications, except for a decrease in the shoulder antagonist latency.ConclusionThe results confirm Bernstein’s idea that the central nervous system takes advantage of the passive-interactive properties of the moving system. Also the modulation of the EMG patterns should be explained taking in account the reactive forces and the dual functions (maintenance of posture and generation of movement) of the muscles.  相似文献   

15.
目的:探讨前哨淋巴结活检术联合保乳治疗对早期乳腺癌患者临床疗效、术后并发症及肩关节功能的影响。方法:选取2014年10月至2017年2月就诊于我院的乳腺癌患者,按照患者手术方式分为联合组与对照组,其中联合组行前哨淋巴结活检手术联合保乳治疗,对照组行传统腋窝淋巴结清扫术治疗,每组各选取50例,随访时间为6个月。比较两组手术情况、并发症、乳腺美容效果及肩关节功能情况。结果:联合组手术时间、总出血量、引流管拔除时间、总引流量均明显低于对照组(P0.05)。手术治疗后,联合组并发症比例为6%,明显低于对照组38%。术后,两组患者随访6个月,联合组乳腺美容效果明显高于对照组(P0.05)。术前,两组肩关节功能各指标水平比较差异不显著(P0.05);术后,两组肩关节屈曲活动度、外旋活动度、后伸活动度、外展活动度相较于术前均明显降低(P0.05),联合组内旋活动度相较于术前降低不显著(P0.05),而对照组内旋活动度相较于术前降低显著(P0.05)。术后,联合组肩关节屈曲活动度、外旋活动度、内旋活动度、后伸活动度、外展活动度均显著高于对照组(P0.05)。结论:前哨淋巴结活检术联合保乳治疗早期乳腺癌创伤小,美容效果明显,可显著降低术后并发症发生率并减轻对患者肩关节功能的损害,远期疗效仍有待于进一步随访观察。  相似文献   

16.
IntroductionWe hypothesised that reduced shoulder function post stroke improves during constraint-induced movement therapy and that improvement in scapula upward rotation measured with three-dimensional kinematics is associated with improvements in clinical and patient reported outcomes.MethodsThirty-seven patients were tested pre and post constraint-induced movement therapy and again at three-month follow-up. Kinematic outcome measures – with scapula upward rotation as the primary outcome – during tasks 5 (ReachLow) and 6 (ReachHigh) from the Wolf Motor Function Test were included together with clinical and patient reported outcomes. Changes in outcome measures were analysed with linear mixed models and logistic regression analysis.FindingsScapula upward rotation was reduced from 16.2° pre intervention through 15.9° post intervention to 15.6° at three-month follow-up during ReachHigh. Statistically significant reductions of <2° were also found for shoulder flexion during ReachLow and trunk lateral flexion during ReachHigh. The clinical and patient reported outcomes showed improvements post constraint-induced movement therapy, and at follow-up, the outcomes resembled post values.InterpretationThe minimal improvements in selected 3D kinematic measures of upper extremity movements did not reflect any clinically meaningful changes. Therefore, the clinical and patient reported improvements could not be related to restitution of shoulder function.  相似文献   

17.
Through the onset of post-stroke motor disorders, the normal scapular function is compromised. As a result, shoulder pain and associated upper limb dysfunctions frequently arise after stroke.This review aimed to provide a systematic overview of available literature on scapular function, i.e. scapular three-dimensional (3D) kinematics and muscle activity during elevation, in healthy persons, persons with primary shoulder disorders and post-stroke patients. 3D scapular kinematics have been widely reported in healthy persons and persons with primary shoulder disorders, whereby a general pattern of upward rotation and posterior tilt during elevation has been agreed upon. Results on scapular internal/external rotation are inconsistent. In a post-stroke population, 3D scapular kinematics are less frequently reported. Scapular muscle activity has thus far been studied to very limited extend and firm conclusions could not be drawn.Although 3D scapular kinematics and muscle activity registrations are being increasingly used, some general methodological aspects should be considered. While the International Society of Biomechanics already proposed recommendations on the definition of upper limb joint coordinate systems and rotation sequences, proper result comparison necessitates further guidelines on other methodological aspects, i.e. data collection, processing, analyzing, and reporting.  相似文献   

18.
This study determined the ratio between glenohumeral and three-dimensional scapular motion during arm elevation and lowering in 91 individuals without shoulder pain. Scapular kinematics were assessed using an electromagnetic tracking device. Individuals performed 3 repetitions of elevation and lowering of the arm in the sagittal plane. Two-way ANOVAs (interval: 30–60°, 60–90°, 90–120° x phase: elevation and lowering) and paired t-tests were used for data analysis. For scapular internal/external rotation, lesser scapular internal rotation contribution was found during the 60–90° interval as compared to the 90–60° interval. Lesser scapular external rotation was identified in the 60–30° interval of arm lowering. The ratio was greater during arm elevation (1.89) compared to lowering (1.74) across the entire motion arc. For scapular upward rotation, greater upward rotation contribution was observed during arm elevation at the 30–60° interval, and less scapular downward rotation contribution in the final range of arm lowering. For scapular tilt, lesser scapular posterior tilt contribution during arm elevation was observed compared to arm lowering. The ratios between glenohumeral elevation/lowering and each individual scapulothoracic motion showed either differences between intervals and/or between elevation and lowering during specific intervals in healthy individuals.  相似文献   

19.
BackgroundScapular taping is frequently used in the management of shoulder pain and as a part of injury prevention strategies in sports. It is believed to alter scapular kinematics and restore normal motion. However, there is little evidence to support its use. The aim of the study was to investigate the effect of shoulder taping on the scapular kinematics of asymptomatic subjects.MethodThirteen asymptomatic subjects performed elevations in the sagittal and scapular planes with no tape and after the application of tape. A motion tracking system and a scapula locator method were used to measure the shoulder movement. Co-ordinate frames were defined for the thorax, humerus and scapula and Euler angles were used to calculate joints rotations.ResultsScapular taping increased the scapular external and upward rotations and posterior tilt in elevations in the sagittal plane (p < 0.001). In the scapular plane, taping increased scapular external rotation (p < 0.05).ConclusionsTaping affects scapulothoracic kinematics in asymptomatic subjects. The effect may be different for different planes of movement. The findings have implications on the use of taping as a preventive measure in high-risk groups. Further work is needed to assess the effect of taping on symptomatic populations.  相似文献   

20.
This study examined pulling exercises performed on stable surfaces and unstable suspension straps. Specific questions included: which exercises challenged particular muscles, what was the magnitude of resulting spine load, and did technique coaching influence results. Fourteen males performed pulling tasks while muscle activity, external force, and 3D body segment motion were recorded. These data were processed and input to a sophisticated and anatomically detailed 3D model that used muscle activity and body segment kinematics to estimate muscle force, in this way the model was sensitive to each individual’s choice of motor control for each task. Muscle forces and linked segment joint loads were used to calculate spine loads. There were gradations of muscle activity and spine load characteristics to every task. It appears that suspension straps alter muscle activity less in pulling exercises, compared to studies reporting on pushing exercises. The chin-up and pull-up exercises created the highest spine load as they required the highest muscle activation, despite the body “hanging” under tractioning gravitational load. Coaching shoulder centration through retraction increased spine loading but undoubtedly adds proximal stiffness. An exercise atlas of spine compression was constructed to help with the decision making process of exercise choice for an individual.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号