首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron cryotomography (cryo-ET) is an imaging technique uniquely suited to the study of bacterial ultrastructure and cell biology. Recent years have seen a surge in structural and cell biology research on bacteria using cryo-ET. This research has driven major technical developments in the field, with applications emerging to address a wide range of biological questions. In this review, we explore the diversity of cryo-ET approaches used for structural and cellular microbiology, with a focus on in situ localization and structure determination of macromolecules. The first section describes strategies employed to locate target macromolecules within large cellular volumes. Next, we explore methods to study thick specimens by sample thinning. Finally, we review examples of macromolecular structure determination in a cellular context using cryo-ET. The examples outlined serve as powerful demonstrations of how the cellular location, structure, and function of any bacterial macromolecule of interest can be investigated using cryo-ET.  相似文献   

2.
Cryo-electron tomography (cryo-ET) and subtomogram averaging (STA) can resolve protein complexes at near atomic resolution, and when combined with focused ion beam (FIB) milling, macromolecules can be observed within their native context. Unlike single particle acquisition (SPA), cryo-ET can be slow, which may reduce overall project throughput. We here propose a fast, multi-position tomographic acquisition scheme based on beam-tilt corrected beam-shift imaging along the tilt axis, which yields sub-nanometer in situ STA averages.  相似文献   

3.
Cryogenic Electron Tomography (cryo-ET) allows structural and dynamics studies of macromolecules in situ. Averaging different copies of imaged macromolecules is commonly used to obtain their structure at higher resolution and discrete classification to analyze their dynamics. Instrumental and data processing developments are progressively equipping cryo-ET studies with the ability to escape the trap of classification into a complete continuous conformational variability analysis. In this work, we propose TomoFlow, a method for analyzing macromolecular continuous conformational variability in cryo-ET subtomograms based on a three-dimensional dense optical flow (OF) approach. The resultant lower-dimensional conformational space allows generating movies of macromolecular motion and obtaining subtomogram averages by grouping conformationally similar subtomograms. The animations and the subtomogram group averages reveal accurate trajectories of macromolecular motion based on a novel mathematical model that makes use of OF properties. This paper describes TomoFlow with tests on simulated datasets generated using different techniques, namely Normal Mode Analysis and Molecular Dynamics Simulation. It also shows an application of TomoFlow on a dataset of nucleosomes in situ, which provided promising results coherent with previous findings using the same dataset but without imposing any prior knowledge on the analysis of the conformational variability. The method is discussed with its potential uses and limitations.  相似文献   

4.
Cryo-electron tomography (cryo-ET) is an emerging imaging technology that combines the potential of three-dimensional (3-D) imaging at molecular resolution (<5 nm) with a close-to-life preservation of the specimen. In conjunction with pattern recognition techniques, it enables us to map the molecular landscape inside cells. The application of cryo-ET to intact cells provides novel insights into the structure and the spatial organization of the cytoskeleton in prokaryotic and eukaryotic cells.  相似文献   

5.
All steps of cryogenic electron-microscopy (cryo-EM) workflows have rapidly evolved over the last decade. Advances in both single-particle analysis (SPA) cryo-EM and cryo-electron tomography (cryo-ET) have facilitated the determination of high-resolution biomolecular structures that are not tractable with other methods. However, challenges remain. For SPA, these include improved resolution in an additional dimension: time. For cryo-ET, these include accessing difficult-to-image areas of a cell and finding rare molecules. Finally, there is a need for automated and faster workflows, as many projects are limited by throughput. Here, we review current developments in SPA cryo-EM and cryo-ET that push these boundaries. Collectively, these advances are poised to propel our spatial and temporal understanding of macromolecular processes.  相似文献   

6.
Cryo-electron tomography (cryo-ET) allows the visualization of cellular structures under close-to-life conditions and at molecular resolution. While it is inherently a static approach, yielding structural information about supramolecular organization at a certain time point, it can nevertheless provide insights into function of the structures imaged, in particular, when supplemented by other approaches. Here, we review the use of experimental methods that supplement cryo-ET imaging of whole cells. These include genetic and pharmacological manipulations, as well as correlative light microscopy and cryo-ET. While these methods have mostly been used to detect and identify structures visualized in cryo-ET or to assist the search for a feature of interest, we expect that in the future they will play a more important role in the functional interpretation of cryo-tomograms.  相似文献   

7.
Visualization of cellular processes at a resolution of the individual protein should involve integrative and complementary approaches that can eventually draw realistic functional and cellular landscapes. Electron tomography of vitrified but otherwise unaltered cells emerges as a central method for three-dimensional reconstruction of cellular architecture at a resolution of 2-6 nm. While a combination of correlative light-based microscopy with cryo-electron tomography (cryo-ET) provides medium-resolution insight into pivotal cellular processes, fitting high-resolution structural approaches, for example, X-ray crystallography, into reconstructed macromolecular assemblies provides unprecedented information on native protein assemblies. Thus, cryo-ET bridges the resolution gap between cellular and structural biology. In this article, we focus on the study of eukaryotic cells and macromolecular complexes in a close-to-life-state. We discuss recent developments and structural findings enabling major strides to be made in understanding complex physiological functions.  相似文献   

8.
Cryo-electron tomography (cryo-ET) provides three-dimensional (3D) structural information of bacteria preserved in a native, frozen-hydrated state. The typical low contrast of tilt-series images, a result of both the need for a low electron dose and the use of conventional defocus phase-contrast imaging, is a challenge for high-quality tomograms. We show that Zernike phase-contrast imaging allows the electron dose to be reduced. This limits movement of gold fiducials during the tilt series, which leads to better alignment and a higher-resolution reconstruction. Contrast is also enhanced, improving visibility of weak features. The reduced electron dose also means that more images at more tilt angles could be recorded, further increasing resolution.  相似文献   

9.
ContinuousFlex is a user-friendly open-source software package for analyzing continuous conformational variability of macromolecules in cryo electron microscopy (cryo-EM) and cryo electron tomography (cryo-ET) data. In 2019, ContinuousFlex became available as a plugin for Scipion, an image processing software package extensively used in the cryo-EM field. Currently, ContinuousFlex contains software for running (1) recently published methods HEMNMA-3D, TomoFlow, and NMMD; (2) earlier published methods HEMNMA and StructMap; and (3) methods for simulating cryo-EM and cryo-ET data with conformational variability and methods for data preprocessing. It also includes external software for molecular dynamics simulation (GENESIS) and normal mode analysis (ElNemo), used in some of the mentioned methods. The HEMNMA software has been presented in the past, but not the software of other methods. Besides, ContinuousFlex currently also offers a deep learning extension of HEMNMA, named DeepHEMNMA. In this article, we review these methods in the context of the ContinuousFlex package, developed to facilitate their use by the community.  相似文献   

10.
Cryo-electron tomography (cryo-ET) allows for the visualization of biological material in a close-to-native state, in three dimensions and with nanometer scale resolution. However, due to the low signal-to-noise ratio inherent to imaging of the radiation-sensitive frozen-hydrated samples, it appears oftentimes impossible to localize structures within heterogeneous samples. Because a major potential for cryo-ET is thereby left unused, we set out to combine cryo-ET with cryo-fluorescence microscopy (cryo-FM), in order to facilitate the search for structures of interest. We describe a cryo-FM setup and workflow for correlative cryo-fluorescence and cryo-electron microscopy (cryo-CLEM) that can be easily implemented. Cells are grown on finder grids, vitally labeled with one or two fluorescent dyes, and vitrified. After a structure is located by cryo-FM (with 0.4 μm resolution), its image coordinates are translated to cryo-ET stage coordinates via a home-built software routine. We tested our workflow on whole mount primary human umbilical vein endothelial cells. The correlative routine enabled us to investigate mitochondrial ultrastructure for the first time on intact human mitochondria, and led us to find mitochondrial cristae that were connected to the intermembrane space via large slits, which challenges the current view that such connections are established exclusively via small circular pores. Taken together, this study emphasizes that cryo-CLEM can be a routinely used technique that opens up exciting new possibilities for cryo-ET.  相似文献   

11.
The molecular graphics program Sculptor and the command-line suite Situs are software packages for the integration of biophysical data across spatial resolution scales. Herein, we provide an overview of recently developed tools relevant to cryo-electron tomography (cryo-ET), with an emphasis on functionality supported by Situs 2.7.1 and Sculptor 2.1.1. We describe a work flow for automatically segmenting filaments in cryo-ET maps including denoising, local normalization, feature detection, and tracing. Tomograms of cellular actin networks exhibit both cross-linked and bundled filament densities. Such filamentous regions in cryo-ET data sets can then be segmented using a stochastic template-based search, VolTrac. The approach combines a genetic algorithm and a bidirectional expansion with a tabu search strategy to localize and characterize filamentous regions. The automated filament segmentation by VolTrac compares well to a manual one performed by expert users, and it allows an efficient and reproducible analysis of large data sets. The software is free, open source, and can be used on Linux, Macintosh or Windows computers.  相似文献   

12.
Electron energy loss spectroscopy (EELS) techniques were used to determine oxidation state, at high spatial resolution, of chromium associated with the metal-reducing bacteria, Shewanella oneidensis, in anaerobic cultures containing Cr(VI)O4(2-). These techniques were applied to fixed cells examined in thin section by conventional transmission electron microscopy (TEM) as well as unfixed, hydrated bacteria examined by environmental cell (EC)-TEM. Two distinct populations of bacteria were observed by TEM: bacteria exhibiting low image contrast and bacteria exhibiting high contrast in their cell membrane (or boundary) structure which was often encrusted with high-contrast precipitates. Measurements by EELS demonstrated that cell boundaries became saturated with low concentrations of Cr and the precipitates encrusting bacterial cells contained a reduced form of Cr in oxidation state + 3 or lower.  相似文献   

13.
Cryo-electron tomography (cryo-ET) has reached nanoscale resolution for in situ three-dimensional imaging of macromolecular complexes and organelles. Yet its current resolution is not sufficient to precisely localize or identify most proteins in situ; for example, the location and arrangement of components of the nexin-dynein regulatory complex (N-DRC), a key regulator of ciliary/flagellar motility that is conserved from algae to humans, have remained elusive despite many cryo-ET studies of cilia and flagella. Here, we developed an in situ localization method that combines cryo-ET/subtomogram averaging with the clonable SNAP tag, a widely used cell biological probe to visualize fusion proteins by fluorescence microscopy. Using this hybrid approach, we precisely determined the locations of the N and C termini of DRC3 and the C terminus of DRC4 within the three-dimensional structure of the N-DRC in Chlamydomonas flagella. Our data demonstrate that fusion of SNAP with target proteins allowed for protein localization with high efficiency and fidelity using SNAP-linked gold nanoparticles, without disrupting the native assembly, structure, or function of the flagella. After cryo-ET and subtomogram averaging, we localized DRC3 to the L1 projection of the nexin linker, which interacts directly with a dynein motor, whereas DRC4 was observed to stretch along the N-DRC base plate to the nexin linker. Application of the technique developed here to the N-DRC revealed new insights into the organization and regulatory mechanism of this complex, and provides a valuable tool for the structural dissection of macromolecular complexes in situ.  相似文献   

14.
High-resolution cryo electron tomography (cryo-ET) was utilized to visualize Treponema pallidum, the causative agent of syphilis, at the molecular level. Three-dimensional (3D) reconstructions from 304 infectious organisms revealed unprecedented cellular structures of this unusual member of the spirochetal family. High-resolution cryo-ET reconstructions provided detailed structures of the cell envelope, which is significantly different from that of Gram-negative bacteria. The 4-nm lipid bilayer of both outer membrane and cytoplasmic membrane resolved in 3D reconstructions, providing an important marker for interpreting membrane-associated structures. Abundant lipoproteins cover the outer leaflet of the cytoplasmic membrane, in contrast to the rare outer membrane proteins visible by scanning probe microscopy. High-resolution cryo-ET images also provided the first observation of T. pallidum chemoreceptor arrays, as well as structural details of the periplasmically located cone-shaped structure at both ends of the bacterium. Furthermore, 3D subvolume averages of periplasmic flagellar motors and flagellar filaments from living organisms revealed the novel flagellar architectures that may facilitate their rotation within the confining periplasmic space. Our findings provide the most detailed structural understanding of periplasmic flagella and the surrounding cell envelope, which enable this enigmatic bacterium to efficiently penetrate tissue and to escape host immune responses.  相似文献   

15.
Any living or non-living surface immersed in seawaterrapidly acquires a bacterial biofilm. For living marineorganisms, biofilm formation can result in the death ofthe host, and thus there is strong evolutionary pressure formarine eukaryotes to evolve mechanisms which inhibit orcontrol the development of biofilms on their surfaces.Some marine eukaryotes are indeed successful incontrolling biofilms on their surfaces, and in manyinstances this control is achieved by the production ofinhibitory chemicals which act at or near the surface ofthe organism. In some cases these natural inhibitors aresimply toxic to bacteria. However, increasingly it appearsthat at least some of these compounds act by interferingspecifically with bacterial characteristics which effect theability of bacteria to colonize their hosts, such asattachment, surface spreading, or the production ofextracellular macromolecules. As an example, theAustralian seaweed Delisea pulchra appears tocontrol bacterial colonization by interfering with abacterial regulatory system (the acylated homoserinelactone system) that regulates several colonizationrelevant bacterial traits. Understanding how marineorganisms control specific bacterial colonization traitsshould provide us with insights into new technologies forthe control of biofilms on artificial surfaces.  相似文献   

16.
At each round of infection, viruses fall apart to release their genome for replication, and then reassemble into stable particles within the same host cell. For most viruses, the structural details that underlie these disassembly and assembly reactions are poorly understood. Cryo-electron tomography (cryo-ET), a unique method to investigate large and asymmetric structures at the near molecular resolution, was previously used to study the complex structure of vaccinia virus (VV). Here we study the disassembly of VV by cryo-ET on intact, rapidly frozen, mammalian cells, infected for up to 60 minutes. Binding to the cell surface induced distinct structural rearrangements of the core, such as a shape change, the rearrangement of its surface spikes and de-condensation of the viral DNA. We propose that the cell surface induced changes, in particular the decondensation of the viral genome, are a prerequisite for the subsequent release of the vaccinia DNA into the cytoplasm, which is followed by its cytoplasmic replication. Generally, this is the first study that employs whole cell cryo-ET to address structural details of pathogen-host cell interaction.  相似文献   

17.
For more than half a century, electron microscopy has been a main tool for investigating the complex ultrastructure and organization of chloroplast thylakoid membranes, but, even today, the three-dimensional relationship between stroma and grana thylakoids, and the arrangement of the membrane protein complexes within them are not fully understood. Electron cryo-tomography (cryo-ET) is a powerful new technique for visualizing cellular structures, especially membranes, in three dimensions. By this technique, large membrane protein complexes, such as the photosystem II supercomplex or the chloroplast ATP synthase, can be visualized directly in the thylakoid membrane at molecular (4-5 nm) resolution. This short review compares recent advances by cryo-ET of plant thylakoid membranes with earlier results obtained by conventional electron microscopy.  相似文献   

18.
Ecology and evolution of bacterial microdiversity   总被引:13,自引:0,他引:13  
Using high resolution molecular fingerprinting techniques like random amplification of polymorphic DNA, repetitive extragenic palindromic PCR and multilocus enzyme electrophoresis, a high bacterial diversity below the species and subspecies level (microdiversity) is revealed. It became apparent that bacteria of a certain species living in close association with different plants either as associated rhizosphere bacteria or as plant pathogens or symbiotic organisms, typically reflect this relationship in their genetic relatedness. The strain composition within a population of soil bacterial species at a given field site, which can be identified by these high resolution fingerprinting techniques, was markedly influenced by soil management and soil features. The observed bacterial microdiversity reflected the conditions of the habitat, which select for better adapted forms. In addition, influences of spatial separation on specific groupings of bacteria were found, which argue for the occurrence of isolated microevolution. In this review, examples are presented of bacterial microdiversity as influenced by different ecological factors, with the main emphasis on bacteria from the natural environment. In addition, information available from some of the first complete genome sequences of bacteria (Helicobacter pylori and Escherichia coli) was used to highlight possible mechanisms of molecular evolution through which mutations are created; these include mutator enzymes. Definitions of bacterial species and subspecies ranks are discussed in the light of detailed information from whole genome typing approaches.  相似文献   

19.
<正>Dear Editor,Mitochondria acts as a cellular organelle that produces ATP and buffers Ca2+, and plays an important role in neuronal growth, survival and function[1]. Loss of mitochondria will make the ATP supply insufficient, resulting in synaptic transmission dysfunction[2]. Further, presynaptic mitochondrial dysfunctions are often associated with severe neurological diseases[3].  相似文献   

20.
The nuclear pore complex (NPC) is a supra-molecular assembly that mediates substance and information flow across the nuclear envelope (NE). Due to its extraordinary size and complexity, the NPC remains one of the most challenging tasks in structural elucidation at atomic resolution. Recent breakthroughs in cryo-electron microscopy (cryo-EM) reconstruction, Machine Learning empowered structure prediction and biochemical reconstitution have combined to yield molecular models of the NPC at unprecedented accuracy. Furthermore, in cellulo cryo-electron tomography (cryo-ET) structures reveal substantial structural dynamics of the NPC. These advances shed light on the organizational principles and functions of the NPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号