首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
非天然氨基酸在医药、农药、材料等领域得到广泛应用,其绿色、高效合成越来越受到关注.近年来,随着合成生物学的快速发展,微生物细胞工厂为非天然氨基酸的制造提供了重要手段.文中从合成途径的重构、关键酶的设计改造及与前体的协同调控、竞争性旁路途径的敲除、辅因子循环系统的构建等方面介绍了 一系列非天然氨基酸细胞工厂构建与应用的研...  相似文献   

2.
Wang A  Sun D  Cao G  Wang H  Ren N  Wu WM  Logan BE 《Bioresource technology》2011,102(5):4137-4143
Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs (each 25 mL) connected in series to an MEC (72 mL) produced a maximum of 0.43 V using fermentation effluent as a feed, achieving a hydrogen production rate from the MEC of 0.48 m3 H2/m3/d (based on the MEC volume), and a yield of 33.2 mmol H2/g COD removed in the MEC. The overall hydrogen production for the integrated system (fermentation, MFC and MEC) was increased by 41% compared with fermentation alone to 14.3 mmol H2/g cellulose, with a total hydrogen production rate of 0.24 m3 H2/m3/d and an overall energy recovery efficiency of 23% (based on cellulose removed) without the need for any external electrical energy input.  相似文献   

3.
Isoprenoids denote the largest group of chemicals in the plant kingdom and are employed for a wide range of applications in the food and pharmaceutical industry. In recent years, isoprenoids have additionally been recognized as suitable replacements for petroleum-derived fuels and could thus promote the transition towards a more sustainable society. To realize the biofuel potential of isoprenoids, a very efficient production system is required. While complex chemical structures as well as the low abundance in nature demonstrate the shortcomings of chemical synthesis and plant extraction, isoprenoids can be produced by genetically engineered microorganisms from renewable carbon sources. In this article, we summarize the development of isoprenoid applications from flavors and pharmaceuticals to advanced biofuels and review the strategies to design microbial cell factories, focusing on Saccharomyces cerevisiae for the production of these compounds. While the high complexity of biosynthetic pathways and the toxicity of certain isoprenoids still denote challenges that need to be addressed, metabolic engineering has enabled large-scale production of several terpenoids and thus, the utilization of these compounds is likely to expand in the future.  相似文献   

4.
Liang DW  Peng SK  Lu SF  Liu YY  Lan F  Xiang Y 《Bioresource technology》2011,102(23):10881-10885
Reducing the inner resistances is crucial for the enhancement of hydrogen generation in microbial electrolysis cells (MECs). This study demonstrates that the optimization of the anode arrangement is an effective strategy to reduce the system resistances. By changing the normal MEC configuration into a stacking mode, namely separately placing the contacted anodes from one side to both sides of cathode in parallel, the solution, biofilm and polarization resistances of MECs were greatly reduced, which was also confirmed with electrochemical impedance spectroscopy analysis. After the anode arrangement optimization, the current and hydrogen production rate (HPR) of MEC could be enhanced by 72% and 118%, reaching 621.3 ± 20.6 A/m3 and 5.56 m3/m3 d respectively, under 0.8 V applied voltage. A maximum current density of 1355 A/m3 with a HPR of 10.88 m3/m3 d can be achieved with 1.5 V applied voltage.  相似文献   

5.
Construction of efficient performance of microbial fuel cells (MFCs) requires certain practical considerations. In the single chamber microbial fuel cell, there is no border between the anode and the cathode, thus the diffusion of the dissolved oxygen has a contrary effect on the anodic respiration and this leads to the inhibition of the direct electron transfer from the biofilm to the anodic surface. Here, a fed-batch single chambered microbial fuel cells are constructed with different distances 3 and 6?cm (anode- cathode spacing), while keeping the working volume is constant. The performance of each MFC is individually evaluated under the effects of vitamins & minerals with acetate as a fed load. The maximum open circuit potential during testing the 3 and 6?cm microbial fuel cells is about 946 and 791?mV respectively. By decreasing the distance between the anode and the cathode from 6 to 3?cm, the power density is decreased from 108.3?mW?m?2 to 24.5?mW?m?2. Thus, the short distance in membrane-less MFC weakened the cathode and inhibited the anodic respiration which affects the overall performance of the MFC efficiency. The system is displayed a maximum potential of 564 and 791?mV in absence & presence of vitamins respectively. Eventually, the overall functions of the acetate single chamber microbial fuel cell can be improved by the addition of vitamins & minerals and increasing the distance between the cathode and the anode.  相似文献   

6.
More than a century has passed since the first attempt to cultivate plant cells in vitro. During this time, plant cell cultures have become increasingly attractive and cost-effective alternatives to classical approaches for the mass production of plant-derived metabolites. Furthermore, plant cell culture is the only economically feasible way of producing some high-value metabolites (e.g., paclitaxel) from rare and/or threatened plants. This review summarizes recent advances in bioprocessing aspects of plant cell cultures, from callus culture to product formation, with particular emphasis on the development of suitable bioreactor configurations (e.g., disposable reactors) for plant cell culture-based processes; the optimization of bioreactor culture environments as a powerful means to improve yields; bioreactor operational modes (fed-batch, continuous, and perfusion); and biomonitoring approaches. Recent trends in downstream processing are also considered. This paper is dedicated to Prof. Dr. Mladenka P. Ilieva on the occasion of her 70th birthday.  相似文献   

7.
Summary In plant cell suspension cultures sensitive to the herbicide amiprophos-methyl (APM), 1 to 3 M APM completely depolymerized both cortical and mitotic microtubule (MT) arrays in 1 hour. In comparison, a 2 hour application of 3 mM colchicine had no effect on MT arrays. Recovery from APM treatment occurred as early as 5 minutes after removal of APM. Short, cortical MTs were visible in 3 hours and complete MT arrays were found within 22 hours after drug removal.Sensitivity to APM-induced MT depolymerization varied according to species but was increased or decreased by varying the mitotic rate in cultures. The results indicated APM sensitivity was related to lowered stability of MT arrays in rapidly cycling cells. APM treatment may help distinguish stabilized cortical MTs in elongating cells and nonstabilized cortical MTs in rapidly dividing cells.Abbreviations MT microtubule - APM amiprophos-methyl - DMSO dimethyl sulfoxide - PBS phosphate buffered saline  相似文献   

8.
This study examines the effects of biofouling on the electrochemical properties of cation exchange membranes (CEMs), such as membrane electrical resistance (MER), specific proton conductivity (SC), and ion transport number (t+), in addition to on microbial fuel cell (MFC) performance. CEM biofouling using a 15.5 ± 4.6 μm biofilm was found to slightly increase the MER from 15.65 Ω cm2 (fresh Nafion) to 19.1 Ω cm2, whereas an increase of almost two times was achieved when the electrolyte was changed from deionized water to an anolyte containing a high cation concentration supporting bacterial growth. The simple physical cleaning of CEMs had little effect on the Coulombic efficiency (CE), whereas replacing a biofouled CEM with new one resulted in considerable increase of up to 59.3%, compared to 45.1% for a biofouled membrane. These results clearly suggest the internal resistance increase of MFC was mainly caused by the sulfonate functional groups of CEM being occupied with cations contained in the anolyte, rather than biofouling itself.  相似文献   

9.
A microbiological process was established to harvest electricity from the carbon monoxide (CO). A CO fermenter was enriched with CO as the sole carbon source. The DGGE/DNA sequencing results showed that Acetobacterium spp. were enriched from the anaerobic digester fluid. After the fermenter was operated under continuous mode, the products were then continuously fed to the microbial fuel cell (MFC) to generate electricity. Even though the conversion yield was quite low, this study proved that synthesis gas (syn-gas) can be converted to electricity with the aid of microbes that do not possess the drawbacks of metal catalysts of conventional methods.  相似文献   

10.
A biodiesel wastewater treatment technology was investigated for neutral alkalinity and COD removal by microbial fuel cell. An upflow bio-filter circuit (UBFC), a kind of biocatalyst MFC was renovated and reinvented. The developed system was combined with a pre-fermented (PF) and an influent adjusted (IA) procedure. The optimal conditions were operated with an organic loading rate (OLR) of 30.0 g COD/L-day, hydraulic retention time (HRT) of 1.04 day, maintained at pH level 6.5-7.5 and aerated at 2.0 L/min. An external resistance of circuit was set at 10 k?. The purposed process could improve the quality of the raw wastewater and obtained high efficiency of COD removal of 15.0 g COD/L-day. Moreover, the cost of UBFC system was only US$1775.7/m3 and the total power consumption was 0.152 kW/kg treated COD. The overall advantages of this invention are suitable for biodiesel wastewater treatment.  相似文献   

11.
Gene therapy is a promising strategy to treat various genetic and acquired diseases. Small interfering RNA (siRNA) is a revolutionary tool for gene therapy and the analysis of gene function. However, the development of a safe, efficient, and targetable non-viral siRNA delivery system remains a major challenge in gene therapy. An ideal delivery system should be able to encapsulate and protect the siRNA cargo from serum proteins, exhibit target tissue and cell specificity, penetrate the cell membrane, and release its cargo in the desired intracellular compartment. Nanomedicine has the potential to deal with these challenges faced by siRNA delivery. The unique characteristics of rigid nanoparticles mostly inorganic nanoparticles and allotropes of carbon nanomaterials, including high surface area, facile surface modification, controllable size, and excellent magnetic/optical/electrical properties, make them promising candidates for targeted siRNA delivery. In this review, recent progresses on rigid nanoparticle-based siRNA delivery systems will be summarized.  相似文献   

12.
The growth of the yeast Saccharomyces cerevisiae, the fungus Rhizopus nigricans and Nicotiana tabacum cells with perfluorodecalin as an oxygen carrier has been studied. The volumetric mass transfer coefficient (kLa) measured by the dynamic method was higher for the perfluorodecalin oxygenation system than for the conventional aeration system. The results show that perfluorocarbon can be successfully used as an efficient gas carrier, especially for the culture of delicate plant cells. The increase in yeast biomass in the suspension culture aerated by perfluorodecalin was as much as 110% higher than in the culture aerated by air. The fungus R. nigricans grew better when the conventional aeration system was used due to the fact that growth of the mycelium is limited by the transport of oxygen by diffusion in the pellets rather than by interfacial oxygen transport. In the case of isolated tobacco cells, an increase of over 350% in biomass growth was observed for the PFC aeration system.  相似文献   

13.
A high yielding cell line of Scutellaria baicalensis G. has successfully been developed to produce flavonoids. Major components of the flavonoids were identified as baicalin and wogonin-7-O-glucuronic acid by a series of instrumental analyses using UV, IR, MASS, and NMR. After 12 days in suspension culture, the cell growth reached 14 g DW/l, and baicalin and wogonin-7-O-glucuronic acid were obtained in concentrations of 2.9 g/l and 1.07 g/l, respectively. The culture temperature was found to be an important parameter for improving production yield of the flavonoids. The yield of baicalin was observed to increase to 4.2 g/l by shifting the temperature from 30 °C to 25 °C after 72 h of suspension culture.Abbreviations DW cell dry weight - FW cell fresh weight - 2,4-D 2,4-dichlorophenoxyacetic acid - PSH medium phytohormone added Schenk and Hildebrandt medium - FPM a modified Schenk and Hildebrandt medium for flavonoid production  相似文献   

14.
In this study we developed a segregated flux balance analysis (FBA) method to calculate metabolic flux distributions of the individual populations present in a mixed microbial culture (MMC). Population specific flux data constraints were derived from the raw data typically obtained by the fluorescence in situ hybridization (FISH) and microautoradiography (MAR)‐FISH techniques. This method was applied to study the metabolic heterogeneity of a MMC that produces polyhydroxyalkanoates (PHA) from fermented sugar cane molasses. Three populations were identified by FISH, namely Paracoccus sp., Thauera sp., and Azoarcus sp. The segregated FBA method predicts a flux distribution for each of the identified populations. The method is shown to predict with high accuracy the average PHA storage flux and the respective monomeric composition for 16 independent experiments. Moreover, flux predictions by segregated FBA were slightly better than those obtained by nonsegregated FBA, and also highly concordant with metabolic flux analysis (MFA) estimated fluxes. The segregated FBA method can be of high value to assess metabolic heterogeneity in MMC systems and to derive more efficient eco‐engineering strategies. For the case of PHA‐producing MMC considered in this work, it becomes apparent that the PHA average monomeric composition might be controlled not only by the volatile fatty acids (VFA) feeding profile but also by the population composition present in the MMC. Biotechnol. Bioeng. 2013; 110: 2267–2276. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
《Process Biochemistry》2014,49(6):973-980
The pseudo-capacitive behaviour of a high surface area carbon veil electrode in a tubular microbial fuel cell (MFC) was investigated as a mechanism to enhance power quality and energy efficiency. Accumulated charge and energy from the anodic biofilm after prolonged open circuit times (1–120 min) were compared against equivalent periods of steady state loading (R = 100–3000 Ω). A significant difference in the amount of accumulated charge with different loads was observed, resulting in 1.051 C (R = 100 Ω) compared to 0.006 C (R = 3 kΩ). The automated application of short open and closed circuit (0.5–10 s) cycles resulted in an increase of power/current production (closed circuit alone), but presented lower efficiency considering entire open and closed period. The cumulative charge on the carbon veil electrode with biofilm was 39,807 C m−2 at 100 Ω. Electrochemical Impedance Spectroscopy (EIS) showed that the Helmholtz layer presented a double layer capacitance of more than ten times the biofilm on electrode. The results indicate that the capacitive behaviour could be utilized to increase the power quality, i.e. its availability/applicability with respect to the operation of low power consuming devices.  相似文献   

16.
Cell‐free synthetic (enzymatic) pathway biotransformation (SyPaB) is the assembly of a number of purified enzymes (usually more than 10) and coenzymes for the production of desired products through complicated biochemical reaction networks that a single enzyme cannot do. Cell‐free SyPaB, as compared to microbial fermentation, has several distinctive advantages, such as high product yield, great engineering flexibility, high product titer, and fast reaction rate. Biocommodities (e.g., ethanol, hydrogen, and butanol) are low‐value products where costs of feedstock carbohydrates often account for ~30–70% of the prices of the products. Therefore, yield of biocommodities is the most important cost factor, and the lowest yields of profitable biofuels are estimated to be ca. 70% of the theoretical yields of sugar‐to‐biofuels based on sugar prices of ca. US$ 0.18 per kg. The opinion that SyPaB is too costly for producing low‐value biocommodities are mainly attributed to the lack of stable standardized building blocks (e.g., enzymes or their complexes), costly labile coenzymes, and replenishment of enzymes and coenzymes. In this perspective, I propose design principles for SyPaB, present several SyPaB examples for generating hydrogen, alcohols, and electricity, and analyze the advantages and limitations of SyPaB. The economical analyses clearly suggest that developments in stable enzymes or their complexes as standardized parts, efficient coenzyme recycling, and use of low‐cost and more stable biomimetic coenzyme analogs, would result in much lower production costs than do microbial fermentations because the stabilized enzymes have more than 3 orders of magnitude higher weight‐based total turn‐over numbers than microbial biocatalysts, although extra costs for enzyme purification and stabilization are spent. Biotechnol. Bioeng. 2010. 105: 663–677. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
Phenotypic profiling of natural, engineered or synthetic cells has increasingly become a bottleneck in the mining and engineering of cell factories. Single-cell phenotyping technologies are highly promising for tackling this hurdle, yet ideally they should allow non-invasive live-cell probing, be label-free, provide landscape-like phenotyping capability, distinguish complex functions, operate with high speed, sufficient throughput and low cost, and finally, couple with cell sorting so as to enable downstream omics analysis. This review focuses on recent progress in Ramanome Technology Platform (RTP), which consists of Raman spectroscopy based phenotyping, sorting and sequencing of single cells, and discuss the key challenges and emerging trends. In addition, we propose ramanome, a collection of single-cell Raman spectra (SCRS) acquired from individual cells within a cellular population or consortium, as a new type of biological phenome datatype at the single-cell resolution. By establishing the phenome-genome links in a label-free, single-cell manner, RTP should find wide applications in functional screening and strain development of live microbial, plant and animal cell factories.  相似文献   

18.
Co-naphthalocyanine (CoNPc) was prepared by heat treatment for cathode catalysts to be used in microbial fuel cells (MFCs). Four different catalysts (Carbon black, NPc/C, CoNPc/C, Pt/C) were compared and characterized using XPS, EDAX and TEM. The electrochemical characteristics of oxygen reduction reaction (ORR) were compared by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The Co-macrocyclic complex improves the catalyst dispersion and oxygen reduction reaction of CoNPc/C. The maximum power of CoNPc/C was 64.7 mW/m2 at 0.25 mA as compared with 81.3 mW/m2 of Pt/C, 29.7 mW/m2 of NPc/C and 9.3 mW/m2 of carbon black when the cathodes were implemented in H-type MFCs. The steady state cell, cathode and anode potential of MFC with using CoNPc/C were comparable to those of Pt/C.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号