共查询到20条相似文献,搜索用时 0 毫秒
1.
Since the first revelation of proteins functioning as macromolecular machines through their three dimensional structures, researchers have been intrigued by the marvelous ways the biochemical processes are carried out by proteins. The aspiration to understand protein structures has fueled extensive efforts across different scientific disciplines. In recent years, it has been demonstrated that proteins with new functionality or shapes can be designed via structure-based modeling methods, and the design strategies have combined all available information — but largely piece-by-piece — from sequence derived statistics to the detailed atomic-level modeling of chemical interactions. Despite the significant progress, incorporating data-derived approaches through the use of deep learning methods can be a game changer. In this review, we summarize current progress, compare the arc of developing the deep learning approaches with the conventional methods, and describe the motivation and concepts behind current strategies that may lead to potential future opportunities. 相似文献
2.
Artificial intelligence (AI) has recently become a very popular buzzword, as a consequence of disruptive technical advances and impressive experimental results, notably in the field of image analysis and processing. In medicine, specialties where images are central, like radiology, pathology or oncology, have seized the opportunity and considerable efforts in research and development have been deployed to transfer the potential of AI to clinical applications. With AI becoming a more mainstream tool for typical medical imaging analysis tasks, such as diagnosis, segmentation, or classification, the key for a safe and efficient use of clinical AI applications relies, in part, on informed practitioners. The aim of this review is to present the basic technological pillars of AI, together with the state-of-the-art machine learning methods and their application to medical imaging. In addition, we discuss the new trends and future research directions. This will help the reader to understand how AI methods are now becoming an ubiquitous tool in any medical image analysis workflow and pave the way for the clinical implementation of AI-based solutions. 相似文献
3.
《Reports of Practical Oncology and Radiotherapy》2020,25(4):656-666
Artificial intelligence (AI) has already been implemented widely in the medical field in the recent years. This paper first reviews the background of AI and radiotherapy. Then it explores the basic concepts of different AI algorithms and machine learning methods, such as neural networks, that are available to us today and how they are being implemented in radiotherapy and diagnostic processes, such as medical imaging, treatment planning, patient simulation, quality assurance and radiation dose delivery. It also explores the ongoing research on AI methods that are to be implemented in radiotherapy in the future. The review shows very promising progress and future for AI to be widely used in various areas of radiotherapy. However, basing on various concerns such as availability and security of using big data, and further work on polishing and testing AI algorithms, it is found that we may not ready to use AI primarily in radiotherapy at the moment. 相似文献
4.
Jonathan S. Varsanik Michael S. Manak Matthew J. Whitfield Brad J. Hogan Wendell R. Su CJ Jiang Grannum R. Sant David M. Albala Ashok C. Chander 《Reviews in urology》2020,22(4):159
To assess the usefulness and applications of machine vision (MV) and machine learning (ML) techniques that have been used to develop a single cell-based phenotypic (live and fixed biomarkers) platform that correlates with tumor biological aggressiveness and risk stratification, 100 fresh prostate samples were acquired, and areas of prostate cancer were determined by post-surgery pathology reports logged by an independent pathologist. The prostate samples were dissociated into single-cell suspensions in the presence of an extracellular matrix formulation. These samples were analyzed via live-cell microscopy. Dynamic and fixed phenotypic biomarkers per cell were quantified using objective MV software and ML algorithms. The predictive nature of the ML algorithms was developed in two stages. First, random forest (RF) algorithms were developed using 70% of the samples. The developed algorithms were then tested for their predictive performance using the blinded test dataset that contained 30% of the samples in the second stage. Based on the ROC (receiver operating characteristic) curve analysis, thresholds were set to maximize both sensitivity and specificity. We determined the sensitivity and specificity of the assay by comparing the algorithm-generated predictions with adverse pathologic features in the radical prostatectomy (RP) specimens. Using MV and ML algorithms, the biomarkers predictive of adverse pathology at RP were ranked and a prostate cancer patient risk stratification test was developed that distinguishes patients based on surgical adverse pathology features. The ability to identify and track large numbers of individual cells over the length of the microscopy experimental monitoring cycles, in an automated way, created a large biomarker dataset of primary biomarkers. This biomarker dataset was then interrogated with ML algorithms used to correlate with post-surgical adverse pathology findings. Algorithms were generated that predicted adverse pathology with >0.85 sensitivity and specificity and an AUC (area under the curve) of >0.85. Phenotypic biomarkers provide cellular and molecular details that are informative for predicting post-surgical adverse pathologies when considering tumor biopsy samples. Artificial intelligence ML-based approaches for cancer risk stratification are emerging as important and powerful tools to compliment current measures of risk stratification. These techniques have capabilities to address tumor heterogeneity and the molecular complexity of prostate cancer. Specifically, the phenotypic test is a novel example of leveraging biomarkers and advances in MV and ML for developing a powerful prognostic and risk-stratification tool for prostate cancer patients. 相似文献
5.
PurposeArtificial intelligence (AI) models are playing an increasing role in biomedical research and healthcare services. This review focuses on challenges points to be clarified about how to develop AI applications as clinical decision support systems in the real-world context.MethodsA narrative review has been performed including a critical assessment of articles published between 1989 and 2021 that guided challenging sections.ResultsWe first illustrate the architectural characteristics of machine learning (ML)/radiomics and deep learning (DL) approaches. For ML/radiomics, the phases of feature selection and of training, validation, and testing are described. DL models are presented as multi-layered artificial/convolutional neural networks, allowing us to directly process images. The data curation section includes technical steps such as image labelling, image annotation (with segmentation as a crucial step in radiomics), data harmonization (enabling compensation for differences in imaging protocols that typically generate noise in non-AI imaging studies) and federated learning. Thereafter, we dedicate specific sections to: sample size calculation, considering multiple testing in AI approaches; procedures for data augmentation to work with limited and unbalanced datasets; and the interpretability of AI models (the so-called black box issue). Pros and cons for choosing ML versus DL to implement AI applications to medical imaging are finally presented in a synoptic way.ConclusionsBiomedicine and healthcare systems are one of the most important fields for AI applications and medical imaging is probably the most suitable and promising domain. Clarification of specific challenging points facilitates the development of such systems and their translation to clinical practice. 相似文献
6.
Chenyan Guo Jue Wang Yongming Wang Xinyu Qu Zhiwen Shi Yan Meng Junjun Qiu Keqin Hua 《Translational oncology》2021,14(5):101032
BackgroundMachine learning (ML) has been gradually integrated into oncologic research but seldom applied to predict cervical cancer (CC), and no model has been reported to predict survival and site-specific recurrence simultaneously. Thus, we aimed to develop ML models to predict survival and site-specific recurrence in CC and to guide individual surveillance.MethodsWe retrospectively collected data on CC patients from 2006 to 2017 in four hospitals. The survival or recurrence predictive value of the variables was analyzed using multivariate Cox, principal component, and K-means clustering analyses. The predictive performances of eight ML models were compared with logistic or Cox models. A novel web-based predictive calculator was developed based on the ML algorithms.ResultsThis study included 5112 women for analysis (268 deaths, 343 recurrences): (1) For site-specific recurrence, larger tumor size was associated with local recurrence, while positive lymph nodes were associated with distant recurrence. (2) The ML models exhibited better prognostic predictive performance than traditional models. (3) The ML models were superior to traditional models when multiple variables were used. (4) A novel predictive web-based calculator was developed and externally validated to predict survival and site-specific recurrence.ConclusionML models might be a better analytic approach in CC prognostic prediction than traditional models as they can predict survival and site-specific recurrence simultaneously, especially when using multiple variables. Moreover, our novel web-based calculator may provide clinicians with useful information and help them make individual postoperative follow-up plans and further treatment strategies. 相似文献
7.
8.
PurposeTo perform a systematic review on the research on the application of artificial intelligence (AI) to imaging published in Italy and identify its fields of application, methods and results.Materials and MethodsA Pubmed search was conducted using terms Artificial Intelligence, Machine Learning, Deep learning, imaging, and Italy as affiliation, excluding reviews and papers outside time interval 2015–2020. In a second phase, participants of the working group AI4MP on Artificial Intelligence of the Italian Association of Physics in Medicine (AIFM) searched for papers on AI in imaging.ResultsThe Pubmed search produced 794 results. 168 studies were selected, of which 122 were from Pubmed search and 46 from the working group. The most used imaging modality was MRI (44%) followed by CT(12%) ad radiography/mammography (11%). The most common clinical indication were neurological diseases (29%) and diagnosis of cancer (25%). Classification was the most common task for AI (57%) followed by segmentation (16%). 65% of studies used machine learning and 35% used deep learning. We observed a rapid increase of research in Italy on artificial intelligence in the last 5 years, peaking at 155% from 2018 to 2019.ConclusionsWe are witnessing an unprecedented interest in AI applied to imaging in Italy, in a diversity of fields and imaging techniques. Further initiatives are needed to build common frameworks and databases, collaborations among different types of institutions, and guidelines for research on AI. 相似文献
9.
Federated Learning enables machine learning across multiple sources of data and alleviates the risk of leaking private information between partners thereby encouraging knowledge sharing and collaborative modelling. Hence, Federated Learning opens the ways to a new generation of improved models. Domains involving molecular informatics, like Drug Discovery, are progressively adopting Federated Learning; this review describes the main projects and applications of Federated Learning for molecular discovery with a special focus on their benefits and the remaining challenges. All the studies demonstrate a real benefit of Federated Learning, namely the improvement of the performance of models as well as their applicability domain thanks to knowledge aggregation. The selected publications also reveal several remaining challenges to be addressed to fully exploit Federated Learning. 相似文献
10.
The digital information age has been a catalyst in creating a renewed interest in Artificial Intelligence (AI) approaches, especially the subclass of computer algorithms that are popularly grouped into Machine Learning (ML). These methods have allowed one to go beyond limited human cognitive ability into understanding the complexity in the high dimensional data. Medical sciences have seen a steady use of these methods but have been slow in adoption to improve patient care. There are some significant impediments that have diluted this effort, which include availability of curated diverse data sets for model building, reliable human-level interpretation of these models, and reliable reproducibility of these methods for routine clinical use. Each of these aspects has several limiting conditions that need to be balanced out, considering the data/model building efforts, clinical implementation, integration cost to translational effort with minimal patient level harm, which may directly impact future clinical adoption. In this review paper, we will assess each aspect of the problem in the context of reliable use of the ML methods in oncology, as a representative study case, with the goal to safeguard utility and improve patient care in medicine in general. 相似文献
11.
Magnetic Resonance Imaging (MRI) plays a vital role in diagnosis, management and monitoring of many diseases. However, it is an inherently slow imaging technique. Over the last 20 years, parallel imaging, temporal encoding and compressed sensing have enabled substantial speed-ups in the acquisition of MRI data, by accurately recovering missing lines of k-space data. However, clinical uptake of vastly accelerated acquisitions has been limited, in particular in compressed sensing, due to the time-consuming nature of the reconstructions and unnatural looking images. Following the success of machine learning in a wide range of imaging tasks, there has been a recent explosion in the use of machine learning in the field of MRI image reconstruction.A wide range of approaches have been proposed, which can be applied in k-space and/or image-space.Promising results have been demonstrated from a range of methods, enabling natural looking images and rapid computation.In this review article we summarize the current machine learning approaches used in MRI reconstruction, discuss their drawbacks, clinical applications, and current trends. 相似文献
12.
The field of machine learning has proven to be a powerful approach in smart manufacturing and processing in the chemical and process industries. This review provides a systematic overview of current state of artificial intelligence and machine learning and their applications in textile, nuclear power plant, fertilizer, water treatment, and oil and gas industries. Moreover, this study reveals the current dominant machine learning methods, pre and post processing of models, increased utilization of machine learning in terms of fault detection, prediction, optimization, quality control, and maintenance in these sectors. In addition, this review gives the insight into the actual benefits and impact of each method, and complications in their extensive deployment. Finally in the current impressive state, challenges, future development in terms of algorithm and infrastructure aspects are highlighted. 相似文献
13.
As more bioactivity and protein structure data become available, scoring functions (SFs) using machine learning (ML) to leverage these data sets continue to gain further accuracy and broader applicability. Advances in our understanding of the optimal ways to train and evaluate these ML-based SFs have introduced further improvements. One of these advances is how to select the most suitable decoys (molecules assumed inactive) to train or test an ML-based SF on a given target. We also review the latest applications of ML-based SFs for prospective structure-based virtual screening (SBVS), with a focus on the observed improvement over those using classical SFs. Finally, we provide recommendations for future prospective SBVS studies based on the findings of recent methodological studies. 相似文献
14.
PurposeNoticing the fast growing translation of artificial intelligence (AI) technologies to medical image analysis this paper emphasizes the future role of the medical physicist in this evolving field. Specific challenges are addressed when implementing big data concepts with high-throughput image data processing like radiomics and machine learning in a radiooncology environment to support clinical decisions.MethodsBased on the experience of our interdisciplinary radiomics working group, techniques for processing minable data, extracting radiomics features and associating this information with clinical, physical and biological data for the development of prediction models are described. A special emphasis was placed on the potential clinical significance of such an approach.ResultsClinical studies demonstrate the role of radiomics analysis as an additional independent source of information with the potential to influence the radiooncology practice, i.e. to predict patient prognosis, treatment response and underlying genetic changes. Extending the radiomics approach to integrate imaging, clinical, genetic and dosimetric data (‘panomics’) challenges the medical physicist as member of the radiooncology team.ConclusionsThe new field of big data processing in radiooncology offers opportunities to support clinical decisions, to improve predicting treatment outcome and to stimulate fundamental research on radiation response both of tumor and normal tissue. The integration of physical data (e.g. treatment planning, dosimetric, image guidance data) demands an involvement of the medical physicist in the radiomics approach of radiooncology. To cope with this challenge national and international organizations for medical physics should organize more training opportunities in artificial intelligence technologies in radiooncology. 相似文献
15.
MRI,PET,和CT等医学影像在新药研发和精准医疗中起着越来越重要的作用。影像技术可以被用来诊断疾病,评估药效,选择适应患者,或者确定用药剂量。 随着人工智能技术的发展,特别是机器学习以及深度学习技术在医学影像中的应用,使得我们可以用更短的时间,更少的放射剂量获取更高质量的影像。这些技术还可以帮助放射科医生缩短读片时间,提高诊断准确率。除此之外,机器学习技术还可以提高量化分析的可行性和精度,帮助建立影像与基因以及疾病的临床表现之间的关系。首先根据不同形态的医学影像,简单介绍他们在药物研发和精准医疗中的应用。并对机器学习在医学影像中的功能作一概括总结。最后讨论这个领域的挑战和机遇。 相似文献
16.
PurposeThis study aims to investigate the use of machine learning models for delivery error prediction in proton pencil beam scanning (PBS) delivery.MethodsA dataset of planned and delivered PBS spot parameters was generated from a set of 20 prostate patient treatments. Planned spot parameters (spot position, MU and energy) were extracted from the treatment planning system (TPS) for each beam. Delivered spot parameters were extracted from irradiation log-files for each beam delivery following treatment. The dataset was used as a training dataset for three machine learning models which were trained to predict delivered spot parameters based on planned parameters. K-fold cross validation was employed for hyper-parameter tuning and model selection where the mean absolute error (MAE) was used as the model evaluation metric. The model with lowest MAE was then selected to generate a predicted dose distribution for a test prostate patient within a commercial TPS.ResultsAnalysis of the spot position delivery error between planned and delivered values resulted in standard deviations of 0.39 mm and 0.44 mm for x and y spot positions respectively. Prediction error standard deviation values of spot positions using the selected model were 0.22 mm and 0.11 mm for x and y spot positions respectively. Finally, a three-way comparison of dose distributions and DVH values for select OARs indicates that the random-forest-predicted dose distribution within the test prostate patient was in closer agreement to the delivered dose distribution than the planned distribution.ConclusionsPBS delivery error can be accurately predicted using machine learning techniques. 相似文献
17.
Optimisation of compound pharmacokinetics (PK) is an integral part of drug discovery and development. Animal in vivo PK data as well as human and animal in vitro systems are routinely utilised to evaluate PK in humans. In recent years machine learning and artificial intelligence (AI) emerged as a major tool for modelling of in vivo animal and human PK, enabling prediction from chemical structure early in drug discovery, and therefore offering opportunities to guide the design and prioritisation of molecules based on relevant in vivo properties and, ultimately, predicting human PK at the point of design. This review presents recent advances in machine learning and AI models for in vivo animal and human PK for small-molecule compounds as well as some examples for antibody therapeutics. 相似文献
18.
Protein interactions have been at the focus of computational biology in recent years. In particular, interest has come from two different communities--structural and systems biology. Here, we will discuss key systems and structural biology methods that have been used for analysis and prediction of protein-protein interactions and the insight these approaches have provided on the nature and organization of protein-protein interactions inside cells. 相似文献
19.
Prediction of protein structure from sequence has been intensely studied for many decades, owing to the problem's importance and its uniquely well-defined physical and computational bases. While progress has historically ebbed and flowed, the past two years saw dramatic advances driven by the increasing “neuralization” of structure prediction pipelines, whereby computations previously based on energy models and sampling procedures are replaced by neural networks. The extraction of physical contacts from the evolutionary record; the distillation of sequence–structure patterns from known structures; the incorporation of templates from homologs in the Protein Databank; and the refinement of coarsely predicted structures into finely resolved ones have all been reformulated using neural networks. Cumulatively, this transformation has resulted in algorithms that can now predict single protein domains with a median accuracy of 2.1 Å, setting the stage for a foundational reconfiguration of the role of biomolecular modeling within the life sciences. 相似文献
20.
《Indian pacing and electrophysiology journal》2022,22(2):70-76
IntroductionCardiovascular dysautonomia comprising postural orthostatic tachycardia syndrome (POTS) and orthostatic hypotension (OH) is one of the presentations in COVID-19 recovered subjects. We aim to determine the prevalence of cardiovascular dysautonomia in post COVID-19 patients and to evaluate an Artificial Intelligence (AI) model to identify time domain heart rate variability (HRV) measures most suitable for short term ECG in these subjects.MethodsThis observational study enrolled 92 recently COVID-19 recovered subjects who underwent measurement of heart rate and blood pressure response to standing up from supine position and a 12-lead ECG recording for 60 s period during supine paced breathing. Using feature extraction, ECG features including those of HRV (RMSSD and SDNN) were obtained. An AI model was constructed with ShAP AI interpretability to determine time domain HRV features representing post COVID-19 recovered state. In addition, 120 healthy volunteers were enrolled as controls.ResultsCardiovascular dysautonomia was present in 15.21% (OH:13.04%; POTS:2.17%). Patients with OH had significantly lower HRV and higher inflammatory markers. HRV (RMSSD) was significantly lower in post COVID-19 patients compared to healthy controls (13.9 ± 11.8 ms vs 19.9 ± 19.5 ms; P = 0.01) with inverse correlation between HRV and inflammatory markers. Multiple perceptron was best performing AI model with HRV(RMSSD) being the top time domain HRV feature distinguishing between COVID-19 recovered patients and healthy controls.ConclusionPresent study showed that cardiovascular dysautonomia is common in COVID-19 recovered subjects with a significantly lower HRV compared to healthy controls. The AI model was able to distinguish between COVID-19 recovered patients and healthy controls. 相似文献