首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Seedlings of Scots pine (Pinus sylvestris L.) of a northern provenance were cultivated in nutrient solution for 10 weeks in a climate chamber. The nutrient solution (renewed by solution exchange) contained 2.5, 10 or 50 mg N I?1. All other essential elements were added in optimal proportion to the nitrogen. Seedlings cultivated at 10 and 50 mg N I?1 were similar with respect to all characteristics studied. Seedlings cultivated at 2.5 mg N I?1 showed a lower growth rate, especially for the shoot, and an altered morphology, with high root:shoot ratios and long, slender roots. The nitrogen concentrations in shoot and needles as well as in whole seedlings were not significantly affected by the nitrogen supply, while the nitrogen concentrations in the roots were somewhat lower at 2.5 mg N I?1. Ribulose bisphosphate carboxylase (EC 4.1.1.39) activity and the concentrations of carboxylase, total and soluble protein and of chlorophyll in the needles were consistently much lower for seedlings cultivated at 2.5 mg N I?1, than for seedlings grown at higher nutrient levels. A close correlation was observed between activity and concentration of the carboxylase (r=0.95). Carboxylase activity and protein were more sensitive to a low nutrient supply than was chlorophyll. The data show how activity and concentration of ribulose bisphosphate carboxylase and the concentrations of soluble and total protein and of chlorophyll in needles of pine seedlings can be negatively affected by the nutrient supply, also when the nitrogen concentrations in the needles are close to those observed at optimal nutrient supply. It is suggested that pine seedlings store assimilated non-protein nitrogen in the needles when protein synthesis is under restraint. The nitrogen concentration in needles and seedlings could not be used as a measure of the physiological state of the seedlings.  相似文献   

2.
3.
4.
Extracts of resting pine seeds inhibited the proteinase activities present in extracts of endosperms of germinating seeds (hydrolysis of haemoglobin at pH 3.7 and hydrolysis of casein at pH 5.4 and 7.0). Heating the extracts of resting seeds at 60°C destroyed their own proteinase activity but their proteinase inhibitor activity decreased by only 25 to 30%. Some properties of the inhibitor(s) were studied using extracts treated at 60°C. The inhibitor activities were non-dialysable. the inhibition increased linearly with increasing inhibitor concentration up to 80% of total proteinase activity, and the maximal inhibition was 80% at pH 3.7. 90% at pH 5.4. and 97% at pH 7.0. The extracts of resting seeds did not inhibit the pepsin-like acid pine proteinase that accounts for a minor part of the proteolytic activity of endosperm extracts at pH 3.7. Neither did they have any effect on the acid pine carboxypeptidase or trypsin and chymotrypsin. Fresh extracts of endosperms of germinating seeds contained relatively high proteinase activity (assayed directly) and moderate inhibitor activity (assayed after treatment at 60°C). When fresh extracts were dialysed at 50°C for 48 h their proteinase activities increased considerably while the corresponding inhibitor activities disappeared. It is concluded that the decrease of inhibitors during dialysis is due to enzymatic inactivation and that the corresponding increase of proteinase activities is at least partly due to the destruction of the inhibitors.  相似文献   

5.
Tree growth and survival were assessed in 283 populations of Scots pine ( Pinus sylvestris L.) originating from a broad geographic range and grown at 90 common-garden experimental sites across Europe, and in 101 populations grown at 14 sites in North America. Growth and survival were analysed in response to climatic transfer distance, the difference in mean annual temperature (MAT) between the site and the population origin. Differences among populations at each site, and across sites for regional groups of populations, were related to climate transfer distance, but in opposite ways in the northern vs. southern parts of the species range. Climate transfers equivalent to warming by 1–4 °C markedly increased the survival of populations in northern Europe (≥ 62°N, < 2 °C MAT) and modestly increased height growth ≥ 57°N but decreased survival at < 62°N and modestly decreased height growth at < 54°N latitude in Europe. Thus, even modest climate warming will likely influence Scots pine survival and growth, but in distinct ways in different parts of the species range.  相似文献   

6.
Cryopreservation of embryogenic cultures of Scots pine   总被引:5,自引:2,他引:5  
The aim of the study was to develop an effective cryopreservation method for Scots pine (Pinus sylvestris L.) embryogenic cultures. Altogether nine cell lines derived from three mother trees were cryopreserved after cold hardening using dimethylsulfoxide or two different mixtures of polyethyleneglycol 6000, glucose and dimethylsulfoxide as cryoprotectants. Seventy-eight percent of the cell lines remained viable after cryostorage, the best cryoprotectant treatment being 10% polyethyleneglycol 6000, 10% glucose, and 10% dimethylsulfoxide in water. This treatment resulted in significantly better regrowth of the embryogenic cultures than with the other cryoprotectants or with the controls. According to microscopical observations, the cells that retained their viability and regrowth ability after cryopreservation were the embryonal head cells, as well as some elliptic suspensor cells close to the embryonal head cell area. When proliferation growth of the frozen cultures had started, their morphological appearance was the same as the non-frozen cultures. In addition, the RAPD assays suggested that the cryostorage treatment used here preserved the genetic fidelity of the Scots pine embryogenic cultures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
The respiratory CO2 exchange and the growth of the annual shoots were followed in Scots pine (Pinus sylvestris L.) trees growing under extreme continental forest-steppe conditions near the lake Baikal. The temperature coefficient of dark respiration (Q10) in growing shoots dropped down from 3.2–4.0 (in the temperature range of 10–20°C) to 1.5–2.0 (in the temperature range of 20–30°C). The changes in averaged daily respiration rates correlated with the changes in shoot growth increments and temperature (with the multiple determination coefficient of 0.94). Growth respiration of the axial shoots during the phenophase reached 80% of the total respiration costs, with the coefficients of growth respiration and maintenance respiration 0.32 and 0.021. In young crown shoots, the average value of CO2 evolution in the light combined for the whole observation period (years 1976–2004) was about 1 kg/dm2, that is 9% of CO2 evolution from the trunk surface.  相似文献   

8.
Gas exchange in a 20-year-old stand of Scots pine   总被引:7,自引:0,他引:7  
The rates of net photosynthesis and transpiration of one-year-old shoots were measured in situ in five different positions within the crown of a young Scots pine ( Pinus sylvestris L.). Measurements were carried out on south- and north-facing shoots on the third and sixth whorls, respectively, and on an east-facing shoot on the ninth whorl. In another investigation the rates of gas exchange of one-year-old shoots on the third whorl of eight different trees were studied. The measurements were made during June and July, 1977, under non-limiting conditions of soil water. The daily rates of net photosynthesis in whorls three and six followed the light conditions closely, with higher rates for the south side of each whorl and higher for whorl three than six. On whorl nine the shoot had a higher light compensation point and a low rate of photosynthesis at light saturation compared to the other shoot positions. The quantum yield for the shoot on the lowest whorl, as estimated from the linear part of the light response curve, was 50% lower than for shoots on whorl three and six.
The variation in transpiration rates was pronounced within the crown as an effect of differences in the absolute value and diurnal course of stomatal conductance. The variation in net photosynthesis was small between different trees while the variation in transpiration was much higher. Thus the variation in water use efficiency was great. It is concluded that it is possible to extrapolate measurements of net photosynthesis from individual trees up to a stand level without introducing large errors in the estimate. More caution must be paid before extrapolating tree transpiration up to stand transpiration. However, before an extrapolation of gas exchange is made from tree to stand level the variation in net photosynthesis and transpiration rate within the crown must be known.  相似文献   

9.
Daily dynamics of radial cell expansion during wood formation within the stems of 25-year-old Scots pine trees (Pinus sylvestris L.), growing in field conditions, were studied. The samples of forming wood layers were extracted 4 times per day for 3 days. Possible variations in the growth on different sides of the stem, duration of cell development in radial cell expansion phase and dynamics of cell growth in this phase were taken into account. The perimeters of tracheid cross-sections as a reflection of primary cell wall growth were the criterion of growth in a radial direction. For the evaluation of growing cell perimeters a special system for digital processing and image analysis of tracheid cross-sections of the forming wood was used. Growth rate for certain time intervals was estimated by the change in the relation of the perimeter of each observed cell in each of ten tracheid rows in each of 12 trees to the perimeter of the xylem cell of the same row before the expansion. Temporal differences in average values of the relations were estimated by Analyses of Variance. The existence of daily dynamics of Scots pine xylem cell radial growth has been proved. Intensive growth of pine tracheids has been shown to occur at any time of the day and to depend on the temperature regime of the day and the night as well as water supply of stem tissues. Moreover, reliable differences (P = 0.95) in the increment of cell walls during tracheid radial expansion have been found. Pulsing changes of the water potentials both of the cell and the apoplast, as the reason for the fluctuations of radial cell growth rate, were discussed.  相似文献   

10.
de la Rosa  T.M.  Aphalo  P.J.  Lehto  T. 《Plant and Soil》1998,201(1):17-25
The effects of supplementary far-red sidelight on the formation of mycorrhizas and on the accumulation and allocation of dry weight and mineral nutrients were studied in Scots pine (Pinus sylvestris L.) seedlings. Starting one week after germination the seedlings were subjected to two different light quality regimes: control and simulated sparse-canopy conditions (FR+). In the FR+ regime, light reflected by neighbouring plants was simulated by means of supplementary far-red light sources, which reduced the horizontal red/far-red photon ratio (R:FR) without affecting PAR. Seedlings were harvested after three months of treatment. FR+ increased stem height and decreased the total dry weight of seedlings. Dry weight allocation to needles was not affected, whereas dry weight allocation to roots was reduced and that to stems was increased in FR+ treated seedlings. The total number of short root tips and developing mycorrhizas per seedling were lower in FR+ than in control plants. Most short roots were developing mycorrhizas, while non-mycorrhizal short roots and mycorrhizas with mantle or external mycelium were very scarce. Changes in the allocation of nutrients in general followed the changes in dry weight allocation, and changes in nutrient content followed those in total dry weight. However, mismatches among these changes resulted in significant changes in nutrient concentrations in some organs: the concentrations of nitrogen and potassium in needles and the concentration of nitrogen in stems were higher in FR+ than in control seedlings. Changes in biomass and nutrient allocation under low R:FR may promote rapid height growth during early development in stands of Scots pine seedlings, but concomitant reductions in growth of the root system and mycorrhizas may negatively affect tree performance over the long term.  相似文献   

11.
Scots pine ( Pinus sylvestris L.) is generally resistant to chilling temperatures. Porphyrin metabolism under low temperature stress was studied in etiolated seedlings of Scots pine. Low temperatures affect porphyrin accumulation in at least 3 different temperature sensitive sites: 1) the light activated accumulation of 5-aminolevulinic acid, a porphyrin precursor, 2) the metabolism of 5-aminolevulinic acid to form porphyrins and 3) a preferential accumulation of chlorophyll a over chlorophyll b . The temperature sensitivity of pine is compared to maize ( Zea mays L.), a chilling sensitive plant.  相似文献   

12.
Seed predation and dispersal in relict Scots pine forests in southern Spain   总被引:5,自引:0,他引:5  
Castro  Jorge  Gómez  José M.  García  Daniel  Zamora  Regino  Hódar  José A. 《Plant Ecology》1999,145(1):115-123
For two years, the seed rain and magnitude of seed losses due to predation were evaluated in Scots pine forests in southern Spain. The Crossbill was the most important pre-dispersal predator, consuming more than 80% of ripening seeds. In addition, other birds, mainly Tits and Siskin, also consumed seeds just before seed dispersal, reaching values of 16 and 51% losses in 1996 and 1997, respectively. Seed rain was monitored in different microhabitats (under pine canopies, under shrubs and in open areas), and was most intense under the canopy of mother plants both years. Post-dispersal seed predators (rodents and birds) consumed up to 96% of seeds reaching the ground. Both pre- and post-dispersal seed predators preferentially harvested filled seeds. Post-dispersal predation was similarly intense in all microhabitats, so predators did not change the spatial distribution of the seed rain. These high predation rates were constant between years, localities and habitats (woodland and treeline). We hypothesize that this high rate of seed predation is a major factor limiting the regeneration of these relict populations of Scots pine in its southernmost limit.  相似文献   

13.
Abstract
  • 1 During 1989–93, field studies were conducted in Finland to develop a method based on pheromone traps to monitor and forecast population levels of the European pine sawfly (Neodiprion sertifer Geoffr.) and tree defoliation.
  • 2 Three traps per site were baited with 100 µg of the N. sertifer sex pheromone, the acetate ester of (2S,3S,7S)‐3,7‐dimethyl‐2‐pentadecanol (diprionol), in maturing pine stands in southern and central Finland. In addition, three different dosages (1, 10 and 100 µg) of the pheromone were tested in 1991–92.
  • 3 The highest number of males was observed in traps baited with the highest dose. On average, there was a 10‐fold increase in trap catch between lure doses.
  • 4 Density of overwintering eggs was used to evaluate the effectiveness of pheromone traps in predicting sawfly populations. The proportion of healthy overwintering eggs was determined each year. A model based on the number of current shoots on sample trees, diameter at breast height and tree height was formulated to estimate eggs per hectare.
  • 5 Linear regression analysis produced high coefficients of determination between number of males in traps and density of total eggs in the subsequent generation, when populations were at peak densities. The relationships were not significant for low population densities. The results indicate a risk of moderate defoliation when the seasonal trap catch is 800–1000 males per trap or higher.
  相似文献   

14.
Recovery of photosynthesis in winter-stressed Scots pine   总被引:4,自引:5,他引:4  
Abstract. . Winter-induced inhibition of photosynthesis in Scots pine (Pinns sylvestris L.) is caused by the combined effects of light and freezing temperatures; light causes photoinhibition of photosystem II (Strand & Oquist, 1985b, Physiologic Plantarum, 65 , 117–123), whereas frost causes inhibition of enzymatic steps of photosynthesis (Strand & Öquist, 1988, Plant, Cell & Environment, 11 , 231–238). To reveal limiting steps during recovery from winter stress, the potential of photosynthesis to recover and the actual recovery outdoors during spring, were studied in Scots pine. Studies of light dependent O2-evolution under saturating CO2 and recordings of room temperature fluorescence induction kinetics were used. When branches of pine, in February and March, were brought into the laboratory and kept at 18°Cand 100μmol m?2 s?1, light saturated rates and apparent quantum yields of photo-synthetic O2-evolution recovered fully within approximately 48h. The photochemical efficiency of photosystem II, as measured by Fv/Fm ratios, recovered fully within 24h after an initial lag-phase of 2-3 h. Under natural winter conditions, the Fv/Fm ratio decreased more in exposed than in shaded pine, whereas the efficiency of photosynthesis was similarly inhibited in exposed and shadedpine. However, when recovery from winter stress occurred during spring, the Fv/Fm ratios of both shaded and exposed pine recovered well before photosynthesis. It is concluded that the light-induced photoinhibition component of winter stress in photosynthesis of pine recovers well before the frost induced component(s) of winter stress. In this context, reversible photoinhibition of photosynthesis in evergreen conifers is considered as a dynamic down-regulation of photosystem II to prevent more severe photodynamic damage of the thylakoid membrane when photosynthesis is inhibited by frost.  相似文献   

15.
The b/c intron of the mitochondrial nad1 gene, was sequenced to characterize the indel region of ponderosa pine, Pinus ponderosa. The sequence in ponderosa pine was aligned with the sequence in Scots pine, Pinus sylvestris, to design seven primers that are useful for sequencing and for revealing size variation in amplified fragments in ponderosa pine, Scots pine, and limber pine, Pinus flexilis. These primers reveal variability in all three species, and the pattern of variability within ponderosa pine is described by a preliminary survey. The indel region of ponderosa pine contains three distinct elements with lengths of 31, 32, and 34 bp. Received: 1 March 2000 / Accepted: 14 April 2000<@head-com-p1a.lf>Communicated by P.M.A. Tigerstedt  相似文献   

16.
Stem radial growth responds to environmental conditions, and has been widely used as a proxy to study long‐term patterns of tree growth and to assess the impact of environmental changes on growth patterns. In this study, we use a tree ring dataset from the Catalan Ecological and Forest Inventory to study the temporal variability of Scots pine (Pinus sylvestris L.) stem growth during the 20th century across a relatively large region (Catalonia, NE Spain) close to the southern limit of the distribution of the species. Basal area increment (BAI) was modelled as a function of tree size and environmental variables by means of mixed effects models. Our results showed an overall increase of 84% in Scots pine BAI during the 20th century, consistent with most previous studies for temperate forests. This trend was associated with increased atmospheric CO2 concentrations and, possibly, with a general increase in nutrient availability, and we interpreted it as a fertilization effect. Over the same time period, there was also a marked increase in temperature across the study region (0.19 °C per decade on average). This warming had a negative impact on radial growth, particularly at the drier sites, but its magnitude was not enough to counteract the fertilization effect. In fact, the substantial warming observed during the 20th century in the study area did not result in a clear pattern of increased summer drought stress because of the large variability in precipitation, which did not show any clear time trend. But the situation may change in the future if temperatures continue to rise and/or precipitation becomes scarcer. Such a change could potentially reverse the temporal trend in growth, particularly at the driest sites, and is suggested in our data by the relative constancy of radial growth after ca. 1975, coinciding with the warmer period. If this situation is representative of other relatively dry, temperate forests, the implications for the regional carbon balance would be substantial.  相似文献   

17.
Coniferous tree stems contain large amounts of oleoresin under positive pressure in the resin ducts. Studies in North‐American pines indicated that the stem oleoresin exudation pressure (OEP) correlates negatively with transpiration rate and soil water content. However, it is not known how the OEP changes affect the emissions of volatile vapours from the trees. We measured the OEP, xylem diameter changes indicating changes in xylem water potential and monoterpene emissions under field conditions in mature Scots pine (Pinus sylvestris L.) trees in southern Finland. Contrary to earlier reports, the diurnal OEP changes were positively correlated with temperature and transpiration rate. OEP was lowest at the top part of the stem, where water potentials were also more negative, and often closely linked to ambient temperature and stem monoterpene emissions. However, occasionally OEP was affected by sudden changes in vapour pressure deficit (VPD), indicating the importance of xylem water potential on OEP as well. We conclude that the oleoresin storage pools in tree stems are in a dynamic relationship with ambient temperature and xylem water potential, and that the canopy monoterpene emission rates may therefore be also regulated by whole tree processes and not only by the conditions prevailing in the upper canopy.  相似文献   

18.
19.
During winter and early spring, evergreen boreal conifers are severely stressed because light energy cannot be used when photosynthesis is pre‐empted by low ambient temperatures. To study photosynthetic performance dynamics in a severe boreal climate, seasonal changes in photosynthetic pigments, chloroplast proteins and photochemical efficiency were studied in a Scots pine forest near Zotino, Central Siberia. In winter, downregulation of photosynthesis involved loss of chlorophylls, a twofold increase in xanthophyll cycle pigments and sustained high levels of the light stress‐induced zeaxanthin pigment. The highest levels of xanthophylls and zeaxanthin did not occur during the coldest winter period, but rather in April when light was increasing, indicating an increased capacity for thermal dissipation of excitation energy at that time. Concomitantly, in early spring the D1 protein of the photosystem II (PSII) reaction centre and the light‐harvesting complex of PSII dropped to their lowest annual levels. In April and May, recovery of PSII activity, chloroplast protein synthesis and rearrangements of pigments were observed as air temperatures increased above 0°C. Nevertheless, severe intermittent low‐temperature episodes during this period not only halted but actually reversed the physiological recovery. During these spring low‐temperature episodes, protective processes involved a complementary function of the PsbS and early light‐induced protein thylakoid proteins. Full recovery of photosynthesis did not occur until the end of May. Our results show that even after winter cold hardening, photosynthetic activity in evergreens responds opportunistically to environmental change throughout the cold season. Therefore, climate change effects potentially improve the sink capacity of boreal forests for atmospheric carbon. However, earlier photosynthesis in spring in response to warmer temperatures is strongly constrained by environmental variation, counteracting the positive effects of an early recovery process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号