首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Coactivation of knee flexors during knee extension assists in joint stability by exerting an opposing torque to the anterior tibial displacement induced by the quadriceps. This opposing torque is believed to be generated by eccentric muscle actions that stiffen the knee, thereby attenuating strain to joint ligaments, particularly the anterior cruciate ligament (ACL). However, as the lengths of knee muscles vary with changes in joint position, the magnitude of flexor/extensor muscle force coupling may likewise vary, possibly affecting the capacity for active knee stabilization. The purpose of this study was to assess the effect of changes in movement speed and joint position on eccentric/concentric muscle action relationships in the knees of uninjured (UNI) and post-ACL-surgery (INJ) subjects (n = 14). All subjects were tested for maximum eccentric and concentric torque of the contralateral knee flexors and extensor muscles at four isokinetic speeds (15 degrees-60 degrees x s(-1)) and four joint position intervals (20 degrees-60 degrees of knee flexion). Eccentric flexor torque was normalized to the percentage of concentric flexor torque generated at each joint position interval for each speed tested (flexor E-C ratio). In order to estimate the capacity of the knee flexors to resist active knee extension, the eccentric-flexor/concentric-extensor ratios were also computed for each joint position interval and speed (flexor/extensor E-C ratio). The results revealed that eccentric torque surpassed concentric torque by 3%-144% across movement speeds and joint position intervals. The magnitude of the flexor E-C ratio and flexor/extensor E-C increased significantly with speed in both groups of subjects (P < 0.05) and tended to rise with muscle length as the knee was extended; peak values were generated at the most extended joint position (20 degrees-30 degrees). Although torque development patterns were symmetrical between the contralateral limbs in both groups, between-group comparisons revealed significantly higher flexor/extensor E-C ratios for the INJ group compared to the UNI group (P < 0.05), particularly at the fastest speed tested (60 degrees x s(-1)). The results indicate that joint position and movement speed influence the eccentric/concentric relationships of knee flexors and extensors. The INJ subjects appeared to accommodate to surgery by developing the eccentric function of their ACL and normal knee flexors, particularly at higher speeds and at more extended knee joint positions. This may assist in the dynamic stabilization of the knee at positions where ACL grafts have been reported to be most vulnerable to strain.  相似文献   

2.
The aim of this study was to determine the power output and work done by different muscle groups at the hip and knee joints during a rising movement, to be able to tell the degree of activation of the muscle groups and the relationship between concentric and eccentric work. Nine healthy male subjects rose from a chair with the seat at knee level. The moments of force about the hip and knee joints were calculated semidynamically. The power output (P) and work in the different muscle groups surrounding the joints was calculated as moment of force times joint angular velocity. Work was calculated as: work = f Pdt. The mean peak concentric power output was for the hip extensors 49.9 W, hip flexors 7.9 W and knee extensor 89.5 W. This power output corresponded to a net concentric work of 20.7 J, 1.0 J and 55.6 J, respectively. There was no concentric power output from the knee flexor muscles. Energy absorption through eccentric muscle action was produced by the hip extensors and hip flexors with a mean peak power output of 4.8 W and 7.4 W, respectively. It was concluded that during rising, the hip and knee muscles mainly worked concentrically and that the greatest power output and work were produced during concentric contraction of the knee and hip extensor muscles. There was however also a demand for eccentric work by the hip extensors as well as both concentric and eccentric work by the hip flexors. The knee flexor muscles were unloaded.  相似文献   

3.
This study compared the effects of 6-week whole-body vibration (WBV) training programs with different frequency and peak-to-peak displacement settings on knee extensor muscle strength and power. The underlying mechanisms of the expected gains were also investigated. Thirty-two physically active male subjects were randomly assigned to a high-frequency/high peak-to-peak displacement group (HH; n = 12), a low-frequency/low peak-to-peak displacement group (LL; n = 10) or a sham training group (SHAM; n = 10). Maximal voluntary isometric, concentric and eccentric torque of the knee extensors, maximal voluntary isometric torque of the knee flexors, jump performance, voluntary muscle activation, and contractile properties of the knee extensors were assessed before and after the training period. Significant improvement in knee extensor eccentric voluntary torque (P < 0.01), knee flexor isometric voluntary torque (P < 0.05), and jump performance (P < 0.05) was observed only for HH group. Regardless of the group, knee extensor muscle contractile properties (P < 0.05) were enhanced. No modification was observed for voluntary muscle activation or electrical activity of agonist and antagonist muscles. We concluded that high-frequency/high peak-to-peak displacement was the most effective vibration setting to enhance knee extensor muscle strength and jump performance during a 6-week WBV training program and that these improvements were not mediated by central neural adaptations.  相似文献   

4.
Dynamics of the delayed-onset muscle soreness after the exercise on a bicycle ergometer with floating seat under predominantly concentric and eccentric conditions was evaluated using three different tests. Depending on the used test, the maximum delayed-onset muscle soreness was recorded on days 1 to 3 after the exercise without significant differences between the groups performing concentric and eccentric work. A trend of a slower development of both the delayed onset of muscle soreness and the corresponding recovery was recorded by the test with a passive pressure on the working muscle group (knee joint extensor muscles). A positive correlation between the delayed-onset muscle soreness and the relative work intensity was found; the relative intensity was assessed according to the decrease in strength during the recovery period. No correlation between the delayed-onset muscle soreness and exercise duration was detected.  相似文献   

5.
The present study aimed to clarify the effects of knee joint angle on the behavior of the medial gastrocnemius muscle (MG) fascicles during eccentric plantar flexions. Eight male subjects performed maximal eccentric plantar flexions at two knee positions [fully extended (K0) and 90° flexed (K90)]. The eccentric actions were preceded by static plantar flexion at a 30° plantar flexed position and then the ankle joint was forcibly dorsiflexed to 15° of dorsiflexion with an isokinetic dynamometer at 30°/s and 150°/s. Tendon force was calculated by dividing the plantar flexion torque by the estimated moment arm of the Achilles tendon. The MG fascicle length was determined with ultrasonography. The tendon forces during eccentric plantar flexions were influenced by the knee joint angle, but not by the angular velocity. The MG fascicle lengths were elongated as the ankle was dorsiflexed in K0, but in K90 they were almost constant despite the identical range of ankle joint motion. These results suggested that MG fascicle behavior during eccentric actions was markedly affected by the knee joint angle. The difference in the fascicle behavior between K0 and K90 could be attributed to the non-linear force–length relations and/or to the slackness of tendinous tissues.  相似文献   

6.
This study compared the steadiness of submaximal contractions with the knee extensor muscles in young and old adults. Twenty young and twenty old subjects underwent assessment of isometric maximum voluntary contraction (MVC), one-repetition maximum (1-RM) strength, and steadiness during isometric, concentric, and eccentric contractions with the knee extensor muscles. The old adults displayed 33% lower MVC force and a 41% lower 1-RM load. The coefficient of variation for force was significantly greater for the old adults during isometric contractions at 2, 5, and 10% of MVC but not at 50% MVC. The decline in steadiness at low forces experienced by the men was marginally greater than that experienced by the women. The steadiness of concentric and eccentric contractions was similar in young and old adults at 5, 10, and 50% of 1-RM load. Old subjects exhibited greater coactivation of an antagonist muscle compared with young subjects during the submaximal isometric and anisometric contractions. These results indicate that, whereas the ability to exert steady submaximal forces with the knee extensor muscles was reduced in old adults, fluctuations in knee joint angle during slow movements were similar for young and old adults.  相似文献   

7.
An increase in gear ratio of the limb extensor muscles during joint extension has been suggested to be a mechanism that facilitates optimal power production by skeletal muscles. The objectives of this study were to: (1) measure gear ratios at the wrist, elbow, shoulder, ankle, knee, and hip joints of jumping dogs, (2) compute the work performed by each of these joints, and (3) measure muscle shortening velocity for a joint exhibiting an increasing gear ratio during joint extension. The gear ratio out-lever was computed by dividing the ground reaction force (GRF) moment by the GRF, whereas the in-lever was directly measured as the perpendicular distance from the joint center to the line of action of the extensor muscle. In addition, changes in fascicle length were measured from the vastus lateralis muscle using sonomicrometry. Of the joints examined, only the gear ratios at the shoulder and knee joints increased during jumping in a manner that could facilitate peak power production of actively shortening muscles. The vastus lateralis was found to shorten at an average velocity of 3.20 muscle lengths per second. This is similar to estimates of shortening velocity that produce peak muscular power in mammals the size of dogs. Additionally, the knee extensors were found to produce a large proportion (26.6%) of the positive external work of the limbs. These observations suggest that dynamic gearing in jumping dogs may allow the extensor muscles of the knee joint to shorten in a way that maximizes their power production.  相似文献   

8.
There are several pathologies related to the patellofemoral joint, in which the patellofemoral syndrome is one of the most common and challenging to treat. The patellofemoral syndrome results from a malalignment of the knee extensor mechanism. The purpose of our study was to describe and compare EMG responses of the vastus medialis and vastus lateralis muscles while walking up and down stairs and other clinical and functional responses in PFS subjects before and after a physical therapy intervention. Eleven subjects were studied and divided in two groups: six subjects with clinically diagnosed patellofemoral syndrome and five healthy control subjects. Subjects were evaluated by a functional and biomechanical evaluation protocol: postural evaluation, pain and knee function evaluation, and electromyographic activity of vastus medialis and lateralis muscles while walking up and down a staircase. Results showed higher efficiency of the vastus medialis muscle in carrying out eccentric exercises and increased muscle activity in both the vastus medialis and vastus lateralis muscles while climbing stairs after physical therapy treatment. We were able to identify an improvement in postural alignment of lower limb muscles and knee functionality among patellofemoral syndrome group subjects after treatment.  相似文献   

9.
The purpose of this study was to determine if pomegranate juice supplementation improved the recovery of skeletal muscle strength after eccentric exercise in subjects who routinely performed resistance training. Resistance trained men (n = 17) were randomized into a crossover design with either pomegranate juice or placebo. To produce delayed onset muscle soreness, the subjects performed 3 sets of 20 unilateral eccentric elbow flexion and 6 sets of 10 unilateral eccentric knee extension exercises. Maximal isometric elbow flexion and knee extension strength and muscle soreness measurements were made at baseline and 2, 24, 48, 72, 96, and 168 hours postexercise. Elbow flexion strength was significantly higher during the 2- to 168-hour period postexercise with pomegranate juice compared with that of placebo (main treatment effect; p = 0.031). Elbow flexor muscle soreness was also significantly reduced with pomegranate juice compared with that of placebo (main treatment effect; p = 0.006) and at 48 and 72 hours postexercise (p = 0.003 and p = 0.038, respectively). Isometric strength and muscle soreness in the knee extensors were not significantly different with pomegranate juice compared with those using placebo. Supplementation with pomegranate juice attenuates weakness and reduces soreness of the elbow flexor but not of knee extensor muscles. These results indicate a mild, acute ergogenic effect of pomegranate juice in the elbow flexor muscles of resistance trained individuals after eccentric exercise.  相似文献   

10.
A cinematographic recording of the movements of the lower limbs together with simultaneous emg tracings from nine lower limb muscles were obtained from two male track sprinters during three phases of a 100 m sprint run. The extensor muscles of the hip joint were found to be the primary movers by acceleration of the body's center of gravity (C.G.) during the ground phase of the running cycle. The extensors of the knee joint were also important in this, but to a minor extent, while the plantar flexors of the ankle joint showed the least contribution. The biarticular muscles functioned in a way different from the monoarticular muscles in the sense that they perform eccentric work during the flight and recovery phases and concentric work during the whole ground phase (support), whereas the monoarticular muscles are restricted first to eccentric work and then to concentric work during the ground phase. Furthermore, the biarticular muscles show variation (and rate of variation) in muscle length to a larger extent than the monoarticular muscles. Paradoxical muscle actions appear to take place around the knee joint, where the hamstring muscles, m. gastrocnemius, m. vastus laterialis and m. vastus medialis act as synergists by extending the knee joint during the last part of the ground phase.  相似文献   

11.
ABSTRACT: Bryanton, MA, Kennedy, MD, Carey, JP, and Chiu, LZF. Effect of squat depth and barbell load on relative muscular effort in squatting. J Strength Cond Res 26(10): 2820-2828, 2012-Resistance training is used to develop muscular strength and hypertrophy. Large muscle forces, in relation to the muscle's maximum force-generating ability, are required to elicit these adaptations. Previous biomechanical analyses of multi-joint resistance exercises provide estimates of muscle force but not relative muscular effort (RME). The purpose of this investigation was to determine the RME during the squat exercise. Specifically, the effects of barbell load and squat depth on hip extensor, knee extensor, and ankle plantar flexor RME were examined. Ten strength-trained women performed squats (50-90% 1 repetition maximum) in a motion analysis laboratory to determine hip extensor, knee extensor, and ankle plantar flexor net joint moment (NJM). Maximum isometric strength in relation to joint angle for these muscle groups was also determined. Relative muscular effect was determined as the ratio of NJM to maximum voluntary torque matched for joint angle. Barbell load and squat depth had significant interaction effects on hip extensor, knee extensor, and ankle plantar flexor RME (p < 0.05). Knee extensor RME increased with greater squat depth but not barbell load, whereas the opposite was found for the ankle plantar flexors. Both greater squat depth and barbell load increased hip extensor RME. These data suggest that training for the knee extensors can be performed with low relative intensities but require a deep squat depth. Heavier barbell loads are required to train the hip extensors and ankle plantar flexors. In designing resistance training programs with multi-joint exercises, how external factors influence RME of different muscle groups should be considered to meet training objectives.  相似文献   

12.
The present study investigated the influence of a 12-week electromyostimulation (EMS) training program performed by elite rugby players. Twenty-five rugby players participated in the study, 15 in an electrostimulated group and the remaining 10 in a control group. EMS was conducted on the knee extensor, plantar flexor, and gluteus muscles. During the first 6 weeks, training sessions were carried out 3 times a week and during the last 6 weeks, once a week. Isokinetic torque of the knee extensors was determined at different eccentric and concentric angular velocities ranging from -120 to 360 degrees .s(-1). Scrummaging and full squat strength, vertical jump height and sprint-running times were also evaluated. After the first 6 weeks of EMS, only the squat strength was significantly improved (+8.3 +/- 6.5%; p < 0.01). After the 12th week, the -120 degrees .s(-1) maximal eccentric, 120 and 240 degrees .s(-1) maximal concentric torque (p < 0.05), squat strength (+15.0 +/- 8.0%; p < 0.001), squat jump (+10.0 +/- 9.5%; p < 0.01), and drop jump from a 40-cm height (+6.6 +/- 6.1%; p < 0.05) were significantly improved. No significant change was observed for the control group. A 12-week EMS training program demonstrated beneficial effects on muscle strength and power in elite rugby players on particular tests. However, rugby skills such as scrummaging and sprinting were not enhanced.  相似文献   

13.
We examined the temporal changes of isokinetic strength performance of knee flexor (KF) and extensor (KE) strength after a football match. Players were randomly assigned to a control (N = 14, participated only in measurements and practices) or an experimental group (N = 20, participated also in a football match). Participants trained daily during the two days after the match. Match and training overload was monitored with GPS devices. Venous blood was sampled and muscle damage was assessed pre-match, post-match and at 12h, 36h and 60h post-match. Isometric strength as well as eccentric and concentric peak torque of knee flexors and extensors in both limbs (dominant and non-dominant) were measured on an isokinetic dynamometer at baseline and at 12h, 36h and 60h after the match. Functional (KFecc/KEcon) and conventional (KFcon/KEcon) ratios were then calculated. Only eccentric peak torque of knee flexors declined at 60h after the match in the control group. In the experimental group: a) isometric strength of knee extensors and knee flexors declined (P<0.05) at 12h (both limbs) and 36h (dominant limb only), b) eccentric and concentric peak torque of knee extensors and flexors declined (P<0.05) in both limbs for 36h at 60°/s and for 60h at 180°/s with eccentric peak torque of knee flexors demonstrating a greater (P<0.05) reduction than concentric peak torque, c) strength deterioration was greater (P<0.05) at 180°/s and in dominant limb, d) the functional ratio was more sensitive to match-induced fatigue demonstrating a more prolonged decline. Discriminant and regression analysis revealed that strength deterioration and recovery may be related to the amount of eccentric actions performed during the match and athletes'' football-specific conditioning. Our data suggest that recovery kinetics of knee flexor and extensor strength after a football match demonstrate strength, limb and velocity specificity and may depend on match physical overload and players'' physical conditioning level.  相似文献   

14.
Specific features of the functioning of mono- and biarticular muscles were studied using a multijoint movement (a high jump) as an example. The powers of the knee and ankle joint extensors are insufficient for a strong and quick movement such as a high jump. Biarticular muscles (m. rectus femoris) transfer forces/powers from one joint to another, thereby compensating for the physiological shortcoming of monoarticular muscles, that is, a decrease in the tractive force with increasing contraction rate. In a high jump, a power of 300 W may be transferred from the hip to the knee joint via the m. rectus femoris; 230 W, from the knee to the hip joint via the hamstring muscle; 210 W, from the knee joint to the ankle via the m. gastrocnemius; and 15 W, from the metatarsophalangeal joint to the ankle via the mm. flexors.  相似文献   

15.
《Zoology (Jena, Germany)》2015,118(4):239-247
Anurans (frogs and toads) have been shown to have relatively compliant skeletal muscles. Using a meta-analysis of published data we have found that muscle stiffness is negatively correlated with joint range of motion when examined across mammalian, anuran and bird species. Given this trend across a broad phylogenetic sample, we examined whether the relationship held true within anurans. We identified four species that differ in preferred locomotor mode and hence joint range of motion (Lithobates catesbeianus, Rhinella marina, Xenopus laevis and Kassina senegalensis) and hypothesized that smaller in vivo angles (more flexed) at the knee and ankle joint would be associated with more compliant extensor muscles. We measured passive muscle tension during cyclical stretching (20%) around L0 (sarcomere lengths of 2.2 μm) in fiber bundles extracted from cruralis and plantaris muscles. We found no relationship between muscle stiffness and range of motion for either muscle–joint complex. There were no differences in the passive properties of the cruralis muscle among the four species, but the plantaris muscles of the Xenopus and Kassina were significantly stiffer than those of the other two species. Our results suggest that in anurans the stiffness of muscle fibers is a relatively minor contributor to stiffness at the level of joints and that variation in other anatomical properties including muscle–tendon architecture and joint mechanics as well as active control likely contribute more significantly to range of motion during locomotion.  相似文献   

16.
It was hypothesized that both vibration frequency and muscle length modulate the strengthening of muscles that is assumed to result from whole-body vibration (WBV). Length of knee extensor muscles during vibration is affected by the knee joint angle; the lengths of the knee extensors increase with more flexed knee joint angles. In an intervention study 28 volunteers were randomly assigned to 1 of 4 groups. Each group received 4 weeks of WBV at 1 of 3 different frequencies (20, 27, or 34 Hz) or 1 of 2 different lengths of knee extensors. Voluntary, isometric knee extension moment-angle relationship was determined. Initially, stronger subjects reacted differently to WBV than weaker participants. In stronger subjects knee extension moment did not improve; in the weaker subjects considerable improvements were observed ranging from 10 to 50%. Neither vibration frequency nor muscle length during the intervention affected the improvements. In addition to strength, the knee joint angle at which the maximal joint moment was generated (optimal joint angle) was affected. When trained at short muscle lengths, optimal angle shifted to more extend joint position. WBV training at long muscle lengths tended to induce an opposite shift. The amount of this shift tended to be influenced by vibration frequency; the lower the vibration frequency the larger the shift. Shifts of optimal lengths occurred in both weaker and stronger subjects. This study shows that muscle length during training affects the angle of knee joint at which the maximal extension moment was generated. Moreover, in weaker subjects WBV resulted in higher maximal knee joint extension moments. Vibration frequency and muscle length during vibration did not affect this joint moment gain.  相似文献   

17.
Approximately 320,000 anterior cruciate ligament (ACL) injuries in the United States each year are non-contact injuries, with many occurring during a single-leg jump landing. To reduce ACL injury risk, one option is to improve muscle strength and/or the activation of muscles crossing the knee under elevated external loading. This study?s purpose was to characterize the relative force production of the muscles supporting the knee during the weight-acceptance (WA) phase of single-leg jump landing and investigate the gastrocnemii forces compared to the hamstrings forces. Amateur male Western Australian Rules Football players completed a single-leg jump landing protocol and six participants were randomly chosen for further modeling and simulation. A three-dimensional, 14-segment, 37 degree-of-freedom, 92 muscle-tendon actuated model was created for each participant in OpenSim. Computed muscle control was used to generate 12 muscle-driven simulations, 2 trials per participant, of the WA phase of single-leg jump landing. A one-way ANOVA and Tukey post-hoc analysis showed both the quadriceps and gastrocnemii muscle force estimates were significantly greater than the hamstrings (p<0.001). Elevated gastrocnemii forces corresponded with increased joint compression and lower ACL forces. The elevated quadriceps and gastrocnemii forces during landing may represent a generalized muscle strategy to increase knee joint stiffness, protecting the knee and ACL from external knee loading and injury risk. These results contribute to our understanding of how muscle?s function during single-leg jump landing and should serve as the foundation for novel muscle-targeted training intervention programs aimed to reduce ACL injuries in sport.  相似文献   

18.
The force velocity relationship of in vivo human muscle fibers has often been derived from the torque-angular speed relationship during maximal voluntary isokinetic contractions. However, the assumption of a close association between joint performance and muscle mechanics is questionable. We aimed to determine the relationship between knee extension angular speeds, vastus lateralis fascicle and muscle tendon unit (MTU) shortening speeds, and maximal knee extensor force for the entire range of knee joint movement, for the isokinetic range, and for the ranges before, after and at peak torque occurrence, with different commonly used pre-loading conditions. Higher peak forces were observed when knee extensions were preceded by a pre-load, despite the similarity in fascicle shortening speeds. For the entire and the isokinetic range, MTU always shortened faster than fascicles, and this difference increased as joint speed increased. Interestingly, fascicle shortening velocities were greater before compared to after peak torque occurrence while the opposite happened at the MTU level. Assuming a close relationship between joint and fascicle dynamics results in an overestimation of muscle contractile component shortening velocity or force production at peak torque. The force velocity relationships obtained in vivo depend crucially on the test conditions, and the movement range used for analysis.  相似文献   

19.

Aim

To investigate whether there is a sex difference in exercise induced muscle damage.

Materials and Method

Vastus Lateralis and patella tendon properties were measured in males and females using ultrasonography. During maximal voluntary eccentric knee extensions (12 reps x 6 sets), Vastus Lateralis fascicle lengthening and maximal voluntary eccentric knee extensions torque were recorded every 10° of knee joint angle (20–90°). Isometric torque, Creatine Kinase and muscle soreness were measured pre, post, 48, 96 and 168 hours post damage as markers of exercise induced muscle damage.

Results

Patella tendon stiffness and Vastus Lateralis fascicle lengthening were significantly higher in males compared to females (p<0.05). There was no sex difference in isometric torque loss and muscle soreness post exercise induced muscle damage (p>0.05). Creatine Kinase levels post exercise induced muscle damage were higher in males compared to females (p<0.05), and remained higher when maximal voluntary eccentric knee extension torque, relative to estimated quadriceps anatomical cross sectional area, was taken as a covariate (p<0.05).

Conclusion

Based on isometric torque loss, there is no sex difference in exercise induced muscle damage. The higher Creatine Kinase in males could not be explained by differences in maximal voluntary eccentric knee extension torque, Vastus Lateralis fascicle lengthening and patella tendon stiffness. Further research is required to understand the significant sex differences in Creatine Kinase levels following exercise induced muscle damage.  相似文献   

20.
Although both trunk mass and trunk position have the potential to affect lower extremity biomechanics during landing, these effects are not well understood. Our overall hypothesis stated that both trunk mass and trunk position affect lower extremity biomechanics in landing. Thus, our purpose was to determine the effects of an added trunk load and kinematic trunk adaptation groups on lower extremity joint kinematics, kinetics, and energetics during drop-landings. Twenty-one recreationally active subjects were instrumented for biomechanical analysis. Subjects performed two sets of eight double-limb landings with and without 10% body weight added to the trunk. On lower extremity dependent variables, 2(condition: no load, trunk load)x2(group: trunk extensors vs. trunk flexors) ANOVAs were performed. Condition by group interactions at the hip showed differing responses to the added trunk load between groups where the trunk extensor group decreased hip extensor efforts ( downward decrease 11-18%) while the trunk flexor group increased hip extensor efforts ( upward increase 14-19%). The trunk load increased biomechanical demands at the knee and ankle regardless of trunk adaptation group. However, the percent increases in angular impulses and energy absorption in the trunk extensor group were 14-28% while increases in the trunk flexor group were 4-9%. Given the 10% body weight added to the trunk, the 14-28% increases at the knee and ankle in the trunk extensor group were likely due to the reduced hip extensor efforts during landing. Overall these findings support our overall hypothesis that both trunk mass and trunk position affect lower extremity biomechanics during vertically oriented landing tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号