首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Trends in biotechnology》2023,41(8):1066-1079
Bioconversion of C1 feedstocks for chemical production offers a promising solution to global challenges such as the energy and food crises and climate change. The methylotroph Pichia pastoris is an attractive host system for the production of both recombinant proteins and chemicals from methanol. Recent studies have also demonstrated its potential for utilizing CO2 through metabolic engineering or coupling with electrocatalysis. This review focuses on the bioconversion of C1 feedstocks for chemical production using P. pastoris. Herein the challenges and feasible strategies for chemical production in P. pastoris are discussed. The potential of P. pastoris to utilize other C1 feedstocks – including CO2 and formate – is highlighted, and new insights from the perspectives of synthetic biology and material science are proposed.  相似文献   

3.
The benthic oxygen consumption and carbon dioxide production of undisturbed and sieved sediment cores with various values for the biomass of polychaetes collected from the intertidal mud-flat of Nanakita River estuary of Japan were measured simultaneously. The benthic oxygen consumption and carbon dioxide production increased in proportion to the biomass of a dominant polychaete species Neanthes japonica (Izuka). This increase was not explained by the respiration of the animals alone. The residual increase in benthic O2 and CO2 fluxes may be due to mineralization processes in the burrow wall and enhanced diffusion caused by the pumping activity of the worms. From the average biomass of polychaetes at the study site, total benthic O2 and CO2 fluxes were estimated to be 5.2 mmol·m−2·h−1 and 7.3 mmol·m−2·h−1, respectively, at 20 ° C. The worms were responsible for 79% of the total O2 flux and 73% of the total CO2 flux but the respiration of the worms accounted for only 53% of the total O2 flux and 36% of the total CO2 flux. The residual enhanced fluxes were 26% and 37% for the total O2 and CO2 fluxes, respectively.  相似文献   

4.
The present study was aimed to develop a membrane sparger (MS) integrated into a tubular photobioreactor to promote the increase of the carbon dioxide (CO2) fixation by Spirulina sp. LEB 18 cultures. The use of MS for the CO2 supply in Spirulina cultures resulted not only in the increase of DIC concentrations but also in the highest accumulated DIC concentration in the liquid medium (127.4 mg L−1 d−1). The highest values of biomass concentration (1.98 g L−1), biomass productivity (131.8 mg L−1 d−1), carbon in biomass (47.9% w w−1), CO2 fixation rate (231.6 mg L−1 d−1), and CO2 use efficiency (80.5% w w−1) by Spirulina were verified with MS, compared to the culture with conventional sparger for CO2 supply. Spirulina biomass in both culture conditions had high protein contents varying from 64.9 to 69% (w w−1). MS can be considered an innovative system for the supply of carbon for the microalgae cultivation and biomass production. Moreover, the use of membrane system might contribute to increased process efficiency with a reduced cost of biomass production.  相似文献   

5.
Sulfur sources capable of replacing sulfide were surveyed for biomethanation from H2 and CO2 by thermoautotrophic methanogen, Methanobacterium thermoautotrophicum. Among sulfur containing compounds tested, l-cysteine, thiosulfate and coenzyme M gave poor growth when added as sulfur sources, whereas simultaneous addition of two sulfur sources, l-cysteine+thiosulfate, l-cysteine+l-methionine or l-cysteine+coenzyme M stimulated the growth.In a pressure-controlled fermentor system developed to obtain stoichiometry between input and output gases, the ratio of H2 and CO2 consumption to CH4 production was almost stoichiometric, and when l-cysteine and thiosulfate or l-methionine were used in place of sulfide (control) similar growth patterns were observed. In a culture with continuous supply of substrates gases (1.3 vvm) and sulfur sources of 1 mM l-cysteine+2 mM thiosulfate, specific growth rate and specific methane production rate were 0.35 h and 3.24 l g−1h−1, respectively, compared to 0.22 h−1 and 5.76 l gh−1 with Na2 S.  相似文献   

6.
A methanogenic consortium of bacteria, isolated from anaerobic sewage sludge by growth on glucose and yeast extract and mineral salts, consisted of two strict anaerobes, one of which (the GD strain) degraded glucose and the other was a methanogen. In addition the consortium contained a small population of facultative anaerobes (4 types) which constituted <1% of the total biomass.In glucose-limited chemostat cultures of the consortium, the maximum methane output rate occured with a dilution rate (D) of 0.1 h−1. With D = 0.10 h−1 the consortium fermented both the glucose and yeast extract giving the following C balance (% C of glucose and yeast extract in the products): acetate, 34.2; biomass, 25.4; CO2, 13.8; CH4, 6.5; ethanol, 7.9; butyrate, 7.3; propionate, 3.2 (C recovery, 98.3%; H2 production, 0.04 mol/Cmol substrate.The GD strain in uncontaminated culture fermented glucose only and gave the following C balance in a glucose-limited steady state chemostat culture with D=0.12 h−1 (% glucose C in the products): acetate, 35.1; ethanol, 23.1; CO2, 20.6; biomass, 12.3; butyrate, 4.4; propionate, 1.7 (C recovery, 97.2%); H2 production, 0.293 mol/C mol glucose.The maximum growth yields (YG) from the C sources were 0.139 and 0.292 (C-mol biomass/C-mol substrate) for the GD organism and the consortium respectively.The maintenance energies were remarkably small compared with that typical of aerobic bacteria. This prompts the suggestion that the main function of maintenance energy substrate in aerobes is not to provide ATP but rather reducing equivalents to protect cells against O2 damage. It is concluded that, in the technology of methanogenic conversion of wastes, besides the acidogenic and methanogenic stages, a third stage, for digestion of the biomass formed is required, otherwise the biomass can account for 25% of the substrate C supplied.  相似文献   

7.
The physiological responses of xylose-grown Debaryomyces hansenii were studied under different nutritive stress conditions using continuous cultivation at a constant dilution rate of 0.055 h−1. Metabolic steady-state data were obtained for xylose, ammonium, potassium, phosphate and oxygen limitation. For xylose and potassium limitation, fully oxidative metabolism occurred leading to the production of biomass and CO2 as the only metabolic products. However, potassium-limiting cultivation was the most severe nutritional stress of all tested, exhibiting the highest xylose and O2 specific consumption rates along with the lowest biomass yield, 0.22 g g−1 xylose. It is suggested that carbon was mainly channelled to meet the cellular energy requirements for potassium uptake. For the other limiting nutritional conditions increasing amounts of extracellular xylitol were found for ammonium, phosphate and oxygen limitation. Although xylitol excretion is not significant for ammonium limitation, the same is not true for phosphate limitation where the xylitol productivity reached 0.10 g l−1 h−1, about half of that found under oxygen-limiting conditions, 0.21 g l−1 h−1. This work is the first evidence that xylitol production by D. hansenii might not only be a consequence of a redox imbalance usually attained under semi-aerobic conditions, but additional physiological mechanisms must be involved, especially under phosphate limitation. Cell yields changed drastically as a function of the limiting nutrient, being 0.22, 0.29, and 0.39 g g−1 xylose for potassium, oxygen and phosphate limitation, respectively, and are a good indicator of the severity of nutritive stress.  相似文献   

8.
Butanediols are widely used in the synthesis of polymers, specialty chemicals and important chemical intermediates. Optically pure R-form of 1,3-butanediol (1,3-BDO) is required for the synthesis of several industrial compounds and as a key intermediate of β-lactam antibiotic production. The (R)-1,3-BDO can only be produced by application of a biocatalytic process. Cupriavidus necator H16 is an established production host for biosynthesis of biodegradable polymer poly-3-hydroxybutryate (PHB) via acetyl-CoA intermediate. Therefore, the utilisation of acetyl-CoA or its upstream precursors offers a promising strategy for engineering biosynthesis of value-added products such as (R)-1,3-BDO in this bacterium. Notably, C. necator H16 is known for its natural capacity to fix carbon dioxide (CO2) using hydrogen as an electron donor. Here, we report engineering of this facultative lithoautotrophic bacterium for heterotrophic and autotrophic production of (R)-1,3-BDO. Implementation of (R)-3-hydroxybutyraldehyde-CoA- and pyruvate-dependent biosynthetic pathways in combination with abolishing PHB biosynthesis and reducing flux through the tricarboxylic acid cycle enabled to engineer strain, which produced 2.97 g/L of (R)-1,3-BDO and achieved production rate of nearly 0.4 Cmol Cmol−1 h−1 autotrophically. This is first report of (R)-1,3-BDO production from CO2.  相似文献   

9.
10.
Bio-upcycling of plastics is an upcoming alternative approach for the valorization of diverse polymer waste streams that are too contaminated for traditional recycling technologies. Adipic acid and other medium-chain-length dicarboxylates are key components of many plastics including polyamides, polyesters, and polyurethanes. This study endows Pseudomonas putida KT2440 with efficient metabolism of these dicarboxylates. The dcaAKIJP genes from Acinetobacter baylyi, encoding initial uptake and activation steps for dicarboxylates, were heterologously expressed. Genomic integration of these dca genes proved to be a key factor in efficient and reliable expression. In spite of this, adaptive laboratory evolution was needed to connect these initial steps to the native metabolism of P. putida, thereby enabling growth on adipate as sole carbon source. Genome sequencing of evolved strains revealed a central role of a paa gene cluster, which encodes parts of the phenylacetate metabolic degradation pathway with parallels to adipate metabolism. Fast growth required the additional disruption of the regulator-encoding psrA, which upregulates redundant β-oxidation genes. This knowledge enabled the rational reverse engineering of a strain that can not only use adipate, but also other medium-chain-length dicarboxylates like suberate and sebacate. The reverse engineered strain grows on adipate with a rate of 0.35 ± 0.01 h−1, reaching a final biomass yield of 0.27 ± 0.00 gCDW gadipate−1. In a nitrogen-limited medium this strain produced polyhydroxyalkanoates from adipate up to 25% of its CDW. This proves its applicability for the upcycling of mixtures of polymers made from fossile resources into biodegradable counterparts.  相似文献   

11.
Bio-fixation of carbon dioxide (CO2) by microalgae has been recognised as an attractive approach to offset anthropogenic emissions. Biological carbon mitigation is the process whereby autotrophic organisms, such as microalgae, convert CO2 into organic carbon and O2 through photosynthesis; this process through respiration produces biomass. In this study Dunaliella tertiolecta was cultivated in a semicontinuous culture to investigate the carbon mitigation rate of the system. The algae were produced in 1.2-L Roux bottles with a working volume of 1 L while semicontinuous production commenced on day 4 of cultivation when the carbon mitigation rate was found to be at a maximum for D. tertiolecta. The reduction in CO2 between input and output gases was monitored to predict carbon fixation rates while biomass production and microalgal carbon content are used to calculate the actual carbon mitigation potential of D. tertiolecta. A renewal rate of 45 % of flask volume was utilised to maintain the culture in exponential growth with an average daily productivity of 0.07 g L?1 day?1. The results showed that 0.74 g L?1 of biomass could be achieved after 7 days of semicontinuous production while a total carbon mitigation of 0.37 g L?1 was achieved. This represented an increase of 0.18 g L?1 in carbon mitigation rate compared to batch production of D. tertiolecta over the same cultivation period.  相似文献   

12.
Herein we report the use of Pseudomonas putida F1 biofilms grown on carbonized cellulosic fibers to achieve biodegradation of airborne volatile organic compounds (VOCs) in the absence of any bulk aqueous-phase media. It is believed that direct exposure of gaseous VOC substrates to biomass may eliminate aqueous-phase mass transfer resistance and facilitate VOC capture and degradation. When tested with toluene vapor as a model VOC, the supported biofilm could grow optimally at 300 p.p.m. toluene and 80% relative humidity, with a specific growth rate of 0.425 day−1. During long-term VOC biodegradation tests in a tubular packed bed reactor, biofilms achieved a toluene degradation rate of 2.5 mg gDCW−1 h−1 during the initial growth phase. Interestingly, the P. putida F1 film kept biodegrading activity even at the stationary nongrowth phase. The supported biofilms with a biomass loading of 20% (wt) could degrade toluene at a rate of 1.9 mg gDCW−1 h−1 during the stationary phase, releasing CO2 at a rate of 6.4 mg gDCW−1 h−1 at the same time (indicating 100% conversion of substrate carbon to CO2). All of these observations promised a new type of “dry” biofilm reactors for efficient degradation of toxic VOCs without involving a large amount of water.  相似文献   

13.
To determine the most favorable conditions for the production of ethanol by Pachysolen tannophilus, this yeast was grown in batch cultures with various initial concentrations of two of the constituents of the culture medium: d-xylose (so), ranging from 1 g·l−1 to 200 g·l−1, and yeast extract (lo), ranging from 0 g·l−1 to 8 g·l−1. The most favorable conditions proved to be initial concentrations of So=25 g·l−1 and lo=4 g·l−1, which gave a maximum specific growth rate of 0.26 h−1, biomass productivity of 0.023 g·l−1·h−1, overall biomass yield of 0.094 g·g−1, specific xylose-uptake rate (qs) of 0.3 g·g−1·h−1 (for t=50 h), specific ethanol-production rate (qE) of 0.065 g·g−1·h−1 and overall ethanol yield of 0.34 g·g−1; qs values decreased after the exponential growth phase while qE remained practically constant.  相似文献   

14.
Flocs consisting of Anabaena and Zoogloea spp. were used as a model system for the study of planktonic phototroph-heterotroph interactions. In CO2-limited continuous culture (3.2 μmol of NaHCO3 liter−1 h−1, 1.5 μmol of glucose liter−1 h−1, pH 8.5, D = 0.026 h−1), the biomass of the phototroph increased 8.6-fold due to association. However, direct CO2 exchange accounted for only a 3.8-fold increase. When the glucose supply rate was increased to 7.5 μmol liter−1 h−1, there was a 26-fold increase in biomass. When CO2 was supplied in excess, there was no difference due to association. In batch culture, using the same medium, the specific growth rate was 0.029 h−1 for the phototroph alone and 0.047 h−1 for the phototroph in association with the heterotroph. The stimulatory effect of the heterotroph was found only under CO2-limiting conditions and was directly related to the concentration of organic matter supplied in the medium. Both the biomass and the growth rate of the Anabaena sp. were increased by association with the Zoogloea sp. Thus, dissolved organic matter may substitute for CO2 to maximize both growth rate and biomass production by phototrophs when heterotrophic bacteria are present.  相似文献   

15.
The pathway of autotrophic CO2 fixation was studied in the phototrophic bacterium Chloroflexus aurantiacus and in the aerobic thermoacidophilic archaeon Metallosphaera sedula. In both organisms, none of the key enzymes of the reductive pentose phosphate cycle, the reductive citric acid cycle, and the reductive acetyl coenzyme A (acetyl-CoA) pathway were detectable. However, cells contained the biotin-dependent acetyl-CoA carboxylase and propionyl-CoA carboxylase as well as phosphoenolpyruvate carboxylase. The specific enzyme activities of the carboxylases were high enough to explain the autotrophic growth rate via the 3-hydroxypropionate cycle. Extracts catalyzed the CO2-, MgATP-, and NADPH-dependent conversion of acetyl-CoA to 3-hydroxypropionate via malonyl-CoA and the conversion of this intermediate to succinate via propionyl-CoA. The labelled intermediates were detected in vitro with either 14CO2 or [14C]acetyl-CoA as precursor. These reactions are part of the 3-hydroxypropionate cycle, the autotrophic pathway proposed for C. aurantiacus. The investigation was extended to the autotrophic archaea Sulfolobus metallicus and Acidianus infernus, which showed acetyl-CoA and propionyl-CoA carboxylase activities in extracts of autotrophically grown cells. Acetyl-CoA carboxylase activity is unexpected in archaea since they do not contain fatty acids in their membranes. These aerobic archaea, as well as C. aurantiacus, were screened for biotin-containing proteins by the avidin-peroxidase test. They contained large amounts of a small biotin-carrying protein, which is most likely part of the acetyl-CoA and propionyl-CoA carboxylases. Other archaea reported to use one of the other known autotrophic pathways lacked such small biotin-containing proteins. These findings suggest that the aerobic autotrophic archaea M. sedula, S. metallicus, and A. infernus use a yet-to-be-defined 3-hydroxypropionate cycle for their autotrophic growth. Acetyl-CoA carboxylase and propionyl-CoA carboxylase are proposed to be the main CO2 fixation enzymes, and phosphoenolpyruvate carboxylase may have an anaplerotic function. The results also provide further support for the occurrence of the 3-hydroxypropionate cycle in C. aurantiacus.  相似文献   

16.
The entomogenous fungus Cordyceps taii, a traditional Chinese medicinal mushroom, exhibits potent important pharmacological effects and it has great potential for health foods and medicine. In this work, the effects of oxygen supply on production of biomass and bioactive helvolic acid were studied in shake-flask fermentation of C. taii mycelia. The value of initial volumetric oxygen transfer coefficient (KLa) within 10.1–33.8 h−1 affected the cell growth, helvolic acid production and expression levels of biosynthetic genes. The highest cell concentration of 17.2 g/L was obtained at 14.3 h−1 of initial KLa. The highest helvolic acid production was 9.6 mg/L at 10.1 h−1 of initial KLa. The expression levels of three genes encoding hydroxymethylglutaryl-CoA synthase, hydroxymethylglutaryl-CoA reductase and squalene synthase were down-regulated on day 2 and day 8 but up-regulated on day 14 at an initial KLa value of 10.1 h−1 vs. 33.8 h−1, which well corresponded to the helvolic acid biosynthesis in those conditions. The information obtained would be helpful for improving the biomass and helvolic acid production in large-scale fermentation of C. taii.  相似文献   

17.
Red blood cell (rbc) carbon dioxide transport was examined in vitro in three teleosts (Oncorhynchus mykiss, Anguilla anguilla, Scophthalmus maximus) and an elasmobranch (Scyliorhinus canicula) using a radioisotopic assay that measures the net conversion of plasma HCO3 to CO2. The experiments were designed to compare the intrinsic rates of rbc CO2 excretion and the impact of haemoglobin oxygenation/deoxygenation among the species.Under conditions simulating in vivo levels of plasma HCO3 and natural haematocrits, the rate of whole blood CO2 excretion varied between 14.0 μmol ml−1 h−1 (S. canicula) and 17.6 μmol ml−1 h−1 (O. mykiss). The rate of CO2 excretion in separated plasma was significantly greater in the dogfish, S. canicula. The contribution of the rbc to overall whole blood CO2 excretion was low in the dogfish (46 ± 6%) compared to the teleosts (trout, 71 ± 4%; turbot, 64 ± 5%; eel, 55 ± 3%).To eliminate the naturally occurring differences in haematocrit and plasma [HCO3] as inter-specific variables, the rates of whole blood CO2 excretion were determined in blood that had been resuspended to constant [HCO3] (5 mmol−1) and haematocrit (20%) in appropriate teleost and elasmobranch Ringer solutions. Under such normalized conditions, the rate of whole blood CO2 excretion was significantly higher in the turbot (22.4 ± 1.3 μmol ml−1 h−1) in comparison to the other species (16.4–18.4 μmol ml−1 h−1) and thus revealed a greater intrinsic rate of rbc CO2 excretion in the turbot.To study the contribution of Bohr protons, the rates of whole blood CO2 excretion were assessed in blood subjected to rapid oxygenation during the initial phase of the 3 min assay period. Rapid oxygenation significantly enhanced the rate of CO2 excretion in the teleosts but not in the elasmobranch. The extent of the increase provided by the rapid oxygenation of haemoglobin was a linear function of the extent of the Haldane effect, as quantified in each species from in vitro CO2 dissociation (combining) curves. Under steady-state conditions, deoxygenated blood exhibited greater rates of CO2 excretion than oxygenated blood in the teleosts but not in the elasmobranch. As a consequence of the Haldane effect, rbc intracellular pH was increased in the teleosts by deoxygenation but was unaltered in the elasmobranch.The results, by extrapolation, suggest that the rates of CO2 excretion in vivo are influenced by the magnitude of the Haldane effect and the extent of haemoglobin oxygenation during gill transit in addition to the intrinsic rate at which the rbc converts plasma HCO3 to CO2.  相似文献   

18.
《Aquatic Botany》2002,72(3-4):219-233
We studied the potential role of dissolved inorganic carbon (DIC) in determining vegetation dominance of Potamogeton pectinatus L. and Chara aspera Deth. ex Willd. by monitoring the seasonal dynamics of DIC in a shallow lake and comparing the use of DIC of the two species. The HCO3-concentration in summer dropped from 2.5 to <0.5 mM with seasonally increasing Chara biomass, whereas outside the vegetation concentrations remained at 2.5 mM. Inside Potamogeton spp. vegetation DIC decreased from 2.5 to ca. 0.75 mM HCO3. A growth experiment showed ash-free biomass for P. pectinatus was nearly two times as high as for C. aspera at 3 mM HCO3, but almost two times lower at 0.5 mM than at 3.0. In a separate experiment, P. pectinatus precultured at a relatively low HCO3-level had a lower net photosynthetic rate (Pmax, 0.1 mmol O2 g−1 DW h−1) than C. aspera (Pmax, 0.1 mmol O2 g−1 DW h−1) over the range of HCO3-concentrations tested (Pmax, 0.14 mmol O2 g−1 DW h−1). In response to CO2 no significant differences between the compensation points (P. pectinatus, 28 mM; C. aspera 66 mM), were observed, but the photosynthetic rate increased faster than for C. aspera than for P. pectinatus. Under field conditions, the use of CO2 is not important since inside vegetation CO2-concentrations were below 10 μM, and thus, not available for photosynthesis of either species during the main part of the growth season. It is suggested that C. aspera may be a better competitor for HCO3 than P. pectinatus in conditions with a low HCO3 supply. As HCO3 is a strong limiting factor for growth inside the vegetation and probably the only carbon source available, the superior ability of C. aspera to use HCO3 may be an important factor explaining its present dominance in Veluwemeer.  相似文献   

19.
Sequential heterotrophic/autotrophic cultivation method was investigated for production of high concentration of Chlorella biomass with high cellular protein and chlorophyll contents. By using autotrophic growth medium, which contains glucose as organic carbon source, for heterotrophic culture, the protein and chlorophyll contents of the cells could be increased by simply illuminating the culture broth and aerating with CO2-enriched air at the end of the heterotrophic culture. A system was then constructed for continuous sequential heterotrophic/autotrophic production of algal biomass. The system was composed of the conventional mini-jar fermentor for the heterotrophic phase and a tubular photobioreactor for the autotrophic phase. The exhaust gas from the heterotrophic phase was used for aeration of the autotrophic phase in order to reduce the CO2 emission into the atmosphere. With this system, it was possible to produce high Chlorella biomass concentration (14 g L-1) containing 60.1% protein and 3.6% chlorophyll continuously for more than 640 h. During the steady state, about 27% of the CO2 produced in the heterotrophic phase was re-utilized in the autotrophic phase. When the tubular photobioreactor was replaced with a 3.5-L internally illuminated photobioreactor, the productivity increased from 2 g L-1 d-1 to 4 g L-1 d-1. However, the chlorophyll content of the cells was lower due to the lower light supply coefficient of the photobioreactor. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Aerobic production-scale processes are constrained by the technical limitations of maximum oxygen transfer and heat removal. Consequently, microbial activity is often controlled via limited nutrient feeding to maintain it within technical operability. Here, we present an alternative approach based on a newly engineered Escherichia coli strain. This E. coli HGT (high glucose throughput) strain was engineered by modulating the stringent response regulation program and decreasing the activity of pyruvate dehydrogenase. The strain offers about three-fold higher rates of cell-specific glucose uptake under nitrogen-limitation (0.6 gGlc gCDW−1 h−1) compared to that of wild type, with a maximum glucose uptake rate of about 1.8 gGlc gCDW−1 h−1 already at a 0.3 h−1 specific growth rate. The surplus of imported glucose is almost completely available via pyruvate and is used to fuel pyruvate and lactate formation. Thus, E. coli HGT represents a novel chassis as a host for pyruvate-derived products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号