首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant monoclonal antibodies (MAbs) are increasingly being used for therapeutic use and correct glycosylation of these MAbs is essential for their correct function. Glycosylation profiles are host cell‐ and antibody class‐dependent and can change over culture time and environmental conditions. Therefore, rapid monitoring of glycan addition/status is of great importance for process validity. We describe two workflows of generally applicability for glycan profiling of purified and gel‐purified MAbs produced in NS0 and CHO cells, in which small‐scale antibody purification and buffer exchange is combined with PNGase F glycan cleavage and graphite HyperCarb desalting. MALDI‐ToF mass spectrometry is used for sensitive detection of glycan forms, with the ability to confirm glycan structures by selective ion fragmentation. Both workflows are rapid, technically simple and amenable to automation, and use in multi‐well formats. Biotechnol. Bioeng. 2010;107: 902–908. © 2010 Wiley Periodicals, Inc.  相似文献   

2.
Glycan decorations dictate protein functions and thus have crucialimportance in life sciences. Previously glycoprotein analysiswas mainly focused on the analysis of the liberated glycansallowing detailed structural, but lacking positional information.Analysis of intact glycopeptides required purified glycoproteinsand manual interpretation of spectra. We developed an approachwhere mixtures of native glycopeptides were analyzed with tandemmass spectrometry and the spectra were analyzed with automatedin silico workflows. The latter included combination of theoriginal spectra, generation of a human N-glycopeptide library,matching the glycopeptide spectra to the theoretical peptidefragments, scoring the observations, predicting the glycan composition,which were then matched against the observed spectra, statisticalvalidation of the results with target–decoy filtering,and finally the calculation of glycan structures. We verifiedthis approach with the 150 serotransferrin glycopeptide spectra,where we automatically generated 105 putative interpretationsfrom >109 theoretical glycopeptides. After scoring 62 glycopeptidespectra obtained validated interpretation with concomitant aminoacid sequences, glycan compositions, and structures. When applyingthis method to an unknown mixture of human plasma glycoproteinswe identified 80 glycopeptides with their glycan compositionsor structures. Instead of weeks and months of interpretationwork of mass spectrometry files our automated workflow can beexecuted in few hours and provide information concomitantlyfrom both the amino acid and glycan moieties of intact glycopeptidesin mixtures. No advanced computational skills were needed touse these preformed and tested workflows. In case users wantto add complexity to the analysis they are allowed to alterall parameters and rebuild the workflows.  相似文献   

3.
The comprehensive analysis of protein glycosylation is a major requirement for understanding glycoprotein function in biological systems, and is a prerequisite for producing recombinant glycoprotein therapeutics. This protocol describes workflows for the characterization of glycopeptides and their site-specific heterogeneity, showing examples of the analysis of recombinant human erythropoietin (rHuEPO), α1-proteinase inhibitor (A1PI) and immunoglobulin (IgG). Glycoproteins of interest can be proteolytically digested either in solution or in-gel after electrophoretic separation, and the (glyco)peptides are analyzed by capillary/nano-liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). If required, specific glycopeptide enrichment steps, such as hydrophilic interaction liquid chromatography (HILIC), can also be performed. Particular emphasis is placed on data interpretation and the determination of site-specific glycan heterogeneity. The described workflow takes approximately 3-5 d, including sample preparation and data analysis. The data obtained from analyzing released glycans of rHuEPO and IgG, described in the second protocol of this series (10.1038/nprot.2012.063), provide complementary detailed glycan structural information that facilitates characterization of the glycopeptides.  相似文献   

4.
The feasibility of global glycoprotein analysis by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and infrared multiphoton dissociation (IRMPD) tandem mass spectrometry is demonstrated. Combined 2D gel glycoprotein separation and visualization, in-gel digestion, and accurate (<10 ppm) mass measurement allowed identification of human glycoproteins and revealed differences in glycosylation. IRMPD obviates the need for glycan release, which prevents sample dispersal, and allows the assignment of glycan structures to specific sites of N-glycosylation.  相似文献   

5.
Next to the identification of proteins and the determination of their expression levels, the analysis of post-translational modifications (PTM) is becoming an increasingly important aspect in proteomics. Here, we review mass spectrometric (MS) techniques for the study of protein glycosylation at the glycopeptide level. Enrichment and separation techniques for glycoproteins and glycopeptides from complex (glyco-)protein mixtures and digests are summarized. Various tandem MS (MS/MS) techniques for the analysis of glycopeptides are described and compared with respect to the information they provide on peptide sequence, glycan attachment site and glycan structure. Approaches using electrospray ionization and matrix-assisted laser desorption/ionization (MALDI) of glycopeptides are presented and the following fragmentation techniques in glycopeptide analysis are compared: collision-induced fragmentation on different types of instruments, metastable fragmentation after MALDI ionization, infrared multi-photon dissociation, electron-capture dissociation and electron-transfer dissociation. This review discusses the potential and limitations of tandem mass spectrometry of glycopeptides as a tool in structural glycoproteomics.  相似文献   

6.
Large scale mass spectrometry analysis of N-linked glycopeptides is complicated by the inherent complexity of the glycan structures. Here, we evaluate a mass spectrometry approach for the targeted analysis of N-linked glycopeptides in complex mixtures that does not require prior knowledge of the glycan structures or pre-enrichment of the glycopeptides. Despite the complexity of N-glycans, the core of the glycan remains constant, comprising two N-acetylglucosamine and three mannose units. Collision-induced dissociation (CID) mass spectrometry of N-glycopeptides results in the formation of the N-acetylglucosamine (GlcNAc) oxonium ion and a [mannose+GlcNAc] fragment (in addition to other fragments resulting from cleavage within the glycan). In ion-trap CID, those ions are not detected due to the low m/z cutoff; however, they are detected following the beam-type CID known as higher energy collision dissociation (HCD) on the orbitrap mass spectrometer. The presence of these product ions following HCD can be used as triggers for subsequent electron transfer dissociation (ETD) mass spectrometry analysis of the precursor ion. The ETD mass spectrum provides peptide sequence information, which is unobtainable from HCD. A Lys-C digest of ribonuclease B and trypsin digest of immunoglobulin G were separated by ZIC-HILIC liquid chromatography and analyzed by HCD product ion-triggered ETD. The data were analyzed both manually and by search against protein databases by commonly used algorithms. The results show that the product ion-triggered approach shows promise for the field of glycoproteomics and highlight the requirement for more sophisticated data mining tools.  相似文献   

7.
The characterization of glycosylation is required for many protein therapeutics. The emergence of antibody and antibody-like molecules with multiple glycan attachment sites has rendered glycan analysis increasingly more complicated. Reliance on site-specific glycopeptide analysis is therefore necessary to fully analyze multi-glycosylated biotherapeutics. Established glycopeptide methodologies have generally utilized a priori knowledge of the glycosylation states of the investigated protein(s), database searching of results generated from data-dependent liquid chromatography–tandem mass spectrometry workflows, and extracted ion quantitation of the individual identified species. However, the inherent complexity of glycosylation makes predicting all glycoforms on all glycosylation sites extremely challenging, if not impossible. That is, only the “knowns” are assessed. Here, we describe an agnostic methodology to qualitatively and quantitatively assess both “known” and “unknown” site-specific glycosylation for biotherapeutics that contain multiple glycosylation sites. The workflow uses data-independent, all ion fragmentation to generate glycan oxonium ions, which are then extracted across the entirety of the chromatographic timeline to produce a glycan-specific “fingerprint” of the glycoprotein sample. We utilized both HexNAc and sialic acid oxonium ion profiles to quickly assess the presence of Fab glycosylation in a therapeutic monoclonal antibody, as well as for high-throughput comparisons of multi-glycosylated protein drugs derived from different clones to a reference product. An automated method was created to rapidly assess oxonium profiles between samples, and to provide a quantitative assessment of similarity.  相似文献   

8.
The EUROCarbDB project is a design study for a technical framework, which provides sophisticated, freely accessible, open-source informatics tools and databases to support glycobiology and glycomic research. EUROCarbDB is a relational database containing glycan structures, their biological context and, when available, primary and interpreted analytical data from high-performance liquid chromatography, mass spectrometry and nuclear magnetic resonance experiments. Database content can be accessed via a web-based user interface. The database is complemented by a suite of glycoinformatics tools, specifically designed to assist the elucidation and submission of glycan structure and experimental data when used in conjunction with contemporary carbohydrate research workflows. All software tools and source code are licensed under the terms of the Lesser General Public License, and publicly contributed structures and data are freely accessible. The public test version of the web interface to the EUROCarbDB can be found at http://www.ebi.ac.uk/eurocarb.  相似文献   

9.
Because the glycosylation of proteins is known to change in tumor cells during the development of breast cancer, a glycomics approach is used here to find relevant biomarkers of breast cancer. These glycosylation changes are known to correlate with increasing tumor burden and poor prognosis. Current antibody-based immunochemical tests for cancer biomarkers of ovarian (CA125), breast (CA27.29 or CA15-3), pancreatic, gastric, colonic, and carcinoma (CA19-9) target highly glycosylated mucin proteins. However, these tests lack the specificity and sensitivity for use in early detection. This glycomics approach to find glycan biomarkers of breast cancer involves chemically cleaving oligosaccharides (glycans) from glycosylated proteins that are shed or secreted by breast cancer tumor cell lines. The resulting free glycan species are analyzed by MALDI-FT-ICR MS. Further structural analysis of the glycans can be performed in FTMS through the use of tandem mass spectrometry with infrared multiphoton dissociation. Glycan profiles were generated for each cell line and compared. These methods were then used to analyze sera obtained from a mouse model of breast cancer and a small number of serum samples obtained from human patients diagnosed with breast cancer or patients with no known history of breast cancer. In addition to the glycosylation changes detected in mice as mouse mammary tumors developed, glycosylation profiles were found to be sufficiently different to distinguish patients with cancer from those without. Although the small number of patient samples analyzed so far is inadequate to make any legitimate claims at this time, these promising but very preliminary results suggest that glycan profiles may contain distinct glycan biomarkers that may correspond to glycan "signatures of cancer."  相似文献   

10.
Permethylation of the glycan isolated from the glycoinositol phospholipid (GPI) anchor of the scrapie prion protein (PrPSc) trimethylates a free hexosamine to form a quarternary ammonium salt, substantially increasing the sensitivity for analysis by mass spectrometry. This derivatization induces specific fragmentation reactions in collision-induced dissociation spectra obtained on a four-sector tandem mass spectrometer, identifying the branching pattern of the PrPSc GPI glycan.  相似文献   

11.
The cross-reacting determinant glycan from Trypanosoma brucei brucei MITat 1.6 is known to contain galactose, mannose and non-acetylated glucosamine. The structural elucidation of this oligosaccharide has been impeded by an unusual non-glycosidic linkage to the peptide chain and a glycosidic linkage to inositol phosphate on either side of the oligosaccharide. Using two different approaches for the isolation of the glycan, namely hydrolysis to give the oligosaccharide directly or pronase digestion to yield the glycan-containing C-terminal glycophosphopeptide, the structure of this glycan was elucidated by mass spectrometry and 1H-NMR spectroscopy. There was evidence of heterogeneity in the glycan residue.  相似文献   

12.
The combination of electron capture dissociation (ECD) and infrared multiphoton dissociation (IRMPD) for the structural characterization of high-mannose type glycopeptides is explored in depth for the first time. Contrary to previous applications to other glycan types, our analyses reveal that IRMPD does not necessarily selectively induce glycan cleavage in high-mannose type glycopeptides; rather peptide backbone cleavage can effectively compete with glycosidic cleavage. Poor glycan cleavage with IRMPD is due to a higher gas-phase stability of mannose-linking glycosidic bonds. This reasoning also explains mannose cleavage patterns observed for a xylose type glycopeptide with IRMPD. In addition, extensive peptide backbone cleavage is observed for a >6 kDa glycopeptide with ECD, to our knowledge the largest glycopeptide examined with this technique to date.  相似文献   

13.
State-of-the-art proteomics workflows involve multiple interdependent steps: sample preparation, protein-peptide separation, mass spectrometry and data analysis. While improvements in any of these steps can increase the depth and breadth of analysis, advances in mass spectrometry have catalysed many of the most important developments. We discuss common classes of mass analysers and how these analysers are put together to produce some of the most popular mass spectrometry platforms. The capabilities of these platforms determine how they can be used in a variety of common proteomic strategies and, in turn, what types of biological questions can be addressed. Moving forward, powerful new hybrid mass spectrometers and application of emerging types of tandem mass spectrometry promise that our ability to analyse complex mixtures of proteins will continue to advance.  相似文献   

14.
Electrospray mass spectrometry to study drug-nucleic acids interactions   总被引:1,自引:0,他引:1  
Rosu F  De Pauw E  Gabelica V 《Biochimie》2008,90(7):1074-1087
We present here a tutorial review on the electrospray mass spectrometry technique and its applications to the study of drug-nucleic acid non-covalent complexes. Particular emphasis has been made on the basic principles of the technique, to allow even the non-specialist to design fit-for-purpose mass spectrometry experiments and interpret the results. Standard applications will be described in detail, including the determination of stoichiometries and equilibrium binding constants of non-covalent complexes, the study of binding kinetics, and the development of ligand screening assays. We also outline the potentials of more advanced and/or more recent MS-based techniques (tandem mass spectrometry, ion mobility spectrometry and gas-phase spectroscopy) for the study of the nucleic acid-ligand complexes.  相似文献   

15.
The main extracellular matrix binding component of the dystrophin-glycoprotein complex, α-dystroglycan (α-DG), which was originally isolated from rabbit skeletal muscle, is an extensively O-glycosylated protein. Previous studies have shown α-DG to be modified by both O-GalNAc- and O-mannose-initiated glycan structures. O-Mannosylation, which accounts for up to 30% of the reported O-linked structures in certain tissues, has been rarely observed on mammalian proteins. Mutations in multiple genes encoding defined or putative glycosyltransferases involved in O-mannosylation are causal for various forms of congenital muscular dystrophy. Here, we explore the glycosylation of purified rabbit skeletal muscle α-DG in detail. Using tandem mass spectrometry approaches, we identify 4 O-mannose-initiated and 17 O-GalNAc-initiated structures on α-DG isolated from rabbit skeletal muscle. Additionally, we demonstrate the use of tandem mass spectrometry-based workflows to directly analyze glycopeptides generated from the purified protein. By combining glycomics and tandem mass spectrometry analysis of 91 glycopeptides from α-DG, we were able to assign 21 different residues as being modified by O-glycosylation with differing degrees of microheterogeneity; 9 sites of O-mannosylation and 14 sites of O-GalNAcylation were observed with only two sites definitively exhibiting occupancy by either type of glycan. The distribution of identified sites of O-mannosylation suggests a limited role for local primary sequence in dictating sites of attachment.  相似文献   

16.
Native mass spectrometry (MS), the analysis of proteins and protein complexes from solutions that stabilize native solution structures, is a rapidly expanding area. There is strong evidence supporting the retention of proteins' native folds in the absence of solvent under the experimental timescales of MS experiments. Therefore, instrumentation has been developed to use gas-phase native-like protein ions to exploit the speed, sensitivity, and selectivity of mass spectrometry approaches to solve emerging problems in structural biology. This article reviews some of the recent advances and applications in gas-phase instrumentation for structural proteomics.  相似文献   

17.
The flagellum of Methanococcus voltae is composed of four structural flagellin proteins FlaA, FlaB1, FlaB2, and FlaB3. These proteins possess a total of 15 potential N-linked sequons (NX(S/T)) and show a mass shift on an SDS-polyacrylamide gel indicating significant post-translational modification. We describe here the structural characterization of the flagellin glycan from M. voltae using mass spectrometry to examine the proteolytic digests of the flagellin proteins in combination with NMR analysis of the purified glycan using a sensitive, cryogenically cooled probe. Nano-liquid chromatography-tandem mass spectrometry analysis of the proteolytic digests of the flagellin proteins revealed that they are post-translationally modified with a novel N-linked trisaccharide of mass 779 Da that is composed of three sugar residues with masses of 318, 258, and 203 Da, respectively. In every instance the glycan is attached to the peptide through the asparagine residue of a typical N-linked sequon. The glycan modification has been observed on 14 of the 15 sequon sites present on the four flagellin structural proteins. The novel glycan structure elucidated by NMR analysis was shown to be a trisaccharide composed of beta-ManpNAcA6Thr-(1-4)-beta-Glc-pNAc3NAcA-(1-3)-beta-GlcpNAc linked to Asn. In addition, the same trisaccharide was identified on a tryptic peptide of the S-layer protein from this organism implicating a common N-linked glycosylation pathway.  相似文献   

18.
Mass spectrometry, specifically the analysis of complex peptide mixtures by liquid chromatography and tandem mass spectrometry (shotgun proteomics) has been at the centre of proteomics research for the past decade. To overcome some of the fundamental limitations of the approach, including its limited sensitivity and high degree of redundancy, new proteomic workflows are being developed. Among these, targeting methods in which specific peptides are selectively isolated, identified and quantified are particularly promising. Here we summarize recent incremental advances in shotgun proteomic methods and outline emerging targeted workflows. The development of the target-driven approaches with their ability to detect and quantify identical, non-redundant sets of proteins in multiple repeat analyses will be crucially important for the application of proteomics to biomarker discovery and validation, and to systems biology research.  相似文献   

19.
We have shown that recombinant forms of VP8* domains of the human rotavirus outer capsid spike protein VP4 from human neonatal strains (N155(G10P[11]) and RV3(G3P[6]) and a bovine strain (B223) recognize unique glycans within the repertoire of human milk glycans. The accompanying study by Yu et al.2, describes a human milk glycan shotgun glycan microarray that led to the identification of 32 specific glycans in the human milk tagged glycan library that were recognized by these human rotaviruses. These microarray analyses also provided a variety of metadata about the recognized glycan structures compiled from anti-glycan antibody and lectin binding before and after specific glycosidase digestions, along with compositional information from mass analysis by matrix-assisted laser desorption ionization-mass spectrometry. To deduce glycan sequence and utilize information predicted by analyses of metadata from each glycan, 28 of the glycan targets were retrieved from the tagged glycan library for detailed sequencing using sequential disassembly of glycans by ion-trap mass spectrometry. Our aim is to obtain a deeper structural understanding of these key glycans using an orthogonal approach for structural confirmation in a single ion trap mass spectrometer. This sequential ion disassembly strategy details the complexities of linkage and branching in multiple compositions, several of which contained isomeric mixtures including several novel structures. The application of this approach exploits both library matching with standard materials and de novo approaches. This combination together with the metadata generated from lectin and antibody-binding data before and after glycosidase digestions provide a heretofore-unavailable level of analytical detail to glycan structure analysis. The results of these studies showed that, among the 28 glycan targets analyzed, 27 unique structures were identified, and 23 of the human milk glycans recognized by human rotaviruses represent novel structures not previously described as glycans in human milk. The functional glycomics analysis of human milk glycans provides significant insight into the repertoire of glycans comprising the human milk metaglycome.  相似文献   

20.
This review summarizes the methods, mainly based on mass spectrometry, for the structural determination of N- and O-linked carbohydrates that are post-translationally attached to a large number of proteins and which play a key role in determining the function and biophysical properties of these compounds. Analysis of these carbohydrates has proved difficult in the past due to their structural complexity. However, modern analytical methods such as mass spectrometry have the ability to elucidate most structural details at the concentration levels required for proteomics. This review describes methods for direct examination of glycoproteins by mass spectrometry, the release of N- and O-linked glycans from glycoproteins separated in sodium dodecyl sulfate polyacrylamide electrophoresis gels, and the analysis of these compounds by techniques such as matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. Matrix-assisted laser desorption/ionization mass spectrometry provides the most rapid method for comparing glycan profiles and is probably most appropriate for clinical studies. One of the most promising techniques for determining the structures of N-glycans in proteomic studies is negative ion fragmentation of electrosprayed ions. This technique combines high throughput with ease of structural interpretation and provides structural details that are difficult to obtain by classical methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号