首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface electromyography (EMG) responses to noninvasive nerve and brain stimulation are routinely used to provide insight into neural function in humans. However, this could lead to erroneous conclusions if evoked EMG responses contain significant contributions from neighboring muscles (i.e., due to "cross-talk"). We addressed this issue with a simple nerve stimulation method to provide quantitative information regarding the size of EMG cross-talk between muscles of the forearm and hand. Peak to peak amplitude of EMG responses to electrical stimulation of the radial, median, and ulnar nerves (i.e., M-waves) were plotted against stimulation intensity for four wrist muscles and two hand muscles (n = 12). Since electrical stimulation can selectively activate specific groups of muscles, the method can differentiate between evoked EMG arising from target muscles and EMG cross-talk arising from nontarget muscles. Intramuscular EMG responses to nerve stimulation and root mean square EMG produced during maximal voluntary contractions (MVC) of the wrist were recorded for comparison. Cross-talk was present in evoked surface EMG responses recorded from all nontarget wrist (5.05-39.38% Mmax) and hand muscles (1.50-24.25% Mmax) and to a lesser degree in intramuscular EMG signals (~3.7% Mmax). The degree of cross-talk was comparable for stimulus-evoked responses and voluntary activity recorded during MVC. Since cross-talk can make a considerable contribution to EMG responses in forearm and hand muscles, care is required to avoid misinterpretation of EMG data. The multiple nerve stimulation method described here can be used to quantify the potential contribution of EMG cross-talk in transcranial magnetic stimulation and reflex studies.  相似文献   

2.
Neuromuscular electrical stimulation (NMES) can be delivered over a nerve trunk or muscle belly and both can generate contractions through peripheral and central pathways. Generating contractions through peripheral pathways is associated with a nonphysiological motor unit recruitment order, which may limit the efficacy of NMES rehabilitation. Presently, we compared recruitment through peripheral and central pathways for contractions of the knee extensors evoked by NMES applied over the femoral nerve vs. the quadriceps muscle. NMES was delivered to evoke 10 and 20% of maximum voluntary isometric contraction torque 2-3 s into the NMES (time(1)) in two patterns: 1) constant frequency (15 Hz for 8 s); and 2) step frequency (15-100-15 Hz and 25-100-25 Hz for 3-2-3 s, respectively). Torque and electromyographic activity recorded from vastus lateralis and medialis were quantified at the beginning (time(1)) and end (time(2); 6-7 s into the NMES) of each pattern. M-waves (peripheral pathway), H-reflexes, and asynchronous activity (central pathways) during NMES were quantified. Torque did not differ regardless of NMES location, pattern, or time. For both muscles, M-waves were ~7-10 times smaller and H-reflexes ~8-9 times larger during NMES over the nerve compared with over the muscle. However, unlike muscles studied previously, neither torque nor activity through central pathways were augmented following 100 Hz NMES, nor was any asynchronous activity evoked during NMES at either location. The coefficient of variation was also quantified at time(2) to determine the consistency of each dependent measure between three consecutive contractions. Torque, M-waves, and H-reflexes were most variable during NMES over the nerve. In summary, NMES over the nerve produced contractions with the greatest recruitment through central pathways; however, considering some of the limitations of NMES over the femoral nerve, it may be considered a good complement to, as opposed to a replacement for, NMES over the quadriceps muscle for maintaining muscle quality and reducing contraction fatigue during NMES rehabilitation.  相似文献   

3.
Asymmetric osteoarthritis (OA) is a common type of OA in the ankle joint. OA also influences the muscles surrounding a joint, however, little is known about the muscle activation in asymmetric ankle OA. Therefore, the aim of this study was to characterize the patients’ muscle activation during isometric ankle torque measurements and level walking. Surface electromyography (EMG) was measured of gastrocnemius medialis (GM) and lateralis (GL), soleus (SO), tibialis anterior (TA), and peroneus longus (PL) in 12 healthy subjects and 12 ankle OA patients. To obtain time and frequency components of the EMG power a wavelet transformation was performed. Furthermore, entropy was introduced to characterize the homogeneity of the wavelet patterns.Patients produced lower plantar- and dorsiflexion torques and their TA wavelet spectrum was shifted towards lower frequencies. While walking, the patients’ muscles were active with a lower intensity and over a broader time–frequency region. In contrast to controls and varus OA patients, maximal GM activity of valgus OA patients lagged behind the activity of GL and SO. In both tasks, PL of the valgus patients contained more low frequency power. The results of this study will help to assess whether surgical interventions of ankle OA can reestablish the muscle activation patterns.  相似文献   

4.
The periaqueductal gray matter is an essential neural substrate for central integration of defense behavior and accompanied autonomic responses. The dorsal half of the periaqueductal gray matter (dPAG) is also involved in mediating emotional responses of anxiety and fear, psychological states that often are associated with changes in ventilation. However, information regarding respiratory modulation elicited from this structure is limited. The present study was undertaken to investigate the relationship between stimulus frequency and magnitude on ventilatory pattern and respiratory muscle activity in urethane-anesthetized, spontaneously breathing rats. Electrical stimulation in the dPAG-recruited abdominal muscle activity increased ventilation and increased respiratory frequency by significantly shortening both inspiratory time and expiratory time. Ventilation increased within the first breath after the onset of stimulation, and the respiratory response increased with increasing stimulus frequency and magnitude. dPAG stimulation also increased baseline EMG activity in the diaphragm and recruited baseline external abdominal oblique EMG activity, normally quiescent during eupneic breathing. Significant changes in cardiorespiratory function were only evoked by stimulus intensities >10 microA and when stimulus frequencies were >10 Hz. Respiratory activity of both the diaphragm and abdominal muscles remained elevated for a minimum of 60 s after cessation of stimulation. These results demonstrate that there is a short-latency respiratory response elicited from the dPAG stimulation, which includes both inspiratory and expiratory muscles. The changes in respiratory timing suggest rapid onset and sustained poststimulus dPAG modulation of the brain stem respiratory network that includes expiratory muscle recruitment.  相似文献   

5.
The purpose of this study was to use a wavelet analysis designed specifically for electromyography (EMG) signals in combination with a trend plot to examine changes in EMG intensity patterns during maximal, fatiguing isokinetic muscle actions. Eleven men (mean ± SD age = 22.4 ± 1.1 years) and 7 women (mean ± SD age = 22.7 ± 2.1 years) performed 50 consecutive maximal concentric isokinetic muscle actions of the dominant leg extensors at a velocity of 180°·s(-1). During each muscle action, a bipolar surface EMG signal was detected from the vastus lateralis. All signals were then processed with a wavelet analysis designed specifically for EMG signals, which resulted in EMG intensity patterns. The patterns for each subject were then analyzed with a trend plot, which provided information regarding the changes that occurred because of fatigue. The results indicated that for all the 18 subjects, the EMG intensity patterns moved in a predictable manner in pattern space, but the changes to the patterns were different for each subject. These findings reflect the complex changes that occur in the EMG signal during fatigue. These changes cannot be characterized fully with a single amplitude and center frequency parameter and can be useful for athletes and coaches who need to track the fatigue status of individual muscles.  相似文献   

6.
Surface electromyogram (EMG) detected by electrode arrays along the muscle fibre direction can be approximated by the sum of propagating and non propagating components. A technique to separate propagating and non propagating components in surface EMG signals is developed. The first step is an adaptive filter, which allows obtaining an estimation of the delay between signals detected at different channels and a first estimate of propagating and non propagating components; the second step is used to optimise the estimation of the two components. The method is applicable to signals with one propagating and one non propagating component. It was optimised on simulated signals, and then applied to single motor unit action potentials (MUAP) and to electrically elicited EMG (M-waves).

The new method was first tested on phenomenological signals constituted by the sum of a propagating and a non propagating signal and then applied to simulated and experimental EMG signals. Simulated signals were generated by a cylindrical, layered volume conductor model. Experimental signals were monopolar surface EMG signals collected from the abductor pollicis brevis muscle and M-waves recorded during transcutaneous electrical stimulation of the biceps muscle. The technique may find different applications: in single motor unit (MU) studies (a) for decreasing the variability and bias of CV estimates due to the presence of the non propagating components, (b) for estimating automatically the length of the muscle fibres from only three detected channels and (c) for removal of the stimulation artifact M-waves.  相似文献   


7.
Twitch speeds and potentiating capacities have been determined for human medial and lateral gastrocnemius and soleus muscles. The experiments involved and application of submaximal stimuli to the respective muscle bellies, with monitoring of the evoked compound action potentials (M-waves) during repetitive stimulation. Contrary to an earlier report, the lateral gastrocnemius was found to have a significantly shorter mean contraction time (100.0 +/- 10.8 ms) than the soleus (156.5 +/- 14.7 ms) and this value was also significantly different from that of the medial gastrocnemius (113.7 +/- 19.6 ms). The mean half-relaxation time for each muscle also differed significantly from those for the other two muscles. A further contrast between the muscles was that potentiation of the twitch, following a 3-s tetanus at 50 Hz, was significantly greater in the lateral gastrocnemius than in soleus (mean values 60.4 +/- 43.1% and 2.6 +/- 3.3% respectively.  相似文献   

8.
Our purpose was to characterize the relationship between EMG mean power frequency (MPF) or median frequency (MF) and rate of torque development in voluntary ballistic and electrically elicited isometric contractions. Twenty-three healthy adults participated in two sets of experiments performed on elbow flexor muscles. For Experiment 1, subjects were asked to generate voluntary ballistic contractions by reaching four different target torque levels (20, 40, 60 and 100% of the maximal voluntary contraction (MVC)) as fast as they could. For Experiment 2, electrical (M-waves) and mechanical (twitches) responses to electrical stimulation of the nerves supplying the biceps brachii and brachioradialis muscles were recorded with the subjects at rest and with a background isometric contraction of 15% MVC. MPF, MF and rate of torque development (% MVC/s) were calculated for both voluntary and elicited contractions. Significant positive correlations were observed between MPF and rate of torque development for the voluntary contractions, whereas significant negative correlations were observed between the two variables for elicited contractions. This suggests that factors other than muscle fiber composition influence the frequency content of EMG signals and/or the rate of torque development, and that the effect of these factors will vary between voluntary and elicited contractions.  相似文献   

9.
Poor control of postural muscles is a primary impairment in cerebral palsy (CP), yet core trunk and hip muscle activity has not been thoroughly investigated. Frequency analysis of electromyographic (EMG) signals provides insight about the intensity and pattern of muscle activation, correlates with functional measures in CP, and is sensitive to change after intervention. The objective of this study was to investigate differences in trunk and hip muscle activation frequency in children with CP compared to children with similar amounts of walking experience and typical development (TD). EMG data from 31 children (15 with CP, 16 with TD) were recorded from 16 trunk and hip muscles bilaterally. A time–frequency pattern was generated using the continuous wavelet transform and instantaneous mean frequency (IMNF) was calculated at each interval of the gait cycle. Functional principal component analysis (PCA) revealed that IMNF was significantly higher in the CP group throughout the gait cycle for all muscles. Additionally, stride-to-stride variability was higher in the CP group. This evidence demonstrated altered patterns of trunk and hip muscle activation in CP, including increased rates of motor unit firing, increased number of recruited motor units, and/or decreased synchrony of motor units. These altered muscle activation patterns likely contribute to muscle fatigue and decreased biomechanical efficiency in children with CP.  相似文献   

10.
The objective of this study was to supplement continuous wavelet transforms with muscle synergies in a fatigue analysis to better describe the combination of decreased firing frequency and altered activation profiles during dynamic muscle contractions. Nine healthy young individuals completed the dynamic tasks before and after they squatted with a standard Olympic bar until complete exhaustion. Electromyography (EMG) profiles were analyzed with a novel concatenated non-negative matrix factorization method that decomposed EMG signals into muscle synergies. Muscle synergy analysis provides the activation pattern of the muscles while continuous wavelet transforms output the temporal frequency content of the EMG signals. Synergy analysis revealed subtle changes in two-legged squatting after fatigue while differences in one-legged squatting were more pronounced and included the shift from a general co-activation of muscles in the pre-fatigue state to a knee extensor dominant weighting post-fatigue. Continuous wavelet transforms showed major frequency content decreases in two-legged squatting after fatigue while very few frequency changes occurred in one-legged squatting. It was observed that the combination of methods is an effective way of describing muscle fatigue and that muscle activation patterns play a very important role in maintaining the overall joint kinetics after fatigue.  相似文献   

11.
This study addresses the question whether unintended response of the knee flexors (hamstrings) accompanies transcutaneous functional electrical stimulation (FES) of the quadriceps and whether the knee torque is hereby affected. Transcutaneous FES of the right quadriceps of two paraplegic subjects was applied and measurements were made of the net torque and of the myoelectric activities of the quadriceps and hamstrings muscles of the right leg. A low correlation was obtained between the peak-to-peak amplitudes of the M-waves of the two muscles. This correlation decreased further with the development of fatigue, which indicated that the electromyography (EMG) signals from the hamstrings were not the result of cross-talk between adjacent recording sites. The force profile of each muscle was determined from a developed model incorporating EMG-based activation, muscle anthropometry as obtained from in vivo magnetic resonance imaging of the thigh, and metabolic fatigue function, based on data acquired by 31P nuclear magnetic resonance spectroscopy. A sensitivity analysis revealed that the muscle specific tension and the muscle moment arms have a major influence on the resulting muscle forces and should therefore be accurately provided. The results show that during the unfatigued phase of contraction the estimated maximal force in the hamstrings was lower than 20% of that in the quadriceps and could be considered to be practically negligible. As fatigue progressed the hamstrings-to-quadriceps force ratio increased, reaching up to 45%, and the effect of co-activation on the torque partition between the two muscles was no longer negligible.  相似文献   

12.
The aim of this study was to discriminate fatigue of upper limb muscles depending on the external load, through the development and analysis of a muscle fatigue index. Muscle fatigue is expressed by a fatigue index based on an amplitude parameter (calculated in the time domain) and a fatigue index based on a frequency parameter (a parameter calculated in the frequency domain). The fatigue index involves a regression function that describes changes in the EMG signal parameter, time elapsing before muscle fatigue and the probability of specific trends in changes in EMG parameters for the population under study.

The experimental study covered a group of 10 young men. During the study, they exerted force at a specific level and for a specific time in 12 load variants. During the study, EMG signals from four muscles of the upper limb were recorded (trapezius pars descendents, biceps brachii caput breve, extensor carpi radialis brevis, flexor carpi ulnaris). For each variant and for each examined muscles, the value of the fatigue index was calculated. Values of that index quantitatively expressed fatigue of a specific muscle in a specific load variant.

A statistical analysis indicated variation in the fatigue of the biceps brachii caput breve, extensor carpi radialis brevis, and flexor carpi ulnaris muscles depending on the external load (load variant) according to the task performed with the upper limb.

The study demonstrated usefulness of the fatigue index in expressing quantitatively muscle fatigue and in discriminating muscle fatigue depending on the external load.  相似文献   


13.
Seventeen new-born piglets of hybrid stock were tested for defects of neuromuscular transmission by stimulation electromyography (EMG). Nine of these displayed extreme symptoms of muscle weakness (splayleg), while the others were their clinically normal littermates. Muscles from four different functional groups were investigated, including the gastrocnemius, tibialis anterior, knee flexors and thigh adductors. Repetitive stimulation of muscle nerves at 3 Hz gave comparable peak-to-peak amplitudes of the EMG response in splayleg and control piglets (mean values from 5 to 10 mV). The lowest mean EMG response values at this stimulation frequency were found in splayleg adductor muscles of the thigh which were not, however significantly different from the controls. Higher frequencies of stimulation (30, 50 and 100 Hz), in general, led to a less pronounced decrease of EMG amplitude in splayleg piglet muscles than in the controls, with the exception of knee flexors. Neither splayleg nor control muscles exhibited post-activation exhaustion or post-tetanic potentiation. It is being concluded from these results that congenital myofibrillar hypoplasia is not primarily a myasthenia-like syndrome, but that either excitation-contraction coupling or the contractile mechanism itself are primarily affected.  相似文献   

14.
The effects of denervation and direct electrical stimulation upon the activity and the molecular form distribution of butyrylcholinesterase (BuChE) were studied in fast-twitch posterior latissimus dorsi (PLD) and in slow-tonic anterior latissimus dorsi (ALD) muscles of newly hatched chicken. In PLD muscle, denervation performed at day 2 substantially reduced the rate of rapid decrease of BuChE specific activity which takes place during normal development, whereas in the case of ALD muscle little change was observed. Moreover, the asymmetric forms which were dramatically reduced in denervated PLD muscle were virtually absent in denervated ALD muscle at day 14. Denervated PLD and ALD muscles were stimulated from day 4 to day 14 of age. Two patterns of stimulation were applied, either 5-Hz frequency (slow rhythm) or 40-Hz frequency (fast rhythm). Both patterns of stimulation provided the same number of impulses per day (about 61,000). In PLD muscle, electrical stimulation almost totally prevented the postdenervation loss in asymmetric forms and led to a decrease in BuChE specific activity. In ALD muscle, electrical stimulation partially prevented the asymmetric form loss which occurs after denervation. This study emphasizes the role of evoked muscle activity in the regulation of BuChE asymmetric forms in the fast PLD muscle and the differential response of denervated slow and fast muscles to electrical stimulation.  相似文献   

15.
The continuous wavelet transform (CWT), a time-frequency method, was used when calculating mean frequency of the power spectrum (MNF) and signal amplitude (RMS) of the surface EMG to investigate their relationships to force during a gradually increasing knee extension (ramp). Based upon the CWT, MNF was redefined to include time dependence on the EMG signal frequency contents, the short-time MNF (STMNF). Surface EMG was recorded from vastus lateralis, rectus femoris and vastus medialis in 21 clinically healthy subjects during a brief, gradually increasing contraction up to 100% of a maximum voluntary contraction (MVC), with a duration of approximately 10 s. The relationships between the EMG variables and force using linear regression were determined for each subject. For vastus lateralis, we also investigated if certain aspects of the muscle morphology (i.e., proportions and areas of different fibre types) influenced the EMG-force relationship.For the majority of subjects (17-18 out of 21 subjects) there were significant positive correlations between STMNF and force in the three muscles. No sex differences were found in intercepts or regression coefficients of STMNF. The muscle morphology had a significant influence on the STMNF-force intercept and the regression coefficient. Positive and highly significant linear correlations between RMS and force were found for all subjects and all three muscles.In conclusion, time frequency methods can be applied when investigating EMG during brief contractions associated with non-stationarity. In a great majority of the subjects, and in the three muscles, significant linear force dependencies were found for STMNF. Thus, when evaluating muscle fatigue, e.g., in ergonomic situations, it is important to consider the force level as one factor that can influence the results. Morphological variables (fibre proportions and fibre areas) influenced the STMNF-force relationship in vastus lateralis.  相似文献   

16.
Bit-colour maps of somatosensory evoked potentials (SEPs) and muscular responses from forearm and hand muscles were simultaneously recorded after median nerve stimulation. Subjects were asked either to relax totally (A), or to contract the examined muscle continuously and isometrically at 10–20% (B) and 80–100% (C) of the maximal strength. Isotonic contractions ipsilateral (D) and contralateral to the stimulus (E) were also examined. Both SEPs and EMG responses were elicited by individual near-motor threshold pulses delivered at 0.2/sec to the median nerve at the elbow. SEPs were maximal in amplitude during complete relaxation, whilst all the components following the parietal N20 were depressed by muscle contraction. Such decrements affected predominantly the parietal and frontal peaks of positive polarity during condition B, whilst the frontal negative component (wave N30) dropped remarkably in conditions C and D. Early EMG responses (V1 = spinal circuitry) were usually absent in condition A; they were present together with later components (= V2 possibly long-loop, transcortical circuitry) in C and D, whilst they were alone recordable in B and E. The amplitudes of the frontal wave N30 in SEPs and of V2 in LLRs were inversely correlated. This observation is consistent with the hypothesis that a change in the reactivity of the sensorimotor brain areas to afferent impulses is coupled to LLR elicitation in forearm and hand muscles.  相似文献   

17.
Single motor unit and fiber action potentials during fatigue   总被引:3,自引:0,他引:3  
Muscle fatigue is defined as a loss of tension development during constant stimulation. Although the relationship is not well documented, muscle fatigue has been inferred from electromyogram (EMG) signals. The purpose of this study was to determine the relationship between the amplitude and duration of single motor unit action potentials (MUAPs) and the loss of tension development (fatigue) in the medial gastrocnemius muscles of cats. Single motor units were fatigued by continuous stimulation at 10 or 80 Hz or with trains of 40-Hz stimuli. When motor units were stimulated at 10 Hz and with trains at 40 Hz (low frequency), tension declined and remained depressed during recovery. The changes in the MUAP correlated poorly with changes in tension. During and after stimulation at 80 Hz (high frequency), changes in the amplitude and duration of MUAPs correlated highly with changes in tension development. Since the EMG signal is dependent on a summation and cancellation of individual MUAPs, the EMG provides a reasonable estimate of high-frequency fatigue but an unreliable measure of low-frequency fatigue.  相似文献   

18.
High-frequency stimulation of skeletal muscle has long been associated with ionic perturbations, resulting in the loss of membrane excitability, which may prevent action potential propagation and result in skeletal muscle fatigue. Associated with intense skeletal muscle contractions are large changes in muscle metabolites. However, the role of metabolites in the loss of muscle excitability is not clear. The metabolic state of isolated rat extensor digitorum longus muscles at 30 degrees C was manipulated by decreasing energy expenditure and thereby allowed investigation of the effects of energy conservation on skeletal muscle excitability. Muscle ATP utilization was reduced using a combination of the cross-bridge cycling blocker N-benzyl-p-toluene sulfonamide (BTS) and the SR Ca2+ release channel blocker Na-dantrolene, which reduce activity of the myosin ATPase and SR Ca2+-ATPase. Compared with control muscles, the resting metabolites ATP, phosphocreatine, creatine, and lactate, as well as the resting muscle excitability as measured by M-waves, were unaffected by treatment with BTS plus dantrolene. Following 20 or 30 s of continuous 60-Hz stimulation, BTS-plus-dantrolene-treated muscles showed a 25% lower ATP utilization compared with control muscles. Furthermore, the ability of muscles to maintain excitability during high-frequency stimulation was significantly improved in BTS-plus-dantrolene-treated muscles, indicating a strong link between metabolites, energetic state, and the excitability of the muscle.  相似文献   

19.
The goal of the work was a study of the effect of exhaustive weightlifting exercise on prolonged changes in the physiological and biochemical variables characterizing the functional state of skeletal muscles. An exercise accentuated at muscles of the hip surface gave rise to a significant increase of the blood lactate concentration, which indicated that aerobic metabolism was a predominant mechanism of energy supply for muscle contraction. A reduction of the m. rectus femoris EMG amplitude and frequency, a decrease in the tone of tension, and an increase in the tone of relaxation were found immediately after exercise. One day later, the amplitude and the frequency of the EMG signal increased. On day 3, the activity of creatine kinase (CK, a marker of muscle injury) considerably increased, while the amplitude and frequency of EMG decreased. By the ninth day of recovery, all measured variables with the exception of CK were normalized. A significant negative correlation was found between the blood serum’s lactate concentration and m. rectus femoris EMG activity at the same time points. Blood serum CK activity and m. rectus femoris EMG and tone parameters were significantly correlated on the third postexercise day. The data demonstrate that exhaustive exercise-induced muscle injury resulted in phasic alterations in the electrical activity and the tone of the muscle apparently related to a decrease in pH because of lactate accumulation in the sarcoplasm and the cascade of reactions leading to muscle tissue damage.  相似文献   

20.
Adaptation changes in the corticospinal mechanisms of muscle contraction control in athletes were investigated. Using the transcranial magnetic stimulation method, the parameters of motor evoked potentials of skeletal muscles of the lower limbs during voluntary static loads of various intensities and durations were measured. Athletes, as compared to the reference group, exhibited a greater increase in the maximal amplitude of the motor evoked potentials of the skeletal muscles of the lower limbs, a smaller decrease in the central motor conduction time of nerve pulses and the peripheral period in electromyograms, and a smaller increase in the cortical and segmental silent periods with increasing intensity and duration of isometric muscle contractions. The mechanisms of adaptation of corticospinal regulation of human muscle contraction to specific conditions of extreme motor activities are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号