首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The hndABCD operon from Desulfovibrio fructosovorans encodes an uncommon heterotetrameric NADP-reducing iron hydrogenase. The presence of a [2Fe-2S] cluster likely located in the C-terminal region of the HndA subunit has already been revealed. We have cloned and expressed the truncated hndA gene in Escherichia coli to isolate the structural [2Fe-2S] module. Optical and EPR spectra are found identical to that of the native HndA subunit and the midpoint redox potential (-385 mV) is similar to that of the native protein (-395 mV). These results clearly demonstrate that the C-terminal region of HndA is a structurally independent [2Fe2S] ferredoxin-like domain. In the same way, the N-terminal domain of the HndD subunit was overproduced in E. coli and characterized. The presence of a [2Fe-2S] cluster was evidenced by optical spectroscopy. The midpoint redox potential (-380 mV) of this domain was found very close to that of the truncated HndA subunit but the EPR properties were significantly different. The various EPR properties allowed us to observe an electron exchange between the two [2Fe-2S] ferredoxin-like domains of the HndA and HndD subunits. Moreover, domain-domain interactions, observed by far-western experiments, indicate that these subunits are direct partners in the native complex.  相似文献   

2.
An N-terminal domain of Clostridium pasteurianum hydrogenase I, encompassing 76 residues out of the 574 composing the full-size enzyme, had previously been overproduced in Escherichia coli and shown to form a stable fold around a [2Fe-2S] cluster. This domain displays only marginal sequence similarity with [2Fe-2S] proteins of known structure, and therefore, two-dimensional 1H NMR has been implemented to elucidate features of the polypeptide fold. Despite the perturbing presence of the paramagnetic [2Fe-2S] cluster, 57 spin systems were detected in the TOCSY spectra, 52 of which were sequentially assigned through NOE connectivities. Several secondary structure elements were identified. The N terminus of the protein consists of two antiparallel beta strands followed by an alpha helix contacting both strands. Two additional antiparallel beta strands, one of them at the C terminus of the sequence, form a four-stranded beta sheet together with the two N-terminal strands. The proton resonances that can be attributed to this beta2alphabeta2 structural motif undergo no paramagnetic perturbations, suggesting that it is distant from the [2Fe-2S] cluster. In plant- and mammalian-type ferredoxins, a very similar structural pattern is found in the part of the protein farthest from the [2Fe-2S] cluster. This indicates that the N-terminal domain of C. pasteurianum hydrogenase folds in a manner very similar to those of plant- and mammalian-type ferredoxins over a significant part (ca. 50%) of its structure. Even in the vicinity of the metal site, where 1H NMR data are blurred by paramagnetic interactions, the N-terminal domains of hydrogenase and mammalian- and plant-type ferredoxins most likely display significant structural similarity, as inferred from local sequence alignments and from previously reported circular dichroism and resonance Raman spectra. These data afford structural information on a kind of [2Fe-2S] cluster-containing domain that occurs in a number of redox enzymes and complexes. In addition, together with previously published sequence alignments, they highlight the widespread distribution of the plant-type ferredoxin fold in bioenergetic systems encompassing anaerobic metabolism, photosynthesis, and aerobic respiratory chains.  相似文献   

3.
J M Moulis  J Meyer 《Biochemistry》1982,21(19):4762-4771
The sulfur atoms of the two [4Fe-4S] clusters present in the ferredoxin from Clostridium pasteurianum have been replaced by selenium. The substitution is readily carried out by incubating the apoferredoxin with excess amounts of Fe3+, selenite, and dithiothreitol under anaerobic conditions. The UV-visible absorption spectrum of the Se-substituted ferredoxin, the core extrusion of its active sites, and analyses of its iron and selenium contents show that it contains two [4Fe-4Se] clusters. The Se-substituted ferredoxin is considerably less resistant to oxygen or to acidic and alkaline pH than the native ferredoxin: the half-lives of the former are 20-500 times shorter than those of the latter. The native ferredoxin and the Se-substituted ferredoxin display similar kinetic properties when used as electron donors to the hydrogenase from C. pasteurianum. It is of note, however, that the Km and Vmax values are lower for the 2[4Fe-4Se] ferredoxin than for the 2[4Fe-4S] ferredoxin. Reductive and oxidative titrations with dithionite and with thionine, respectively, show that both ferredoxins are two-electron carriers. The redox potentials of the ferredoxins have been measured by equilibrating them with the H2/H+ couple via hydrogenase: values of -423 and -417 mV have been found for the 2[4Fe-4S] ferredoxin and 2[4Fe-4Se] ferredoxin, respectively. Ferredoxins containing both chalcogenides in their [4Fe-4X] (X = S, Se) clusters have been prepared by reconstitution reactions involving mixtures of sulfide and selenide: the latter experiments show that sulfide and selenide are equally reactive in the incorporation of [4Fe-4X] (X = S, Se) sites into ferredoxin. The present report, together with former studies, establishes the general feasibility of the Se/S substitution in [2Fe-2S] and in [4Fe-4S] clusters of proteins and of synthetic analogues.  相似文献   

4.
A gene encoding the exact sequence of Clostridium pasteurianum 2[4Fe-4S] ferredoxin and containing 11 unique restriction endonuclease cleavage sites has been synthesized and cloned in Escherichia coli. The synthetic gene is efficiently expressed in E. coli and its product has been purified and characterized. The N-terminal sequence is identical to that of the protein isolated from C. pasteurianum and the recombinant ferredoxin contains the exact amount of [4Fe-4S] clusters (2 per monomer) expected for homogeneous holoferredoxin. It displays reduction potential and kinetic parameters as electron donor to C. pasteurianum hydrogenase I identical to those determined for the native ferredoxin. All of these properties demonstrate that the 2[4Fe-4S] ferredoxin expressed in E. coli is identical to the parent clostridial protein.  相似文献   

5.
The 2.3 A resolution crystal structure of a [2Fe-2S] cluster containing ferredoxin from Aquifex aeolicus reveals a thioredoxin-like fold that is novel among iron-sulfur proteins. The [2Fe-2S] cluster is located near the surface of the protein, at a site corresponding to that of the active-site disulfide bridge in thioredoxin. The four cysteine ligands are located near the ends of two surface loops. Two of these ligands can be substituted by non-native cysteine residues introduced throughout a stretch of the polypeptide chain that forms a protruding loop extending away from the cluster. The presence of homologs of this ferredoxin as components of more complex anaerobic and aerobic electron transfer systems indicates that this is a versatile fold for biological redox processes.  相似文献   

6.
Overexpression in Escherichia coli of the fdx4 gene from Aquifex aeolicus has allowed isolation and characterization of the first hyperthermophilic [2Fe-2S](Scys)(4) protein, a homodimer of M = 2 x 12.4 kDa with one [2Fe-2S] cluster per subunit. This protein is undamaged by heating to 100 degrees C for at least three hours. The primary structure, in particular the characteristic distribution of the four cysteine ligands of the metal site, and the spectroscopic properties of the A. aeolicus protein relate it to well characterized [2Fe-2S] proteins from Clostridium pasteurianum and Azotobacter vinelandii. These proteins are also homologous to subunits or domains of hydrogenases and NADH-ubiquinone oxidoreductase (Complex I) of respiratory chains. The A. aeolicus [2Fe-2S] protein is thus representative of a presumably novel protein fold involved in a variety of functions in very diverse cellular backgrounds.  相似文献   

7.
Amino acid sequence of [2Fe-2S] ferredoxin from Clostridium pasteurianum   总被引:4,自引:0,他引:4  
The complete amino acid sequence of the [2Fe-2S] ferredoxin from the saccharolytic anaerobe Clostridium pasteurianum has been determined by automated Edman degradation of the whole protein and of peptides obtained by tryptic and by staphylococcal protease digestion. The polypeptide chain consists of 102 amino acids, including 5 cysteine residues in positions 11, 14, 24, 56, and 60. The sequence has been analyzed for hydrophilicity and for secondary structure predictions. In its native state the protein is a dimer, each subunit containing one [2Fe-2S] cluster, and it has a molecular weight of 23,174, including the four iron and inorganic sulfur atoms. The extinction coefficient of the native protein is 19,400 M-1 cm-1 at 463 nm. The positions of the cysteine residues, four of which are most probably the ligands of the [2Fe-2S] cluster, on the polypeptide chain of this protein are very different from those found in other [2Fe-2S] proteins, and in other ferredoxins in general. In addition, whole sequence comparisons of the [2Fe-2S] ferredoxin from C. pasteurianum with a number of other ferredoxins did not reveal any significant homologies. The likely occurrence of several phylogenetically unrelated ferredoxin families is discussed in the light of these observations.  相似文献   

8.
The soluble methane monooxygenase (sMMO) from Methylococcus capsulatus (Bath) is a multicomponent enzyme system required for the conversion of methane to methanol. It comprises a hydroxylase, a regulatory protein, and a reductase. The reductase contains two domains: an NADH-binding and FAD-containing flavin domain and a ferredoxin (Fd) domain carrying a [2Fe-2S] cofactor. Here, we report the solution structure of the reduced form of the 98-amino acid Fd domain (Blazyk, J. L., and Lippard, S. J. Unpublished results) determined by nuclear magnetic resonance (NMR) spectroscopy and restrained molecular dynamics calculations. The structure consists of six beta strands arranged into two beta sheets as well as three alpha helices. Two of these helices form a helix-proline-helix motif, unprecedented among [2Fe-2S] proteins. The [2Fe-2S] cluster is coordinated by the sulfur atoms of cysteine residues 42, 47, 50, and 82. The 10.9 kDa ferredoxin domain of the reductase protein transfers electrons to carboxylate-bridged diiron centers in the 251 kDa hydroxylase component of sMMO. The binding of the Fd domain with the hydroxylase was investigated by NMR spectroscopy. The hydroxylase binding surface on the ferredoxin protein has a polar center surrounded by patches of hydrophobic residues. This arrangement of amino acids differs from that by which previously studied [2Fe-2S] proteins interact with their electron-transfer partners. The critical residues on the Fd domain involved in this binding interaction map well onto the universally conserved residues of sMMO enzymes from different species. We propose that the [2Fe-2S] domains in these other sMMO systems have a fold very similar to the one found here for M. capsulatus (Bath) MMOR-Fd.  相似文献   

9.
Primary structure of hydrogenase I from Clostridium pasteurianum   总被引:3,自引:0,他引:3  
J Meyer  J Gagnon 《Biochemistry》1991,30(40):9697-9704
Peptides obtained by cleavage of Clostridium pasteurianum hydrogenase I have been sequenced. The data allowed design of oligonucleotide probes which were used to clone a 2310-bp Sau3A fragment containing the hydrogenase encoding gene. The latter has been sequenced and was found to translate into a protein composed of 574 amino acids (Mr = 63,836), including 22 cysteines. C. pasteurianum hydrogenase is homologous to, but longer than, the large subunit of Desulfovibrio vulgaris (Hildenborough) [Fe] hydrogenase. It includes an additional N-terminal domain of ca. 110 amino acids which contains eight cysteine residues and which therefore could accommodate two of its postulated four [4Fe-4S] clusters. C. pasteurianum hydrogenase is most similar in length, cysteine positions, and sequence altogether to the translation product of a putative hydrogenase encoding gene from D. vulgaris (Hildenborough). Comparisons of the available [Fe] hydrogenase sequences show that these enzymes constitute a structurally rather homogeneous family. While they differ in the length of their N-termini and in the number of their [4Fe-4S] clusters, they are highly similar in their C-terminal halves, which are postulated to harbor the hydrogen-activating H cluster. Five conserved cysteine residues occurring in this domain are likely ligands of the H cluster. Possible ligation by other residues, and in particular by methionine, is discussed. The comparisons carried out here show that the H clusters most probably possess a common structural framework in all [Fe] hydrogenases. On the basis of the available data on these proteins and on the current developments in iron-sulfur chemistry, the H clusters possibly contain six to eight iron atoms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The [2Fe-2S] ferredoxin ("Red paramagnetic protein", RPP) from C. pasteurianum has been found to be composed of two identical subunits of 10,000 +/- 2 000 daltons, each containing a [2Fe-2S] cluster. Resonance Raman (RR) spectra of RPP have been obtained at 23 degrees K, and compared to those of spinach ferredoxin (Sp Fd). Ten modes of the [2Fe-2S] chromophore were observed in the 100-450 cm-1 range. Assignments of non fundamental modes in the 500-900 cm-1 range allowed correlations between fundamental stretching modes of RPP and Sp Fd. Although assuming a [2Fe-2S] structure, the chromophore of RPP differs from that of Sp Fd by its conformation and by a slight weakening of Fe-S bonds, involving both the inorganic core and the cysteine ligands.  相似文献   

11.
Resonance Raman spectra are reported for hydrogenase I and II from Clostridium pasteurianum. These spectra show overlapping bands with contributions from [4Fe-4S] clusters, known to be present in these enzymes, and from novel FeS centers of hitherto undefined structure. For hydrogenase I there are strong bands at 288 and 394 cm-1, which are seen in [2Fe-2S] proteins and in no other FeS species so far examined. In contrast these bands do not appear for hydrogenase II, whose resonance Raman spectrum is dominated by [4Fe-4S] cluster modes. These results provide the first structural information on the hydrogenase I FeS center involved in H2 activation and demonstrate structural differences between hydrogenase I and hydrogenase II.  相似文献   

12.
Resonance Raman spectroscopy has been used to investigate the Fe-S stretching modes of the [4Fe-4S]2+ cluster in the oxidized iron protein of Clostridium pasteurianum nitrogenase. The results are consistent with a cubane [4Fe-4S] cluster having effective Td symmetry with cysteinyl coordination for each iron. In accord with previous optical and EPR studies [(1984) Biochemistry 23, 2118-2122], treatment with the iron chelator alpha, alpha'-dipyridyl in the presence of MgATP is shown to effect cluster conversion to a [2Fe-2S]2+ cluster. Resonance Raman data also indicate that partial conversion to a [2Fe-2S]2+ cluster is induced by thionine-oxidation in the presence of MgATP in the absence of an iron chelator. This result suggests new explanations for the dramatic change in the CD spectrum that accompanies MgATP-binding to the oxidized Fe protein and the anomalous resonance Raman spectra of thionine-oxidized Clostridium pasteurianum bidirectional hydrogenase.  相似文献   

13.
14.
Crystallographic studies revealing the three-dimensional structure of the oxidized form of the [2Fe-2S] ferredoxin from Trichomonas vaginalis (TvFd) are presented. TvFd, a member of the hydrogenosomal class of ferredoxins, possesses a unique combination of redox and spectroscopic properties, and is believed to be the biological molecule that activates the drug metronidazole reductively in the treatment of trichomoniasis. It is the first hydrogenosomal ferredoxin to have its structure determined. The structure of TvFd reveals a monomeric, 93 residue protein with a fold similar to that of other known [2Fe-2S] ferredoxins. It contains nine hydrogen bonds to the sulfur atoms of the cluster, which is more than the number predicted on the basis of the spectroscopic data. The TvFd structure contains a large dipole moment like adrenodoxin, and appears to have a similar interaction domain. Our analysis demonstrates that TvFd has a unique cavity near the iron-sulfur cluster that exposes one of the inorganic sulfur atoms of the cluster to solvent. This cavity is not seen in any other [2Fe-2S] ferredoxin with known structure, and is hypothesized to be responsible for the high rate of metronidazole reduction by TvFd.  相似文献   

15.
16.
The genome of Pyrococcus furiosus contains the putative mbhABCDEFGHIJKLMN operon for a 14-subunit transmembrane complex associated with a Ni-Fe hydrogenase. Ten ORFs (mbhA-I and mbhM) encode hydrophobic, membrane-spanning subunits. Four ORFs (mbhJKL and mbhN) encode putative soluble proteins. Two of these correspond to the canonical small and large subunit of Ni-Fe hydrogenase, however, the small subunit can coordinate only a single iron-sulfur cluster, corresponding to the proximal [4Fe-4S] cubane. The structural genes for the small and the large subunits, mbhJ and mbhL, are separated in the genome by a third ORF, mbhK, encoding a protein of unknown function without Fe/S binding. The fourth ORF, mbhN, encodes a 2[4Fe-4S] protein. With P. furiosus soluble [4Fe-4S] ferredoxin as the electron donor the membranes produce H2, and this activity is retained in an extracted core complex of the mbh operon when solubilized and partially purified under mild conditions. The properties of this membrane-bound hydrogenase are unique. It is rather resistant to inhibition by carbon monoxide. It also exhibits an extremely high ratio of H2 evolution to H2 uptake activity compared with other hydrogenases. The activity is sensitive to inhibition by dicyclohexylcarbodiimide, an inhibitor of NADH dehydrogenase (complex I). EPR of the reduced core complex is characteristic for interacting iron-sulfur clusters with Em approximately -0.33 V. The genome contains a second putative operon, mbxABCDFGHH'MJKLN, for a multisubunit transmembrane complex with strong homology to the mbh operon, however, with a highly unusual putative binding motif for the Ni-Fe-cluster in the large hydrogenase subunit. Kinetic studies of membrane-bound hydrogenase, soluble hydrogenase and sulfide dehydrogenase activities allow the formulation of a comprehensive working hypothesis of H2 metabolism in P. furiosus in terms of three pools of reducing equivalents (ferredoxin, NADPH, H2) connected by devices for transduction, transfer, recovery and safety-valving of energy.  相似文献   

17.
Ferredoxin, cytochrome c3 and hydrogenase are specific partners of the sulfate reduction pathway of Desulfovibrio desulfuricans Norway and might be exemplary for electron exchange mechanism studies. Cytochrome c3 contains four low redox potential haems for 13 000 molecular weight. Two ferredoxins isolated from the same bacteria are dimers of 6 000 molecular weight per subunit (Ferredoxin I: one (4 Fe-4S) cluster per subunit, ferredoxin II: two (4 Fe-4 S) clusters per subunit). The amino acid sequence of ferredoxin I is reported and compared to the ferredoxin II sequence. The structural characteristics of ferredoxins and cytochrome c3 should allow a discussion on the nature of the interaction. 1H-NMR spectra of ferredoxin I and cytochrome c3 in the absence and presence of ferredoxin are presented.  相似文献   

18.
The structural and electronic properties of the [2Fe-2S] clusters in reduced putidaredoxin, Spinacea oleracea ferredoxin, and Clostridium pasteurianum [2Fe-2S] ferredoxin have been investigated by resonance Raman and variable temperature magnetic circular dichroism spectroscopies. Both techniques are shown to provide diagnostic fingerprints for identifying [2Fe-2S]+ clusters in more complex multicomponent metalloenzymes. The Fe-S stretching modes of oxidized and reduced putidaredoxin are assigned via 34S and D2O isotope shifts and previous normal mode calculations for adrenodoxin (Han, S., Czernuszewicz, R. S., Kimura, T., Adams, M. W. W., and Spiro, T. G. (1989) J. Am. Chem. Soc. 111, 3505-3511). The close similarity in the resonance Raman spectra of reduced [2Fe-2S] centers, in terms of both the vibrational frequencies and enhancement profiles of the Fe-S stretching modes, permits these assignments to be generalized to all clusters of this type. Modes primarily involving Fe(III)-S(Cys) stretching are identified in all three reduced [2Fe-2S] proteins, and the frequencies are rationalized in terms of the conformation of the cysteine residues ligating the Fe(III) site of the localized valence reduced cluster. D2O isotope shifts indicate few, if any, amide NH-S hydrogen bond interactions involving the cysteines ligating the Fe(III) site. Preliminary resonance Raman excitation profiles suggest assignments for the complex pattern of electronic bands that comprise the low temperature magnetic circular dichroism spectra of the reduced proteins. S----Fe(III) and Fe(II)----S charge transfer, Fe d-d, and Fe(II)----Fe(III) intervalence bands are identified.  相似文献   

19.
The structure of a low-potential [4Fe-4S] ferredoxin from Bacillus thermoproteolyticus has been solved using anomalous scattering data from iron atoms in the diffraction data of native crystals and refined partially to a crystallographic R-factor of 0.33, with 2.3 A (1 A = 0.1 nm) resolution data. The least-squares refinement based on the Bijvoet differences has determined that the four iron atoms in the cluster are an equal distance, approximately 2.8 A, apart. The NH ... S hydrogen bonds between polypeptide nitrogen atoms, and both cysteine and inorganic sulfur atoms, are present, as in ferrodoxin from Peptococcus aerogenes. The polypeptide chain of the B. thermoproteolyticus ferredoxin has a fold closely similar to that of 2[4Fe-4S] ferredoxin from P. aerogenes. The structural correspondence indicates strongly that both types of ferredoxin evolved from a common ancestor. The second cluster-binding region in P. aerogenes ferredoxin corresponds to the alpha-helix in B. thermoproteolyticus ferredoxin. The secondary-structure predictions strongly suggest that the alpha-helix is generally present in the monocluster-type ferredoxins. The conformational change to alpha-helix, insertions of a loop and a protrusion, as well as the absence of the second cluster in B. thermoproteolyticus ferredoxin, result in the lack of 2-fold symmetry present in P. aerogenes ferredoxin. So, the track of gene duplication is no longer detectable in the tertiary structure alone. The evolutionary events that may have occurred in the ferredoxins with the [4Fe-4S] cluster are discussed.  相似文献   

20.
Recent crystallographic and kinetic data have revealed the crucial role of the large scale domain movement of the iron-sulfur subunit [2Fe-2S] cluster domain during the ubihydroquinone oxidation reaction catalyzed by the cytochrome bc(1) complex. Previously, the electron paramagnetic resonance signature of the [2Fe-2S] cluster and its redox midpoint potential (E(m)) value have been used extensively to characterize the interactions of the [2Fe-2S] cluster with the occupants of the ubihydroquinone oxidation (Q(o)) catalytic site. In this work we analyze these interactions in various iron-sulfur subunit mutants that carry mutations in its flexible hinge region. We show that the E(m) increases of the iron-sulfur subunit [2Fe-2S] cluster induced either by these mutations or by the addition of stigmatellin do not act synergistically. Moreover, the E(m) increases disappear in the presence of class I inhibitors like myxothiazol. Because various inhibitors are known to affect the location of the iron-sulfur subunit cluster domain, the measured E(m) value of the [2Fe-2S] cluster therefore reflects its equilibrium position in the Q(o) site. We also demonstrate the existence in this site of a location where the E(m) of the cluster is increased by about 150 mV and discuss its possible implications in term of Q(o) site catalysis and energetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号