首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ovine fetal adrenal cortex and pituitary are functional secretory organs by the end of the first third of gestation (term is 142-152 days). By half-way through gestation the zona glomerulosa is mature morphologically, more than 80% of the aldosterone in fetal blood is of fetal adrenal origin, but conventional stimuli, for example, increased plasma K+ or angiotensin II, do not increase aldosterone secretion until near term. The zona fasciculata is immature histologically, relatively unresponsive to ACTH, and contributes less than 10% of the cortisol in fetal blood between 100 and 120 days of gestation. After this time the zona fasciculata cells begin to mature, to respond to ACTH and to produce an increasing proportion of the cortisol in fetal blood. A functional relationship between hypothalamus-pituitary-adrenal cortex matures over the last fifth of gestation. It is hypothesized that cortisol exerts a local effect in maturation of fetal zona fasciculata cells, such that low concentrations of ACTH have increasingly larger effects on growth and secretion of the fasciculata and that the level of negative feedback by cortisol on the hypothalamic-pituitary axis is reset. The analogy is drawn between the changes in gonadotrophin and gonadal hormones which culminates in puberty in man and the changes in ACTH and cortisol which culminate in parturition in sheep.  相似文献   

2.
Regulation of the hypothalamic-pituitary-adrenal axis in birth   总被引:1,自引:0,他引:1  
In sheep an increase in fetal pituitary-adrenal function, reflected in rising concentrations of plasma ACTH and cortisol, is important in relation to fetal organ maturation and the onset of parturition. This review presents evidence that implicates the hypothalamic-pituitary-adrenal axis in the control of parturition and describes recent experiments that explore in detail the maturation of the fetal hypothalamus and pituitary in relation to fetal adrenal function. Recent improvements for the measurement of ACTH in unextracted plasma and the ability to maintain vascular catheters in chronically catheterized fetal sheep have enabled subtle changes in fetal ACTH concentrations to be detected. As a result of these advances it has now been established that the terminal rise in cortisol, which is responsible for the onset of parturition in sheep, is preceded by an increase in fetal plasma ACTH concentrations. This has led to the hypothesis that birth results from the sequential development of the fetal hypothalamic-pituitary-adrenal axis with the signal originating from the fetal brain. This increase in trophic drive to the fetal adrenal may result from changes in the responsiveness of the fetal pituitary gland to factors that stimulate the release of ACTH. Corticotropin releasing factor (CRF) and arginine vasopressin are two such factors that stimulate the secretion of ACTH and cortisol secretion in the chronically catheterized fetal sheep. The response to these factors increases with gestational age and is sensitive to glucocorticoid feedback. Furthermore, repeated administration of CRF to immature fetal sheep results in pituitary and adrenal activation and in some cases may lead to premature parturition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Endothelin-3 (ET-3) is a member of the novel vasoconstrictive peptide family, identified in porcine central nervous system. Intravenous bolus injection of 1000 pmol/kg of ET-3 in freely moving rats caused significant increases in plasma ACTH and corticosterone levels, almost equivalent to those of 100 pmol/kg of rat corticotropin-releasing hormone (rCRH). The action of ET-3 was virtually abolished by pretreatment of CRH-antagonist, alpha-helical CRH. When ET-3 was added to cultured anterior pituitary cells, neither direct stimulation of ACTH release nor potentiation of rCRH action was noted. The results indicate that ET-3 may function as a neuropeptide and stimulation of the CRH-neurons, direct or inderect, is mainly responsible for activation of ACTH and corticosterone release.  相似文献   

4.
We studied feral free-living pigeons (Columba livia) to determine whether either unstressed or stress-induced corticosterone release was altered during a prebasic molt. The pigeons were at various stages of molt throughout the study, but corticosterone responses in molting and nonmolting birds did not differ. This was further reflected in equivalent adrenal responses to exogenous adrenocorticotropic hormone (ACTH), suggesting equivalent steroidogenic capacity of adrenal tissues during both physiological states. There was a slight change, however, in pituitary regulation during molt. Whereas exogenous arginine vasotocin (AVT) elevated corticosterone levels in nonmolting birds, during molt an equivalent dose of AVT was ineffective, suggesting that the pituitary is less sensitive to an AVT signal during molt. AVT also appears to be more effective than corticotropin-releasing factor at eliciting ACTH release in pigeons. Overall, these data indicate that pigeons regulate their corticosterone release differently during molt than other avian species studied to date.  相似文献   

5.
The effects of mouse epidermal growth factor (mEGF) on the hypothalamic-pituitary-adrenocortical axis were studied in vivo in conscious male rats and in vitro with cultured anterior pituitary cells. Both intravenous (i.v.) and intracerebroventricular (i.c.v.) injections of mEGF (5-20 ng: 8.3-33.3 pmol) produced significant, dose-related increases in plasma ACTH and corticosterone concentrations. The potency of mEGF is 1/20-1/50 of that of rat corticotropin-releasing factor (rCRF), and pretreatment with 150 micrograms alpha-helical CRF (9-41) completely abolished the effects of the two peptides. mEGF in concentrations ranging from 10 pM to 10 nM did not significantly affect ACTH release from dispersed anterior pituitary cells. It also failed to alter ACTH secretion in response to rCRF. These results indicate that mEGF stimulates the pituitary-adrenocortical axis through a CRF-dependent mechanism.  相似文献   

6.
The possibility of sequence-dependent, transient, and local inhibition of neuropeptide or neuropeptide receptor expression within the brain makes antisense targeting an attractive approach for those interested in the involvement of brain neuropeptide systems in behavioral and neuroendocrine regulation. Here, I describe our attempts to manipulate the synthetic activity of peptidergic systems of the hypothalamic-neurohypophysial system, i.e. , oxytocin and vasopressin, and the hypothalamic-pituitary-adrenal (HPA) axis by antisense oligodeoxynucleotides. Detailed experimental protocols including different approaches for intracerebral antisense application in anesthetized or conscious rats are provided. As a consequence of local oxytocin or vasopressin antisense treatment within the hypothalamic supraoptic nucleus, various aspects of the neuronal activity are already altered after a few hours. Thus, we monitored electrophysiological parameters of oxytocinergic and vasopressinergic neurons, stimulus-induced expression of the Fos protein in oxytocin neurons, and stimulated release of oxytocin or vasopressin into blood as well as within the hypothalamus by dendrites and cell bodies as measured by simultaneous microdialysis in blood and brain, shortly after a single acute antisense infusion. We also employed chronic antisense infusion via osmotic minipumps or by repeated local infusion into the targeted brain region; for example, septal vasopressin receptor downregulation impairs the ability of male rats to discriminate between juvenile rats. Further, reduction of the amount of available CRH, vasopressin, and oxytocin within the hypothalamic paraventricular nuclei alters the neuroendocrine stress response of the HPA axis.  相似文献   

7.
The hypothalamic-pituitary-adrenal (HPA) axis plays a primary role in the body response to stresses. Activation of the HPA axis results in the production of corticosteroid hormones that influence a wide variety of body functions, including immunity, metabolism, ion exchange, and behavior. A well-balanced regulation of stress responses is pivotal for maintaining intrabody homeostasis. The HPA axis is regulated at several levels, including stimulatory or inhibitory signals from the brain mediated through neurotransmitter systems and the suppressive feedback influence of corticosteroids themselves. Corticosteroids affect the HPA axis through binding to the glucocorticoid and mineralocorticoid receptors located in the hippocampus. Genes encoding these receptors have several polymorphic regions in which the alleles are associated with different basal and stress-induced levels of hormones secreted in the course of HPS axis stimulation. Additionally, genetic variants of neurotransmitter systems involved in the activation or suppression of the HPA axis have been found. Thus, the given genetic variations are major contributors to the HPA axis-mediated individual resistance or susceptibility to stresses.  相似文献   

8.
Cytokines as modulators of the hypothalamus-pituitary-adrenal axis   总被引:9,自引:0,他引:9  
The hypothalamus-pituitary-adrenal (HPA) axis is stimulated during the course of certain immune, inflammatory and neoplastic processes. IL-1 is an important immunologically derived cytokine mediating the stimulation of this axis, although not the only one. We have compared the relative potencies of the cytokines IL-1, IL-6 and tumor necrosis factor (TNF), which share several biological actions, for stimulating ACTH and corticosterone output in freely-moving rats. Although all three cytokines can stimulate the HPA axis, IL-1 was the most potent. This effect of IL-1 was also present during the neonatal period, when the response of the HPA axis to acute stress is reduced in rodents. The results support the existence of an immune-HPA axis circuit. The biological and clinical relevance of this circuit is discussed.  相似文献   

9.
10.
《Life sciences》1994,54(10):PL165-PL171
The possible involvement of lipopolysaccharide (LPS) and interleukin-1β (IL-1β) and their eventual interplay in CRH and ACTH release from cultured hypothalamic and pituitary cells respectively, have been studied. IL-1β was able to activate the hypothalamo-pituitary-adrenal axis at both hypothalamic and pituitary sites; LPS showed no direct action at hypothalamic level but it was able to inhibit basal and IL-1β-induced ACTH release: this could be responsible for a blunting of the adrenal cortex response that normally occurs in septic shock syndrome.  相似文献   

11.
Parental and environmental factors during the prenatal and postnatal periods permanently affect the physiology and metabolism of offspring, potentially increasing disease risk later in life. Underlying mechanisms are being elucidated, and effects on a number of organs and metabolic pathways are likely involved. In this review, we consider effects on the developing hypothalamic-pituitary-adrenal (HPA) axis, which may represent a common pathway for developmental programming. The focus is on prenatal and early postnatal development, during which the HPA axis may be programmed in a manner that affects health for a lifetime. Programming of the HPA axis involves, at least in part, epigenetic remodeling of chromatin, leading to alterations in the expression of genes in many organs and tissues involved in HPA activation and response, including the hippocampus and peripheral tissues. Examples of developmental epigenetic modifications affecting the HPA axis as well as target tissues are provided.  相似文献   

12.
There is increasing evidence that neuropeptide Y (NPY) affects the release of pituitary hormones, including adrenocorticotropic hormone (ACTH). The present study was designed to clarify the mechanism by which NPY activates the hypothalamic-pituitary-adrenal (HPA) axis in the dog. Mongrel dogs were equipped with a chronic cannula allowing intra-third (i.t.v.) or intra-lateral (i.l.v.) cerebroventricular administration. A 1.19 nmol, i.t.v. dose of NPY produced as great an ACTH and cortisol response as did equimolar ovine corticotropin releasing factor (CRF). This action of NPY was dose-dependent and shared by peptide YY (PYY) and pancreatic polypeptide (PP), other members of the PP family peptide. Intravenously (i.v.) administered NPY (1.19-11.9 nmol) was much less potent than i.v. CRF in stimulating ACTH and cortisol secretion. However, i.v. NPY significantly increased plasma ACTH and cortisol concentrations, raising the possibility that NPY may modulate the activity of corticotrophs. We have next investigated the possible relationship between NPY and CRF on the HPA axis. Pretreatment with a novel CRF antagonist, alpha-helical CRF9-41 (130.9 nmol i.t.v. or 261.8 nmol i.v.), partly but significantly attenuated the ACTH and cortisol responses to i.t.v. NPY (1.19 nmol). Furthermore, adding a subthreshold dose of i.t.v. NPY (0.119 nmol) to i.t.v. CRF (1.19 nmol) or i.v. NPY (2.38 nmol) to i.v. CRF (0.595 nmol) resulted in the potentiation of CRF-induced ACTH secretion. These results indicate that NPY may activate the HPA axis in concert with CRF probably at hypothalamic and/or pituitary levels. The present findings that NPY evokes ACTH secretion and potentiates the effectiveness of CRF as a secretagogue, together with high concentrations of NPY in the hypothalamus and pituitary portal blood, suggest that NPY is involved in the multihormonal control of ACTH release.  相似文献   

13.
Hypothalamic-pituitary-adrenal (HPA) axis function, in Brahman heifers of differing temperament, was evaluated using separate challenges with CRH and ACTH. Exit velocity (EV) measurement was used to classify heifer temperament as calm [C; consisted of 6 slowest heifers (EV=1.05+/-0.05 m/s)] or temperamental [T; 6 fastest heifers (EV=3.14+/-0.22 m/s)]. During the 6 h prior to CRH challenge, areas under the ACTH (P=0.025) and cortisol (P<0.001) curves were greater in the temperamental heifers. Baseline cortisol (P<0.001) but not ACTH (P=0.10) differed between temperament groups. Following CRH challenge, areas under the ACTH (P=0.057) and cortisol (P<0.01) response curves were greater in the calm animals. The same animals were subjected to an ACTH challenge 14 d following their utilization in the CRH stimulation experiment. Prior to ACTH challenge, baseline cortisol concentrations were higher (P<0.001) in the temperamental heifers (T=18+/-2.6, C=4.3+/-0.6 ng/mL). Following ACTH administration, area under the cortisol response curve was greater (P=0.07) in the calm heifers. After declining below baseline concentrations during the post-challenge recovery period, cortisol in temperamental animals was again greater (P=0.02) than in the calm heifers. These data demonstrate that cattle with an excitable temperament exhibit increased stress responsiveness to handling, increased baseline adrenal function but not increased basal pituitary function, and a muted responsiveness to pharmacological stimulus. Thus, functional characteristics of the HPA axis vary with animal temperament.  相似文献   

14.
Leukemia inhibitory factor (LIF) is a pleiotropic cytokine belonging to the gp130 family. LIF is induced peripherally and within the brain during inflammatory or chronic autoimmune diseases and is a potent stimulator of the hypothalamic-pituitary-adrenal (HPA) axis. Here we investigated the role of LIF in mediating glucocorticoid receptor (GR) expression in the HPA axis. LIF treatment (3 microg/mouse, i.p.) markedly decreased GR mRNA levels in murine hypothalamus (5-fold, P < 0.01) and pituitary (1.7-fold, P < 0.01) and downregulated GR protein levels. LIF decreased GR expression in murine corticotroph cell line AtT20 within 2 h, and this effect was sustained for 8 h after treatment. LIF-induced GR mRNA reduction was abrogated in AtT20 cells overexpressing dominant-negative mutants of STAT3, indicating that intact JAK-STAT signaling is required to mediate LIF effects on GR expression. Conversely, mice with LIF deficiency exhibited increased GR mRNA levels in the hypothalamus and pituitary (3.5- and 3.5-fold, respectively; P < 0.01 for both) and increased GR protein expression when compared with wild-type littermates. The suppressive effects of dexamethasone on GR were more pronounced in LIF-null animals. These data suggest that LIF maintains the HPA axis activation by decreasing GR expression and raise the possibility that LIF might contribute to the development of central glucocorticoid resistance during inflammation.  相似文献   

15.
The hypothalamic-pituitary-adrenal (HPA) axis maintains basal and stress-related homeostasis in vertebrates. Skin expresses all elements of the HPA axis including corticotropin-releasing hormone (CRH), proopiomelanocortin (POMC), ACTH, β-endorphin (β-END) with corresponding receptors, the glucocorticoidogenic pathway, and the glucocorticoid receptor (GR). To test the hypothesis that cutaneous responses to environmental stressors follow the organizational structure of the central response to stress, the activity of the "cutaneous HPA" axis homolog was investigated after exposure to ultraviolet radiation (UVR) wavelengths of UVA (320-400 nm), UVB (280-320 nm), and UVC (100-280 nm) in human skin organ culture and in co-cultured keratinocytes/melanocytes. The level of stimulation of CRH, POMC, MC1R, MC2R, CYP11A1, and CYP11B1 genes was dependent on UV wavelengths and doses, with the highest effects observed for highly energetic UVC and UVB. ELISA and Western assays showed significant production of CRH, POMC, ACTH, and CYP11A1 proteins and of cortisol, with a decrease in GR expression only after UVB and UVC. However, β-END expression was also stimulated by UVA. Immunocytochemistry localized the deposition of the aforesaid antigens predominantly to the epidermis with additional accumulation of CRH, β-END, and ACTH in the dermis. UVR-stimulated CYP11A1 expression was seen in the basal layer of the epidermis and cells of adjacent dermis. Thus, the capacity to activate or change the spatial distribution of the cutaneous HPA axis elements is dependent on highly energetic wavelengths (UVC and UVB), implying a dependence of a local stress response on their noxious activity with overlapping or alternative mechanisms activated by UVA.  相似文献   

16.
Acute nicotine administration has been shown to activate the hypothalamic-pituitary-adrenal (HPA) axis and stimulate secretion of adrenocorticotrophic hormone (ACTH), corticosterone/cortisol and beta-endorphin (beta-END) in both rodents and humans, raising the possibility that activation of the HPA axis by nicotine may mediate some of the effects of nicotine. Since stress can increase the risk of drug use and abuse, we hypothesized that repeated stress would increase the ability of nicotine to stimulate the secretion of HPA hormones. To test our hypothesis, mice were exposed to repeated stress (swimming in 15 degrees C water for 3 min/day for 5 days) and killed 15 min after injection of saline or nicotine (0.1 mg/kg, s.c.). Repeated exposure to stress increased the ability of nicotine to stimulate plasma ACTH (p<0.05) and beta-END (p<0.05), but not corticosterone secretion. In contrast, repeated exposure to stress increased the post-saline injection levels of corticosterone (p<0.05), but not ACTH and beta-END. The present results suggest that chronic stress leads to an enhanced sensitivity of some components of the HPA axis to a subsequent nicotine challenge.  相似文献   

17.
In addition to its role on water conservation, vasopressin (VP) regulates pituitary ACTH secretion by potentiating the stimulatory effects of corticotropin releasing hormone (CRH). The pituitary actions of VP are mediated by plasma membrane receptors of the V1b subtype, coupled to calcium-phospholipid signaling systems. VP is critical for adaptation of the hypothalamic-pituitary-adrenal (HPA) axis to stress as indicated by preferential expression of VP over CRH in parvocellular neurons of the hypothalamic paraventricular nucleus, and the upregulation of pituitary VP receptors during stress paradigms associated with corticotroph hyperresponsiveness. V1b receptor mRNA levels and coupling of the receptor to phospolipase C are stimulated by glucocorticoids, effects which may contribute to the refractoriness of VP-stimulated ACTH secretion to glucocorticoid feedback. The data suggest that vasopressinergic regulation of the HPA axis is critical for sustaining corticotroph responsiveness in the presence of high circulating glucocorticoid levels during chronic stress.  相似文献   

18.
In the present study, we examined whether the vagus nerve is involved in mediating the stimulation of hypothalamic-pituitary-adrenal (HPA) axis by cholinergic muscarinic and nicotinic agonists, carbachol and nicotine. The site of HPA axis muscarinic stimulation was determined using peripheral (i.p.) and intracerebroventricular (i.c.v.) administration of carbachol, atropine sulphate (AtrS) and atropine hydrobromide (AtrBr). The i.p. carbachol-(0.5 mg/kg)-induced corticosterone response was significantly reduced by i.p. pretreatment with AtrBr (0.1 mg/kg), but was not diminished by i.c.v. AtrS (0.1 mug). The increase in corticosterone secretion induced by i.c.v. carbachol (2 microg) was totally abolished by i.c.v. pretreatment with AtrS (0.1 microg) but was not altered by i.p. AtrBr. Subdiaphragmatic vagotomy performed 2 weeks earlier substantially decreased the i.p. carbachol (0.2 mg/kg)-induced ACTH response and markedly augmented ACTH and corticosterone response to a higher dose of carbachol (0.5 mg/kg) in comparison with the responses in sham operated rats. Vagotomy abolished the stimulatory effect of i.p. nicotine in a low dose (1 mg/kg) on ACTH and corticosterone secretion; the ACTH response to higher dose (2.5 mg/kg) was considerably reduced, while corticosterone response remained unaffected. These results suggest that carbachol given i.c.v. evokes considerable corticosterone response by stimulation of central cholinergic muscarinic receptors. A major part of the i.p. carbachol-induced corticosterone secretion results from peripheral cholinergic muscarinic receptor stimulation. Subdiaphragmatic vagotomy moderately intensified the carbachol-induced ACTH and corticosterone secretion. Vagotomy significantly reduced the nicotine-induced ACTH secretion, possibly by the involvement of vagal afferents. The nicotine-induced corticosterone secretion is not exclusively regulated by circulating ACTH but by various intra-adrenal regulatory components.  相似文献   

19.
Individuals born with a low birth weight (LBW) have an increased prevalence of type 2 diabetes, but the mechanisms responsible for this association are unknown. Given the important role of insulin resistance in the pathogenesis of type 2 diabetes, we examined insulin sensitivity in a rat model of LBW due to intrauterine fetal stress. During the last 7 days of gestation, rat dams were treated with dexamethasone and insulin sensitivity was assessed in the LBW offspring by a hyperinsulinemic euglycemic clamp. The LBW group had liver-specific insulin resistance associated with increased levels of PEPCK expression. These changes were associated with pituitary hyperplasia of the ACTH-secreting cells, increased morning plasma ACTH concentrations, elevated corticosterone secretion during restraint stress, and an approximately 70% increase in 24-h urine corticosterone excretion. These data support the hypothesis that prenatal stress can result in chronic hyperactivity of the hypothalamic-pituitary-adrenal axis, resulting in increased plasma corticosterone concentrations, upregulation of hepatic gluconeogenesis, and hepatic insulin resistance.  相似文献   

20.
Objective: This study was carried out to investigate the role of sex in the regulation of the hypothalamic‐pituitary‐adrenal (HPA) axis and its relationship with testosterone levels in male and female obesity. Research Methods and Procedures: Twenty‐two obese men (OB‐M) and 29 obese women (OB‐W) participated in the study. Two groups of normal weight men (NW‐M) and women (NW‐W), respectively, served as controls. In basal conditions, blood concentrations of major androgens, sex hormone—binding protein, and gonadotropins were assessed, and the free androgen index (testosterone ×100/ sex hormone‐binding globulin) was calculated. All subjects underwent a combined corticotropin‐releasing hormone plus arginine‐vasopressin stimulation test. Results: OB‐M and NW‐M had higher basal adrenal cortical tropic hormone (ACTH) and cortisol levels than their female counterparts. In addition, ACTH, but not cortisol basal, levels were significantly higher in obese than in normal weight controls in both sexes. OB‐W had a higher response than OB‐M to the combined corticotropin‐releasing hormone plus arginine‐vasopressin test of both ACTH and cortisol [expressed as incremental percentage of area under the curve (AUC%)]. The same finding was present between NW‐W and NW‐M. Basal luteinizing hormone levels were negatively correlated to ACTHAUC% in both OB‐W and OB‐M. In the OB‐W, however, a positive correlation was found between cortisolAUC% and testosterone (r = 0.48; p = 0.002), whereas a tendency toward a negative correlation was present in OB‐M. Discussion: In conclusion, we have shown a significant positive relationship between the activity of the HPA axis and testosterone in obese women, which suggests a partial responsibility of increased HPA axis activity in determining testosterone levels. In addition, it clearly seems that, as reported in normal weight subjects, a sex difference in the HPA axis activity still persists even in the presence of obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号