首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is often large variation in traits across the species of a community. In particular, variation in life history traits affecting population dynamics is likely to affect the species abundance distribution. Applying a dynamic and heterogeneous species abundance model we study how differences in extinction time for species in a community act as a force changing the distribution of dynamic parameters across species. This process may generate communities that are more heterogeneous then the heterogeneity measured as the species enter the community. Analytical results for some versions of the lognormal and gamma species abundance model are given as exemplifications of this process, together with stochastic simulations demonstrating the temporal changes in number of species and community heterogeneity through time.  相似文献   

2.
The joint spatial and temporal fluctuations in the community structure of tropical butterflies are analyzed by fitting the bivariate Poisson lognormal distribution to a large number of observations in space and time. By applying multivariate dependent diffusions for describing the fluctuations in the abundances, the environmental variance is estimated to be very large and so is the strength of local density regulation. The variance in the lognormal species abundance distribution is partitioned into components expressing the heterogeneity between the species, independent noise components for the different species, a demographic stochastic component, and a component due to overdispersion in the sampling. In disagreement with the neutral theory, the estimates show that the heterogeneity component is the dominating one, representing 81% of the total variance in the lognormal model. Different spatial components of diversity, the alpha, beta, and gamma diversity, are also estimated. The spatial scale of the autocorrelation function for the community is of order 1 km, while sampling of a quadrat would need to be 10 km on a side to yield the total diversity for the community.  相似文献   

3.
为解释塔里木荒漠河岸林群落构建和物种多度分布格局形成的机理, 本文以塔里木荒漠河岸林2个不同生境(沙地、河漫滩) 4 ha固定监测样地为研究对象, 基于两样地物种调查数据, 采用统计模型(对数级数模型、对数正态模型、泊松对数正态分布模型、Weibull分布模型)、生态位模型(生态位优先占领模型、断棍模型)和中性理论模型(复合群落零和多项式模型、Volkov模型)拟合荒漠河岸林群落物种多度分布, 并用K-S检验与赤池信息准则(AIC)筛选最优拟合模型。结果表明: (1)随生境恶化(土壤水分降低), 植物物种多度分布曲线变化减小, 群落物种多样性、多度和群落盖度降低, 常见种数减少。(2)选用的3类模型均可拟合荒漠河岸林不同生境群落物种多度分布格局, 统计模型和中性理论模型拟合效果均优于生态位模型。复合群落零和多项式模型对远离河岸的干旱沙地生境拟合效果最好; 对数正态模型和泊松对数正态模型对洪水漫溢的河漫滩生境拟合效果最优; 中性理论模型与统计模型无显著差异。初步推断中性过程在荒漠河岸林群落构建中发挥着主导作用, 但模型拟合结果只能作为推断群落构建过程的必要非充分条件, 不能排除生态位过程的潜在作用。  相似文献   

4.
The joint spatial and temporal fluctuations in community structure may be due to dispersal, variation in environmental conditions, ecological heterogeneity among species and demographic stochasticity. These factors are not mutually exclusive, and their relative contribution towards shaping species abundance distributions and in causing species fluctuations have been hard to disentangle. To better understand community dynamics when the exchange of individuals between localities is very low, we studied the dynamics of the freshwater zooplankton communities in 17 lakes located in independent catchment areas, sampled at end of summer from 2002 to 2008 in Norway. We analysed the joint spatial and temporal fluctuations in the community structure by fitting the two‐dimensional Poisson lognormal model under a two‐stage sampling scheme. We partitioned the variance of the distribution of log abundance for a random species at a random time and location into components of demographic stochasticity, ecological heterogeneity among species, and independent environmental noise components for the different species. Non‐neutral mechanisms such as ecological heterogeneity among species (20%) and spatiotemporal variation in the environment (75%) explained the majority of the variance in log abundances. Overdispersion relative to Poisson sampling and demographic stochasticity had a small contribution to the variance (5%). Among a set of environmental variables, lake acidity was the environmental variable that was most strongly related to decay of community similarity in space and time.  相似文献   

5.
南亚热带森林群落种-多度的对数正态分布模型研究   总被引:6,自引:0,他引:6  
殷祚云  廖文波   《广西植物》1999,19(3):221-224
通过对地处南亚热带的广东省黑石顶自然保护区森林群落的定点研究结果的分析表明:当用1,2,3,…分组每种个体数r时,5个不同类型的群落样地的种一多度分布的直方图都呈明显的倒J-形;经Preston“倍程(octaves)”法分组r后,其种-多度都服从对数正态分布。由种-多度模型可以推出另一新的模型一个体一多度分布模型,即I(R)=2R0SOEXP[[1n2)2/4a2〕EXP{-a2(R-(RO+1n2/2a2)]2},它也符合对数正态分布。另外,还运用积分方法推导出估计总体(整个群落)中总种数S*和总个体数I*理论值的公式,用此公式估计的结果较为合理。  相似文献   

6.
Case studies on Poisson lognormal distribution of species abundance have been rare, especially in forest communities. We propose a numerical method to fit the Poisson lognormal to the species abundance data at an evergreen mixed forest in the Dinghushan Biosphere Reserve, South China. Plants in the tree, shrub and herb layers in 25 quadrats of 20 m×20 m, 5 m×5 m, and 1 m×1 m were surveyed. Results indicated that: (i) for each layer, the observed species abundance with a similarly small median, mode, and a variance larger than the mean was reverse J-shaped and followed well the zero-truncated Poisson lognormal;(ii) the coefficient of variation, skewness and kurtosis of abundance, and two Poisson lognormal parameters (σ andμ) for shrub layer were closer to those for the herb layer than those for the tree layer; and (iii) from the tree to the shrub to the herb layer, the σ and the coefficient of variation decreased, whereas diversity increased. We suggest that: (i) the species abundance distributions in the three layers reflects the overall community characteristics; (ii) the Poisson lognormal can describe the species abundance distribution in diverse communities with a few abundant species but many rare species; and (iii) 1/σ should be an alternative measure of diversity.  相似文献   

7.
Several stochastic models with environmental noise generate spatio‐temporal Gaussian fields of log densities for the species in a community. Combinations of such models for many species often lead to lognormal species abundance distributions. In spatio‐temporal analysis it is often realistic to assume that the same species are expected to occur at different times and/or locations because extinctions are rare events. Spatial and temporal β‐diversity can then be analyzed by studying pairs of communities at different times or locations defined by a bivariate lognormal species abundance model in which a single correlation occurs. This correlation, which is a measure of similarity between two communities, can be estimated from samples even if the sampling intensities vary and are unknown, using the bivariate Poisson lognormal distribution. The estimators are approximately unbiased, although each specific correlation may be rather uncertain when the sampling effort is low with only a small fraction of the species represented in the samples. An important characteristic of this community correlation is that it relates to the classical Jaccard‐ or the Sørensen‐indices of similarity based on the number of species present or absent in two communities. However, these indices calculated from samples of species in a community do not necessarily reflect similarity of the communities because the observed number of species depends strongly on the sampling intensities. Thus, we propose that our community correlation should be considered as an alternative to these indices when comparing similarity of communities. We illustrate the application of the correlation method by computing the similarity between temperate bird communities.  相似文献   

8.
Abstract: Case studies on Poisson lognormal distribution of species abundance have been rare, especially in forest communities. We propose a numerical method to fit the Poisson lognormal to the species abundance data at an evergreen mixed forest in the Dinghushan Biosphere Reserve, South China. Plants in the tree, shrub and herb layers in 25 quadrats of 20 m× 20 m, 5 m× 5 m, and 1 m× 1 m were surveyed. Results indicated that: (i) for each layer, the observed species abundance with a similarly small median, mode, and a variance larger than the mean was reverse J-shaped and followed well the zero-truncated Poisson lognormal; (ii) the coefficient of variation, skewness and kurtosis of abundance, and two Poisson lognormal parameters (& and μ) for shrub layer were closer to those for the herb layer than those for the tree layer; and (iii) from the tree to the shrub to the herb layer, the α and the coefficient of variation decreased, whereas diversity increased. We suggest that: (i) the species abundance distributions in the three layers reflects the overall community characteristics; (ii) the Poisson lognormal can describe the species abundance distribution in diverse communities with a few abundant species but many rare species; and (iii) 1/α should be an alternative measure of diversity.
(Managing editor: Ya-Qin HAN)  相似文献   

9.
Species abundances are undoubtedly the most widely available macroecological data, but can we use them to distinguish among several models of community structure? Here we present a Bayesian analysis of species‐abundance data that yields a full joint probability distribution of each model's parameters plus a relatively parameter‐independent criterion, the posterior Bayes factor, to compare these models. We illustrate our approach by comparing three classical distributions: the zero‐sum multinomial (ZSM) distribution, based on Hubbell's neutral model, the multivariate Poisson lognormal distribution (MPLN), based on niche arguments, and the discrete broken stick (DBS) distribution, based on MacArthur's broken stick model. We give explicit formulas for the probability of observing a particular species‐abundance data set in each model, and argue that conditioning on both sample size and species count is needed to allow comparisons between the two distributions. We apply our approach to two neotropical communities (trees, fish). We find that DBS is largely inferior to ZSM and MPLN for both communities. The tree data do not allow discrimination between ZSM and MPLN, but for the fish data ZSM (neutral model) overwhelmingly outperforms MPLN (niche model), suggesting that dispersal plays a previously underestimated role in structuring tropical freshwater fish communities. We advocate this approach for identifying the relative importance of dispersal and niche‐partitioning in determining diversity of different ecological groups of species under different environmental conditions.  相似文献   

10.
Aims In ecology and conservation biology, the number of species counted in a biodiversity study is a key metric but is usually a biased underestimate of total species richness because many rare species are not detected. Moreover, comparing species richness among sites or samples is a statistical challenge because the observed number of species is sensitive to the number of individuals counted or the area sampled. For individual-based data, we treat a single, empirical sample of species abundances from an investigator-defined species assemblage or community as a reference point for two estimation objectives under two sampling models: estimating the expected number of species (and its unconditional variance) in a random sample of (i) a smaller number of individuals (multinomial model) or a smaller area sampled (Poisson model) and (ii) a larger number of individuals or a larger area sampled. For sample-based incidence (presence–absence) data, under a Bernoulli product model, we treat a single set of species incidence frequencies as the reference point to estimate richness for smaller and larger numbers of sampling units.Methods The first objective is a problem in interpolation that we address with classical rarefaction (multinomial model) and Coleman rarefaction (Poisson model) for individual-based data and with sample-based rarefaction (Bernoulli product model) for incidence frequencies. The second is a problem in extrapolation that we address with sampling-theoretic predictors for the number of species in a larger sample (multinomial model), a larger area (Poisson model) or a larger number of sampling units (Bernoulli product model), based on an estimate of asymptotic species richness. Although published methods exist for many of these objectives, we bring them together here with some new estimators under a unified statistical and notational framework. This novel integration of mathematically distinct approaches allowed us to link interpolated (rarefaction) curves and extrapolated curves to plot a unified species accumulation curve for empirical examples. We provide new, unconditional variance estimators for classical, individual-based rarefaction and for Coleman rarefaction, long missing from the toolkit of biodiversity measurement. We illustrate these methods with datasets for tropical beetles, tropical trees and tropical ants.Important findings Surprisingly, for all datasets we examined, the interpolation (rarefaction) curve and the extrapolation curve meet smoothly at the reference sample, yielding a single curve. Moreover, curves representing 95% confidence intervals for interpolated and extrapolated richness estimates also meet smoothly, allowing rigorous statistical comparison of samples not only for rarefaction but also for extrapolated richness values. The confidence intervals widen as the extrapolation moves further beyond the reference sample, but the method gives reasonable results for extrapolations up to about double or triple the original abundance or area of the reference sample. We found that the multinomial and Poisson models produced indistinguishable results, in units of estimated species, for all estimators and datasets. For sample-based abundance data, which allows the comparison of all three models, the Bernoulli product model generally yields lower richness estimates for rarefied data than either the multinomial or the Poisson models because of the ubiquity of non-random spatial distributions in nature.  相似文献   

11.
Preston's classic work on the theory of species abundance distributions (SADs) in ecology has been challenged by Dewdney. Dewdney contends that Preston's veil-line concept, relating to the shape of sample SADs, is flawed. Here, I show that Preston's and Dewdney's theories can be reconciled by considering the differing mathematical properties of the sampling process on logarithmic (Preston) versus linear (Dewdney) abundance scales. I also derive several related results and show, importantly, that one cannot reject the log-normal distribution as a plausible SAD based only on sampling arguments, as Dewdney and others have done.  相似文献   

12.
Models and data used to describe species–area relationships confound sampling with ecological process as they fail to acknowledge that estimates of species richness arise due to sampling. This compromises our ability to make ecological inferences from and about species–area relationships. We develop and illustrate hierarchical community models of abundance and frequency to estimate species richness. The models we propose separate sampling from ecological processes by explicitly accounting for the fact that sampled patches are seldom completely covered by sampling plots and that individuals present in the sampling plots are imperfectly detected. We propose a multispecies abundance model in which community assembly is treated as the summation of an ensemble of species‐level Poisson processes and estimate patch‐level species richness as a derived parameter. We use sampling process models appropriate for specific survey methods. We propose a multispecies frequency model that treats the number of plots in which a species occurs as a binomial process. We illustrate these models using data collected in surveys of early‐successional bird species and plants in young forest plantation patches. Results indicate that only mature forest plant species deviated from the constant density hypothesis, but the null model suggested that the deviations were too small to alter the form of species–area relationships. Nevertheless, results from simulations clearly show that the aggregate pattern of individual species density–area relationships and occurrence probability–area relationships can alter the form of species–area relationships. The plant community model estimated that only half of the species present in the regional species pool were encountered during the survey. The modeling framework we propose explicitly accounts for sampling processes so that ecological processes can be examined free of sampling artefacts. Our modeling approach is extensible and could be applied to a variety of study designs and allows the inclusion of additional environmental covariates.  相似文献   

13.
To quantify and assess the processes underlying community assembly and driving tree species abundance distributions(SADs) with spatial scale variation in two typical subtropical secondary forests in Dashanchong state‐owned forest farm, two 1‐ha permanent study plots (100‐m × 100‐m) were established. We selected four diversity indices including species richness, Shannon–Wiener, Simpson and Pielou, and relative importance values to quantify community assembly and biodiversity. Empirical cumulative distribution and species accumulation curves were utilized to describe the SADs of two forests communities trees. Three types of models, including statistic model (lognormal and logseries model), niche model (broken‐stick, niche preemption, and Zipf‐Mandelbrodt model), and neutral theory model, were estimated by the fitted SADs. Simulation effects were tested by Akaike's information criterion (AIC) and Kolmogorov–Smirnov test. Results found that the Fagaceae and Anacardiaceae families were their respective dominance family in the evergreen broad‐leaved and deciduous mixed communities. According to original data and random sampling predictions, the SADs were hump‐shaped for intermediate abundance classes, peaking between 8 and 32 in the evergreen broad‐leaved community, but this maximum increased with size of total sampled area size in the deciduous mixed community. All niche models could only explain SADs patterns at smaller spatial scales. However, both the neutral theory and purely statistical models were suitable for explaining the SADs for secondary forest communities when the sampling plot exceeded 40 m. The results showed the SADs indicated a clear directional trend toward convergence and similar predominating ecological processes in two typical subtropical secondary forests. The neutral process gradually replaced the niche process in importance and become the main mechanism for determining SADs of forest trees as the sampling scale expanded. Thus, we can preliminarily conclude that neutral processes had a major effect on biodiversity patterns in these two subtropical secondary forests but exclude possible contributions of other processes.  相似文献   

14.
One aspect of community ecology that has been given particular attention is the pattern of species abundances in a community. The species may have a wide range of abundances; some are very common and others rare. When species abundance models are fitted to observations, the lognormal model and one of the gamma models (e.g., the log-series model) are usually applied. The model that gives the best fit according to some goodness-of-fit test is then chosen. By applying a diffusion approximation for each species' dynamics with density regulation of the straight theta-logistic type, we here present a general species abundance model that embraces the two most widely applied species abundance models, the lognormal and the gamma. Our general model will, therefore, provide a better fit than the two special cases, except when it corresponds to one of them. In contrast to the classical models, ours is also dynamic, making it possible to evaluate the fluctuations in species abundance over time through both biotic and abiotic factors. The model is fitted to several species abundance data sets and our results compared to previous attempts to fit a model, usually either the lognormal or the log-series.  相似文献   

15.
Aims Fits of species-abundance distributions to empirical data are increasingly used to evaluate models of diversity maintenance and community structure and to infer properties of communities, such as species richness. Two distributions predicted by several models are the Poisson lognormal (PLN) and the negative binomial (NB) distribution; however, at least three different ways to parameterize the PLN have been proposed, which differ in whether unobserved species contribute to the likelihood and in whether the likelihood is conditional upon the total number of individuals in the sample. Each of these has an analogue for the NB. Here, we propose a new formulation of the PLN and NB that includes the number of unobserved species as one of the estimated parameters. We investigate the performance of parameter estimates obtained from this reformulation, as well as the existing alternatives, for drawing inferences about the shape of species abundance distributions and estimation of species richness.Methods We simulate the random sampling of a fixed number of individuals from lognormal and gamma community relative abundance distributions, using a previously developed 'individual-based' bootstrap algorithm. We use a range of sample sizes, community species richness levels and shape parameters for the species abundance distributions that span much of the realistic range for empirical data, generating 1?000 simulated data sets for each parameter combination. We then fit each of the alternative likelihoods to each of the simulated data sets, and we assess the bias, sampling variance and estimation error for each method.Important findings Parameter estimates behave reasonably well for most parameter values, exhibiting modest levels of median error. However, for the NB, median error becomes extremely large as the NB approaches either of two limiting cases. For both the NB and PLN,>90% of the variation in the error in model parameters across parameter sets is explained by three quantities that corresponded to the proportion of species not observed in the sample, the expected number of species observed in the sample and the discrepancy between the true NB or PLN distribution and a Poisson distribution with the same mean. There are relatively few systematic differences between the four alternative likelihoods. In particular, failing to condition the likelihood on the total sample sizes does not appear to systematically increase the bias in parameter estimates. Indeed, overall, the classical likelihood performs slightly better than the alternatives. However, our reparameterized likelihood, for which species richness is a fitted parameter, has important advantages over existing approaches for estimating species richness from fitted species-abundance models.  相似文献   

16.
Recently, three different models have been proposed to explain the distribution of abundances in natural communities: the self‐similarity model; the zero‐sum ecological drift model; and the occasional–frequent species model of Magurran and Henderson. Here we study patterns of relative abundance in a large community of forest Hymenoptera and show that it is indeed possible to divide the community into a group of frequent species and a group of occasional species. In accordance with the third model, frequent species followed a lognormal distribution. Relative abundances of the occasional species could be described by the self‐similarity model, but did not follow a log‐series as proposed by the occasional–frequent model. The zero‐sum ecological drift model makes no explicit predictions about frequent and occasional species but the abundance distributions of the hymenopteran species did not show the excess of rare species predicted by this model. Separate fits of this model to the frequent and to the occasional species were worse than the respective fits of the lognormal and the self‐similarity model.  相似文献   

17.
Neutral models of community dynamics are a powerful tool for ecological research, but their applications are currently limited to unrealistically simple types of dynamics and ignore much of the complexity that characterize natural ecosystems. Here, we present a new analytical framework for neutral models that unifies existing models of neutral communities and extends the applicability of existing models to a much wider spectrum of ecological phenomena. The new framework extends the concept of neutrality to fitness equivalence and in spite of its simplicity explains a wide spectrum of empirical patterns of species diversity including positive, negative and unimodal productivity–diversity relationships; gradual and highly delayed declines in species diversity with habitat loss; and positive and negative responses of species diversity to habitat heterogeneity. Surprisingly, the abundance distribution in all of these cases is given by the dispersal limited multinomial (DLM), the abundance distribution in Hubbell's zero-sum model, showing DLM's robustness and demonstrating that it cannot be used to infer the underlying community dynamics. These results support the hypothesis that ecological communities are regulated by a limited set of fundamental mechanisms much simpler than could be expected from their immense complexity.  相似文献   

18.
Statistical mechanics of relative species abundance (RSA) patterns in biological networks is presented. The theory is based on multispecies replicator dynamics equivalent to the Lotka–Volterra equation, with diverse interspecies interactions. Various RSA patterns observed in nature are derived from a single parameter related to productivity or maturity of a community. The abundance distribution is formed like a widely observed left-skewed lognormal distribution. It is also found that the “canonical hypothesis” is supported in some parameter region where the typical RSA patterns are observed. As the model has a general form, the result can be applied to similar patterns in other complex biological networks, e.g. gene expression.  相似文献   

19.
李超凡  范春雨  张春雨  赵秀海 《生态学报》2021,41(23):9502-9510
以吉林蛟河阔叶红松林的木本植物为研究对象,将30hm2的样地面积划分为5m×5m,10m×10m,20m×20m,25m×25m的连续取样单元,在4个不同尺度下分别统计各物种在每个取样单元中的有无,得到每个物种在不同尺度下的取样单元数。利用随机分布模型和负二项分布模型分析物种的多度分布,对比预测多度与观测多度讨论两个模型的科学性与实用性。结果表明:对于阔叶红松林而言,负二项分布模型在所有研究尺度上的预测精度都要优于随机分布模型。随机分布和负二项分布的模型预测误差随着研究尺度的增大而增大,因此选取较小的取样单元可以切实提高物种多度的预测精度。利用随机分布和负二项分布模型对多度较小的物种进行预测的效果要优于多度较大的物种。负二项分布模型适合用来模拟阔叶红松林的物种多度分布格局,并且模型的拟合效果受取样单元大小影响。  相似文献   

20.
Taylor  Andy F. S. 《Plant and Soil》2002,244(1-2):19-28
A number of recent review articles on ectomycorrhizal (ECM) fungal community diversity have highlighted the unprecedented increase in the number of publications on this ecologically important but neglected area. The general features of these species-rich, highly dynamic and complex communities have been comprehensively covered but one aspect crucial to our assessment of diversity, namely the sampling of ECM communities has received less attention. This is a complex issue with two principal components, the physical sampling strategy employed and the life cycle traits of the ECM fungi being examined. Combined, these two components provide the image that we perceive as ECM diversity. This contribution will focus primarily on the former of these components using a recent study from a pine forest in central Sweden to highlight some sampling problems and also to discuss some features common to ECM communities. The two commonly used elements of diversity, species richness and community evenness, present rather different problems in the assessment of ECM diversity. The applicability of using current measures of abundance (number or percentage of root tips colonised) to determine community evenness is discussed in relation to our lack of knowledge on the size of individual genets of ECM fungi. The inherent structure of most ECM communities, with a few common species and a large number of rare species, severely limits our ability to accurately assess species richness. A discussion of theoretical detection limits is included that demonstrates the importance of the sampling effort (no. of samples or tips) involved in assessing species richness. Species area abundance plots are also discussed in this context. It is suggested that sampling strategy (bulk samples versus multiple collections of single tips) may have important consequences when sampling from communities where root tip densities differ. Finally, the need for studies of the spatial distribution of ECM on roots in relation to small-scale soil heterogeneity and of the temporal aspects of ECM community dynamics is raised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号