首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-Hydroxytyrosine, (E)- and (Z)-p-hydroxyphenyl-acetaldehyde oxime, p-hydroxyphenylacetonitrile, and p-hydroxymandelonitrile are established intermediates in the biosynthesis of the tyrosine-derived cyanogenic glucoside dhurrin (Halkier, B. A., Olsen, C. E., and M?ller, B. L. (1989) J. Biol. Chem. 264, 19487-19494. Simultaneous measurements of oxygen consumption and biosynthetic activity using a microsomal enzyme system isolated from etiolated sorghum seedlings demonstrate a requirement for three oxygen molecules in the conversion of tyrosine to p-hydroxymandelonitrile. Two oxygen molecules are consumed in the conversion of tyrosine to (E)-p-hydroxyphenylacetaldehyde oxime, indicating the existence of a previously undetected hydroxylation step in addition to that resulting in the formation of N-hydroxytyrosine. Radioactively labeled 1-nitro-2-(p-hydroxyphenyl)ethane was chemically synthesized and tested as a possible intermediate. Biosynthetic experiments demonstrate that the microsomal enzyme system metabolizes the nitro compound to the subsequent intermediates in dhurrin synthesis (Km = 0.05 mM; Vmax = 14 nmol/mg of protein/h). Low amounts of 1-nitro-2-(p-hydroxyphenyl)ethane are produced in the microsomal reaction mixtures when tyrosine is used as substrate. These data support the involvement of 1-nitro-2-(p-hydroxyphenyl)ethane or more likely its aci-nitro tautomer as an intermediate between N-hydroxytyrosine and p-hydroxyphenylacetaldehyde oxime. The conversion of (E)-p-hydroxyphenylacetaldehydeoxime to p-hydroxymandelonitrile requires a single oxygen molecule. The oxygen molecule is utilized for hydroxylation of p-hydroxyphenylacetonitrile into p-hydroxymandelonitrile. This indicates that the conversion of p-hydroxyphenylacetaldehyde oxime into p-hydroxyphenylacetonitrile proceeds by a simple dehydration reaction.  相似文献   

2.
The biosynthesis of the tyrosine-derived cyanogenic glucoside dhurrin has been studied with a microsomal preparation obtained from etiolated seedlings of sorghum. The biosynthetic pathway involves tyrosine, N-hydroxytyrosine, and p-hydroxyphenylacetaldehyde oxime as early intermediates (M?ller, B. L. and Conn, E. E. (1980) J. Biol. Chem. 254, 8575-8583). The use of deuterium-labeled tyrosine and mass spectrometric analyses demonstrate that the alpha-hydrogen atom of tyrosine is retained in the conversion of tyrosine to p-hydroxyphenylacetaldehyde oxime. This excludes p-hydroxyphenylpyruvic acid oxime as intermediate in the pathway. A high pressure liquid chromatography method was developed to separate the (E)- and (Z)-isomers of p-hydroxyphenylacetaldehyde oxime. The microsomal enzyme system was found to produce initially the (E)-isomer of p-hydroxyphenylacetaldehyde oxime. An isomerase then converts the (E)-isomer to the (Z)-isomer, which is the isomer preferentially utilized by the microsomal enzyme system in the subsequent biosynthetic reactions. The (E)-isomer produced in situ is more efficiently converted to the (Z)-isomer than exogenously added (E)-isomer and may thus be metabolically channeled.  相似文献   

3.
A cDNA encoding the multifunctional cytochrome P450, CYP71E1, involved in the biosynthesis of the cyanogenic glucoside dhurrin from Sorghum bicolor (L.) Moench was isolated. A PCR approach based on three consensus sequences of A-type cytochromes P450 – (V/I)KEX(L/F)R, FXPERF, and PFGXGRRXCXG – was applied. Three novel cytochromes P450 (CYP71E1, CYP98, and CYP99) in addition to a PCR fragment encoding sorghum cinnamic acid 4-hydroxylase were obtained.Reconstitution experiments with recombinant CYP71E1 heterologously expressed in Escherichia coli and sorghum NADPH–cytochrome P450–reductase in L--dilaurylphosphatidyl choline micelles identified CYP71E1 as the cytochrome P450 that catalyses the conversion of p-hydroxyphenylacetaldoxime to p-hydroxymandelonitrile in dhurrin biosynthesis. In accordance to the proposed pathway for dhurrin biosynthesis CYP71E1 catalyses the dehydration of the oxime to the corresponding nitrile, followed by a C-hydroxylation of the nitrile to produce p-hydroxymandelonitrile. In vivo administration of oxime to E. coli cells results in the accumulation of the nitrile, which indicates that the flavodoxin/flavodoxin reductase system in E. coli is only able to support CYP71E1 in the dehydration reaction, and not in the subsequent C-hydroxylation reaction.CYP79 catalyses the conversion of tyrosine to p-hydroxyphenylacetaldoxime, the first committed step in the biosynthesis of the cyanogenic glucoside dhurrin. Reconstitution of both CYP79 and CYP71E1 in combination with sorghum NADPH-cytochrome P450–reductase resulted in the conversion of tyrosine to p-hydroxymandelonitrile, i.e. the membranous part of the biosynthetic pathway of the cyanogenic glucoside dhurrin. Isolation of the cDNA for CYP71E1 together with the previously isolated cDNA for CYP79 provide important tools necessary for tissue-specific regulation of cyanogenic glucoside levels in plants to optimize food safety and pest resistance.  相似文献   

4.
The localization of three monooxygenase (hydroxylase) enzyme systems which occur in dark-grown seedlings of Sorghum bicolor has been studied. Cinnamic acid 4-hydroxylase (CAH) (trans-cinnamate 4-monooxygenase, EC 1.14.13.11), which has been increasingly utilized in plants as a marker for the endoplasmic reticulum, migrated with that fraction in continuous and discontinuous sucrose gradients. When 10 mm MgCl(2) was used to shift the density banding of the marker enzyme, NADPH cytochrome c reductase, from 1.12 to 1.17 g/cm(3), the CAH activity was displaced as well.The membrane-bound enzyme system involved in the biosynthesis of the cyanogenic glucoside dhurrin was also shown to be closely associated with the endoplasmic reticulum. This system contains hydroxylases capable of hydroxylating tyrosine to form N-hydroxytyrosine and hydroxylating p-hydroxyphenylacetonitrile to form p-hydroxy-(S)-mandelonitrile.  相似文献   

5.
Nielsen JS  Møller BL 《Plant physiology》2000,122(4):1311-1321
Two cDNA clones encoding cytochrome P450 enzymes belonging to the CYP79 family have been isolated from Triglochin maritima. The two proteins show 94% sequence identity and have been designated CYP79E1 and CYP79E2. Heterologous expression of the native and the truncated forms of the two clones in Escherichia coli demonstrated that both encode multifunctional N-hydroxylases catalyzing the conversion of tyrosine to p-hydroxyphenylacetaldoxime in the biosynthesis of the two cyanogenic glucosides taxiphyllin and triglochinin in T. maritima. This renders CYP79E functionally identical to CYP79A1 from Sorghum bicolor, and unambiguously demonstrates that cyanogenic glucoside biosynthesis in T. maritima and S. bicolor is catalyzed by analogous enzyme systems with p-hydroxyphenylacetaldoxime as a free intermediate. This is in contrast to earlier reports stipulating p-hydroxyphenylacetonitrile as the only free intermediate in T. maritima. L-3,4-Dihydroxyphenyl[3-(14)C]Ala (DOPA) was not metabolized by CYP79E1, indicating that hydroxylation of the phenol ring at the meta position, as required for triglochinin formation, takes place at a later stage. In S. bicolor, CYP71E1 catalyzes the subsequent conversion of p-hydroxyphenylacetaldoxime to p-hydroxymandelonitrile. When CYP79E1 from T. maritima was reconstituted with CYP71E1 and NADPH-cytochrome P450 oxidoreductase from S. bicolor, efficient conversion of tyrosine to p-hydroxymandelonitrile was observed.  相似文献   

6.
R A Kahn  S Bak  I Svendsen  B A Halkier    B L Mller 《Plant physiology》1997,115(4):1661-1670
A cytochrome P450, designated P450ox, that catalyzes the conversion of (Z)-p-hydroxyphenylacetaldoxime (oxime) to p-hydroxymandelonitrile in the biosynthesis of the cyanogenic glucoside beta-D-glucopyranosyloxy-(S)-p-hydroxymandelonitrile (dhurrin), has been isolated from microsomes prepared from etiolated seedlings of sorghum (Sorghum bicolor L. Moench). P450ox was solubilized using nonionic detergents, and isolated by ion-exchange chromatography, Triton X-114 phase partitioning, and dye-column chromatography. P450ox has an apparent molecular mass of 55 kD, its N-terminal amino acid sequence is -ATTATPQLLGGSVP, and it contains the internal sequence MDRLVADLDRAAA. Reconstitution of P450ox with NADPH-P450 oxidoreductase in micelles of L-alpha-dilauroyl phosphatidylcholine identified P450ox as a multifunctional P450 catalyzing dehydration of (Z)-oxime to p-hydroxyphenylaceto-nitrile (nitrile) and C-hydroxylation of p-hydroxyphenylacetonitrile to nitrile. P450ox is extremely labile compared with the P450s previously isolated from sorghum. When P450ox is reconstituted in the presence of a soluble uridine diphosphate glucose glucosyltransferase, oxime is converted to dhurrin. In vitro reconstitution of the entire dhurrin biosynthetic pathway from tyrosine was accomplished by the insertion of CYP79 (tyrosine N-hydroxylase), P450ox, and NADPH-P450 oxidoreductase in lipid micelles in the presence of uridine diphosphate glucose glucosyltransferase. The catalysis of the conversion of Tyr into nitrile by two multifunctional P450s explains why all intermediates in this pathway except (Z)-oxime are channeled.  相似文献   

7.
A microsomal fraction from seedlings of Sorghum bicolor (Linn) Moench has been shown to catalyze the conversion of L-tyrosine to p-hydroxymandelonitrile via p-hydroxyphenylacetaldoxime. This transformation is consistent with the general pathway for cyanogenic glycoside biosynthesis proposed on the basis of in vivo experiments. When the microsomal fraction was combined with a protein fraction from the soluble portion of the cell and uridine diphosphate glucose, it was possible to demonstrate the synthesis of the cyanogenic glycoside dhurrin from L-tyrosine.  相似文献   

8.
The biosynthesis of the cyclic octadecapeptide, alamethicin, in a cell-free system of Trichoderma viride has been investigated. It was shown that nucleic acid- and ribo-some-free extracts of Trichoderma viride could catalyze alamethicin biosynthesis. Puromycin, erythromycin and RNAse did not inhibit this synthesis. The Sephadex G 200 filtrate contains a fraction (Kav=0.1) that catalyzes the biosynthesis of alamethicin and shows an ATP-32PPi exchange with 6 of the 8 constituent amino acids of alamethicin. The activated amino acids are bound to the enzyme as aminoacyl adenylates and as thiolesters in a proportion of 1 : 1. About 50% of each bound amino acid could be split off with 7% TCA. The TCA-stable bound amino acid could be split by mercury acetate, hydroxylamine and performic acid. N-ethylmaleimide blocked the binding of 50% of the amino acids to the enzyme, proving that some of the amino acids first bound as aminoacyl adenylates are then transferred into a thiolester bond.  相似文献   

9.
The final step in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor is the transformation of the labile cyanohydrin into a stable storage form by O-glucosylation of (S)-p-hydroxymandelonitrile at the cyanohydrin function. The UDP-glucose:p-hydroxymandelonitrile-O-glucosyltransferase was isolated from etiolated seedlings of S. bicolor employing Reactive Yellow 3 chromatography with UDP-glucose elution as the critical step. Amino acid sequencing allowed the cloning of a full-length cDNA encoding the glucosyltransferase. Among the few characterized glucosyltransferases, the deduced translation product showed highest overall identity to Zea mays flavonoid-glucosyltransferase (Bz-Mc-2 allele). The substrate specificity of the enzyme was established using isolated recombinant protein. Compared with endogenous p-hydroxymandelonitrile, mandelonitrile, benzyl alcohol, and benzoic acid were utilized at maximum rates of 78, 13, and 4%, respectively. Surprisingly, the monoterpenoid geraniol was glucosylated at a maximum rate of 11% compared with p-hydroxymandelonitrile. The picture that is emerging regarding plant glucosyltransferase substrate specificity is one of limited but extended plasticity toward metabolites of related structure. This in turn ensures that a relatively high, but finite, number of glucosyltransferases can give rise to the large number of glucosides found in plants.  相似文献   

10.
The biosynthesis of the two cyanogenic glucosides, taxiphyllin and triglochinin, in Triglochin maritima (seaside arrow grass) has been studied using undialyzed microsomal preparations from flowers and fruits. Tyrosine was converted to p-hydroxymandelonitrile with V(max) and K(m) values of 36 nmol mg(-1) g(-1) fresh weight and 0.14 mM, respectively. p-Hydroxyphenylacetaldoxime and p-hydroxyphenylacetonitrile accumulated as intermediates in the reaction mixtures. Using radiolabeled tyrosine as substrate, the radiolabel was easily trapped in p-hydroxyphenylacetaldoxime and p-hydroxyphenylacetonitrile when these were added as unlabeled compounds. p-Hydroxyphenylacetaldoxime was the only product obtained using microsomes prepared from green leaves or dialyzed microsomes prepared from flowers and fruits. These data contrast earlier reports (H?sel and Nahrstedt, Arch. Biochem. Biophys. 203, 753-757, 1980; and Cutler et al., J. Biol. Chem. 256, 4253-4258, 1981) where p-hydroxyphenylacetaldoxime was found not to accumulate. All steps in the conversion of tyrosine to p-hydroxymandelonitrile were found to be catalyzed by cytochrome P450 enzymes as documented by photoreversible carbon monoxide inhibition, inhibition by antibodies toward NADPH-cytochrome P450 oxidoreductase, and by cytochrome P450 inhibitors. We hypothesize that cyanogenic glucoside synthesis in T. maritima is catalyzed by multifunctional cytochrome P450 enzymes similar to CYP79A1 and CYP71E1 in Sorghum bicolor except that the homolog to CYP71E1 in T. maritima exhibits a less tight binding of p-hydroxyphenylacetonitrile, thus permitting the release of this intermediate and its conversion into triglochinin.  相似文献   

11.
Phaeodactylum tricornutum is an unicellular silica-less diatom in which eicosapentaenoic acid accumulates up to 30% of the total fatty acids. This marine diatom was used for cloning genes encoding fatty acid desaturases involved in eicosapentaenoic acid biosynthesis. Using a combination of PCR, mass sequencing and library screening, the coding sequences of two desaturases were identified. Both protein sequences contained a cytochrome b5 domain fused to the N-terminus and the three histidine clusters common to all front-end fatty acid desaturases. The full length clones were expressed in Saccharomyces cerevisiae and characterized as Delta5- and Delta6-fatty acid desaturases. The substrate specificity of each enzyme was determined and confirmed their involvement in eicosapentaenoic acid biosynthesis. Using both desaturases in combination with the Delta6-specific elongase from Physcomitrella patens, the biosynthetic pathways of arachidonic and eicosapentaenoic acid were reconstituted in yeast. These reconstitutions indicated that these two desaturases functioned in the omega3- and omega6-pathways, in good agreement with both routes coexisting in Phaeodactylum tricornutum. Interestingly, when the substrate selectivity of each enzyme was determined, both desaturases converted the omega3- and omega6-fatty acids with similar efficiencies, indicating that none of them was specific for either the omega3- or the omega6-pathway. To our knowledge, this is the first report describing the isolation and biochemical characterization of fatty acid desaturases from diatoms.  相似文献   

12.
13.
The pathway of uridylic acid biosynthesis established by Leiberman, Kornberg, and Simms has been shown to be operative in the filamentous cyanobacterium Anabaena variabilis. The only enzyme of uridylic acid biosynthesis found to be lacking in two uracil-requiring strains of A. variabilis was aspartate transcarbamylase, the first enzyme in the pathway of de novo biosynthesis of uridvlic acid. Neither uracil-limited growth of a uracil-requiring mutant nor growth of the wild type in high concentrations of uracil resulted in substantial changes in the specific activities of enzymes of uridylic acid biosynthesis. It is therefore concluded that A. variabilis does not regulate all enzymes of this pathway by means of repression. However, control of the flow of intermediates through this pathway is possible by feedback inhibition of aspartate transcarbamylase by a variety of nucleotides.  相似文献   

14.
15.
An affinity matrix for the purification of norsolorinic acid dehydrogenase, an enzyme involved in aflatoxin biosynthesis, was prepared by coupling norsolorinic acid to an agarose gel. This matrix was found to be ineffective in isolating active enzyme, and was therefore modified by methylation, using diazomethane. The methylated matrix produced a one-step purification of the enzyme from a crude homogenate, resulting in a 138-fold purification. The active isolate was found to contain one major and two minor bands upon nondenaturing electrophoresis, and all the norsolorinic acid dehydrogenase activity was associated with the major band. It was concluded that the matrix exhibited true affinity for the enzyme, and that affinity chromatography was a valuable approach to isolating other secondary metabolic enzymes involved in the biosynthesis of the aflatoxins.  相似文献   

16.
Strains of Escherichia coli that lack the branched-chain amino acid amino-transferase because of mutations in the ilvE gene had no growth requirement for leucine when the cells contained the aromatic amino acid aminotransferase that is the product of the tyrB gene. The presence of leucine increased the generation time of these cells and decreased the specific activity of the aromatic amino acid aminotransferase. It is concluded that this enzyme functions efficiently in leucine biosynthesis and can be repressed by leucine as well as by tyrosine.  相似文献   

17.
Caffeic acid is a valuable aromatic compound that possesses many important pharmacological activities. In structure, caffeic acid belongs to the hydroxycinnamic acid family and can be biosynthesized from the aromatic amino acid tyrosine. In the present paper, the caffeic acid biosynthesis pathway was reconstituted in engineered Escherichia coli to produce caffeic acid from simple biomass sugar glucose and xylose. Different engineering approaches were utilized to optimize the production. Specifically, two parallel biosynthesis routes leading from tyrosine to caffeic acid were studied. The copy number of the intermediate biosynthesis genes was varied to find appropriate gene doses for caffeic acid biosynthesis. Three different media, including a MOPS medium, a synthetic medium, and a rich medium, were also examined to improve the production. The highest specific caffeic acid production achieved was 38 mg/L/OD. Lastly, cultivation of engineered E. coli in a bioreactor resulted in a production of 106 mg/L caffeic acid after 4 days.  相似文献   

18.
The use of metabolic inhibitors indicated that ethylene-enhancement of light-induced anthocyanin biosynthesis in Sorghum vulgare is through promotion of enzyme synthesis. Ethylene treatment had no effect on the amount of cyanidin synthesized in sorghum tissue infiltrated with actinomycin D to inhibit RNA synthesis. Treatment of sorghum tissue with ethylene in the dark for 24 hr prior to light-induction of anthocyanin biosynthesis reduced the ability of cycloheximide to inhibit anthocyanin formation in the tissue. Ethylene treatment promoted the biosynthesis of two 3-deoxyanthocyanidins in sorghum for which light-induced RNA synthesis is not necessary.  相似文献   

19.
Coronatine-inducible tyrosine aminotransferase (TAT), which catalyses the transamination from tyrosine to p-hydroxyphenylpyruvate, is the first enzyme of a pathway leading via homogentisic acid to plastoquinone and tocopherols, the latter of which are known to be radical scavengers in plants. TAT can be also induced by the octadecanoids methyl jasmonate (MeJA) and methyl-12-oxophytodienoic acid (MeOPDA), as well as by wounding, high light, UV light and the herbicide oxyfluorfen. In order to elucidate the role of octadecanoids in the process of TAT induction in Arabidopsis thaliana (L.) Heynh., the jasmonate-deficient mutant delayed dehiscence (dde1) was used, in which the gene for 12-oxophytodienoic acid reductase 3 is disrupted. The amount of immunodetectable TAT was low. The enzyme was still fully induced by coronatine as well as by MeJA although induction by the latter was to a lesser extent and later than in the wild type. Treatment with MeOPDA, wounding and UV light, however, had hardly any effects. Tocopherol levels that showed considerable increases in the wild type after some treatments were much less affected in the mutant. However, starting levels of tocopherol were higher in non-induced dde1 than in the wild type. We conclude that jasmonate plays an important role in the signal transduction pathway regulating TAT activity and the biosynthesis of its product tocopherol.  相似文献   

20.
Two cDNAs encoding geranyl diphosphate:4-hy- droxybenzoate 3-geranyltransferase were isolated from Lithospermum erythrorhizon by nested PCR using the conserved amino acid sequences among polyprenyl- transferases for ubiquinone biosynthesis. They were functionally expressed in yeast COQ2 disruptant and showed a strict substrate specificity for geranyl diphosphate as the prenyl donor, in contrast to ubiquinone biosynthetic enzymes, suggesting that they are involved in the biosynthesis of shikonin, a naphthoquinone secondary metabolite. Regulation of their expression by various culture conditions coincided with that of geranyltransferase activity and the secondary metabolites biosynthesized via this enzyme. This is the first established plant prenyltransferase that transfers the prenyl chain to an aromatic substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号