首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
A reagentless carbon paste electrode was designed for D-lactic acid analysis in a flow injection system for the monitoring of the production of D-lactate in a batch fermentation. D-Lactate dehydrogenase, nicotinamide adenine dinucleotide (NAD(+)), a synthetic redox polymer containing covalently attached toluidine blue O as mediator, graphite powder, and paraffin oil were used for the construction of the modified carbon paste electrode. D-Lactate selectivity was indicated by insignificant responses from a variety of possible interfernces including L-lactate. The electrodes gave a linear response in the range between 0.05 and 5 mM D-lactate, with a detecting limit of 30 muM, allowing a sample throughput of 20 h(-1). Preliminary investigations were made by covering the electrode surface with electropolymerized membranes. Satisfactory stability was observed, indicated by a reproducibility of 3.3% relative standard deviation (RSD, n = 31), with a non-membrane-covered electrode for the analysis of D-lactate in fermentation broth. A long-term stability (230 broth samples) was proven, suggesting the electrodes to have a good potential for use in on-line monitoring of fermentation processes. (c) 1995 John Wiley & Sons, Inc.  相似文献   

2.
A new highly sensitive amperometric method for the detection of organophosphorus compounds has been developed. The method is based on a ferophthalocyanine chemically modified carbon paste electrode coupled with acetylcholinesterase and choline oxidase co-immobilized onto the surface of a dialysis membrane. The activity of cholinesterase is non-competitively inhibited in the presence of pesticides. The highest sensitivity to inhibitors was found for a membrane containing low enzyme loading and this was subsequently used for the construction of an amperometric biosensor for pesticides. Analyses were done using acetylcholine as substrate; choline produced by hydrolysis in the enzymatic layer was oxidized by choline-oxidase and subsequently H(2)O(2) produced was electrochemically detected at +0.35 V vs. Ag/AgCl. The decrease of substrate steady-state current caused by the addition of pesticide was used for evaluation. With this approach, up to 10(-10) M of paraoxon and carbofuran can be detected.  相似文献   

3.
A carbon paste electrode containing ruthenium(IV) oxide as a modifier was tested as an effective hydrogen peroxide amperometric sensor in bulk measurements (hydrodynamic amperometry). Factors that influence its overall analytical perform ance, such as pH and the applied potential, were examined. The RuO2-modified electrode displayed high sensitivity towards hydrogen peroxide, with detection limits as low as 0.02 mm at pH 7.4 and 0.007 mM at pH 9.0. The method was applied for monitoring the decomposition of hydrogen peroxide (by catalase) in phosphate buffer of pH 7.4. The relative response of the electrode towards ascorbic acid was assessed and it was found that the selectivity of the RuO2-modified electrode towards hydrogen peroxide over ascorbic acid could be significantly improved by electro-polymerizing m-phenylenediamine on its surface prior to measurements. The RuO2-modified electrode was used for the kinetic (fixed time) determination of catalase activity in the range of 4-40 U/mL (detection limit 1.2 U/mL). The method was applied to the determination of catalase-like activity in various plant materials (recov-ery ranged from 93 to 101%, detection limit 480 U/100 g).  相似文献   

4.
In this study, an amperometric carbon paste biosensor is developed for glucose-6-phosphate (G6P) monitoring which is based on entrapped Mg2+ ions, G6P dehydrogenase, NADP+ polyethylenimine (PEI) and the electroactive mediator, tetracyanoquinodimethane (TCNQ). The calibration line had a slope of 1.55 x 10(-5) A. M-1 with a correlation coefficient of 0.9965. The limit of detection (defined as three times the standard deviation of the response of the electrode to blank phosphate buffer injections (noise)) of the G6P biosensor was 5.0 x 10(-5) M. The application of this biosensor for monitoring G6P in human blood using the standard addition method is also demonstrated. A two-parameter empirical equation which adequately describes the deactivation of the biosensor steady-state response with time is also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号