首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
SUMMARY The Hox gene cluster is renowned for its role in developmental patterning of embryogenesis along the anterior–posterior axis of bilaterians. Its supposed evolutionary sister or paralog, the ParaHox cluster, is composed of Gsx, Xlox, and Cdx, and also has important roles in anterior–posterior development. There is a debate as to whether the cnidarians, as an outgroup to bilaterians, contain true Hox and ParaHox genes, or instead the Hox‐like gene complement of cnidarians arose from independent duplications to those that generated the genes of the bilaterian Hox and ParaHox clusters. A recent whole genome analysis of the cnidarian Nematostella vectensis found conserved synteny between this cnidarian and vertebrates, including a region of synteny between the putative Hox cluster of N. vectensis and the Hox clusters of vertebrates. No syntenic region was identified around a potential cnidarian ParaHox cluster. Here we use different approaches to identify a genomic region in N. vectensis that is syntenic with the bilaterian ParaHox cluster. This proves that the duplication that gave rise to the Hox and ParaHox regions of bilaterians occurred before the origin of cnidarians, and the cnidarian N. vectensis has bona fide Hox and ParaHox loci.  相似文献   

2.
Hox and other Antennapedia (ANTP)-like homeobox gene subclasses - ParaHox, EHGbox, and NK-like - contribute to key developmental events in bilaterians [1-4]. Evidence of physical clustering of ANTP genes in multiple animal genomes [4-9] suggests that all four subclasses arose via sequential cis-duplication events. Here, we show that Hox genes' origin occurred after the divergence of sponge and eumetazoan lineages and occurred concomitantly with a major evolutionary transition in animal body-plan complexity. By using whole genome information from the demosponge Amphimedon queenslandica, we provide the first conclusive evidence that the earliest metazoans possessed multiple NK-like genes but no Hox, ParaHox, or EHGbox genes. Six of the eight NK-like genes present in the Amphimedon genome are clustered within 71 kb in an order akin to bilaterian NK clusters. We infer that the NK cluster in the last common ancestor to sponges, cnidarians, and bilaterians consisted of at least five genes. It appears that the ProtoHox gene originated from within this ancestral cluster after the divergence of sponge and eumetazoan lineages. The maintenance of the NK cluster in sponges and bilaterians for greater than 550 million years is likely to reflect regulatory constraints inherent to the organization of this ancient cluster.  相似文献   

3.
Molecular evidence suggests that Acoelomorpha, a proposed phylum composed of acoel and Nemertodermatida flatworms, are the most basal bilaterian animals. Hox and ParaHox gene complements characterised so far in acoels consist of a small set of genes, comprising representatives of anterior, central and posterior genes, altogether Hox and ParaHox, but no PG3-Xlox representatives have been reported. It has been proposed that this might be the ancestral Hox repertoire in basal bilaterians. However, no studies of the other members of the group, the Nemertodermatida, have been done. In order to get a more complete picture of the basal bilaterian Hox and ParaHox complement, we have analysed the Hox/ParaHox complement of the nemertodermatid Nemertoderma westbladi. We have found representatives of two central and one posterior Hox genes, as well as an Xlox and a Caudal ParaHox gene. From our data we conclude that a PG3-Xlox gene was present in the ancestor of bilaterians. These findings support the speculation that basal bilaterians already had the beginnings of the extended central Hox set, driving back gene duplications in the central part of the Hox cluster deeper in phylogeny than previously suggested.  相似文献   

4.
Across the animal kingdom, Hox genes are organized in clusters whose genomic organization reflects their central roles in patterning along the anterior/posterior (A/P) axis . While a cluster of Hox genes was present in the bilaterian common ancestor, the origins of this system remain unclear (cf. ). With new data for two representatives of the closest extant phylum to the Bilateria, the sea anemone Nematostella and the hydromedusa Eleutheria, we argue here that the Cnidaria predate the evolution of the Hox system. Although Hox-like genes are present in a range of cnidarians, many of these are paralogs and in neither Nematostella nor Eleutheria is an equivalent of the Hox cluster present. With the exception of independently duplicated genes, the cnidarian genes are unlinked and in several cases are flanked by non-Hox genes. Furthermore, the cnidarian genes are expressed in patterns that are inconsistent with the Hox paradigm. We conclude that the Cnidaria/Bilateria split occurred before a definitive Hox system developed. The spectacular variety in morphological and developmental characteristics shown by extant cnidarians demonstrates that there is no obligate link between the Hox system and morphological diversity in the animal kingdom and that a canonical Hox system is not mandatory for axial patterning.  相似文献   

5.

Background

The early evolution and diversification of Hox-related genes in eumetazoans has been the subject of conflicting hypotheses concerning the evolutionary conservation of their role in axial patterning and the pre-bilaterian origin of the Hox and ParaHox clusters. The diversification of Hox/ParaHox genes clearly predates the origin of bilaterians. However, the existence of a “Hox code” predating the cnidarian-bilaterian ancestor and supporting the deep homology of axes is more controversial. This assumption was mainly based on the interpretation of Hox expression data from the sea anemone, but growing evidence from other cnidarian taxa puts into question this hypothesis.

Methodology/Principal Findings

Hox, ParaHox and Hox-related genes have been investigated here by phylogenetic analysis and in situ hybridisation in Clytia hemisphaerica, an hydrozoan species with medusa and polyp stages alternating in the life cycle. Our phylogenetic analyses do not support an origin of ParaHox and Hox genes by duplication of an ancestral ProtoHox cluster, and reveal a diversification of the cnidarian HOX9-14 genes into three groups called A, B, C. Among the 7 examined genes, only those belonging to the HOX9-14 and the CDX groups exhibit a restricted expression along the oral-aboral axis during development and in the planula larva, while the others are expressed in very specialised areas at the medusa stage.

Conclusions/Significance

Cross species comparison reveals a strong variability of gene expression along the oral-aboral axis and during the life cycle among cnidarian lineages. The most parsimonious interpretation is that the Hox code, collinearity and conservative role along the antero-posterior axis are bilaterian innovations.  相似文献   

6.
Bilateral symmetry is a hallmark of the Bilateria. It is achieved by the intersection of two orthogonal axes of polarity: the anterior-posterior (A-P) axis and the dorsal-ventral (D-V) axis. It is widely thought that bilateral symmetry evolved in the common ancestor of the Bilateria. However, it has long been known that members of the phylum Cnidaria, an outgroup to the Bilateria, also exhibit bilateral symmetry. Recent studies have examined the developmental expression of axial patterning genes in members of the phylum Cnidaria. Hox genes play a conserved role in patterning the A-P axis of bilaterians. Hox genes are expressed in staggered axial domains along the oral-aboral axis of cnidarians, suggesting that Hox patterning of the primary body axis was already present in the cnidarian-bilaterian ancestor. Dpp plays a conserved role patterning the D-V axis of bilaterians. Asymmetric expression of dpp about the directive axis of cnidarians implies that this patterning system is similarly ancient. Taken together, these result imply that bilateral symmetry had already evolved before the Cnidaria diverged from the Bilateria.  相似文献   

7.
The evolution of ANTP genes in the Metazoa has been the subject of conflicting hypotheses derived from full or partial gene sequences and genomic organization in higher animals. Whole genome sequences have recently filled in some crucial gaps for the basal metazoan phyla Cnidaria and Porifera. Here we analyze the complete genome of Trichoplax adhaerens, representing the basal metazoan phylum Placozoa, for its set of ANTP class genes. The Trichoplax genome encodes representatives of Hox/ParaHox-like, NKL, and extended Hox genes. This repertoire possibly mirrors the condition of a hypothetical cnidarian-bilaterian ancestor. The evolution of the cnidarian and bilaterian ANTP gene repertoires can be deduced by a limited number of cis-duplications of NKL and "extended Hox" genes and the presence of a single ancestral "ProtoHox" gene.  相似文献   

8.
Hox clusters and bilaterian phylogeny   总被引:6,自引:0,他引:6  
A large Hox cluster comprising at least seven genes has evolved by gene duplications in the ancestors of bilaterians. It probably emerged from a mini-cluster of three or four genes that was present before the divergence of cnidarians and bilaterians. The comparison of Hox structural data in bilaterian phyla shows that the genes of the anterior part of the cluster have been more conserved than those of the posterior part. Some specific signature sequences, present in the form of signature residues within the homeodomain or conserved peptides outside the homeodomain, constitute phylogenetic evidence for the monophyly of protostomes and their division into ecdysozoans and lophotrochozoans. These conserved motifs may provide decisive arguments for the phylogenetic position of some enigmatic phyla.  相似文献   

9.
Barucca M  Olmo E  Canapa A 《Gene》2003,317(1-2):97-102
In this study, we sought the presence and analysed the sequences of the Hox and ParaHox genes in bivalve molluscs. The clustered Hox genes play a central role in anterior-posterior axial patterning in bilaterian metazoa, whereas the ParaHox gene cluster is a paralogue (evolutionary sister) of the Hox cluster.Using polymerase chain reaction (PCR)-based approaches, we isolated nine different sequences in five species belonging to three of the main bivalve subclasses: Ensis ensis and Tapes philippinarum (Heterodonta), Pecten maximus and Mytilus galloprovincialis (Pteriomorphia), and Yoldia eightsi (Protobranchia). Comparison with the Hox and ParaHox genes of other bilaterians, particularly lophotrochozoans, allowed us to attribute six of these sequences to the Hox gene cluster (one to paralog group [PG] 3 class, and five to the central class), two to the ParaHox cluster and one to the Gbx gene family.The results of our investigation seem to indicate that homeotic Hox and ParaHox gene clusters are homogeneous for both presence and characteristics in molluscs.  相似文献   

10.
The dawn of bilaterian animals: the case of acoelomorph flatworms   总被引:9,自引:0,他引:9  
The origin of the bilaterian metazoans from radial ancestors is one of the biggest puzzles in animal evolution. A way to solve it is to identify the nature and main features of the last common ancestor of the bilaterians (LCB). Recent progress in molecular phylogeny has shown that many platyhelminth flatworms, regarded for a long time as basal bilaterians, now belong to the lophotrochozoan protostomates. In contrast, the LCB is now considered a complex organism bearing several features of modern bilaterians. Here we discuss an alternative view, in which acoelomorph (Acoela + Nemertodermatida) flatworms, which do not belong to the Platyhelminthes, represent the earliest extant bilaterian clade. Sequences from ribosomal and other nuclear genes, Hox cluster genes, and reinterpretation of some morphological features strongly support the basal position of acoelomorphs arguing against a complex LCB. This reconstruction backs the old planuloid-acoeloid hypothesis and may help our understanding of the evolution of body axes, Hox genes and the Cambrian explosion.  相似文献   

11.
The rise and fall of Hox gene clusters   总被引:9,自引:0,他引:9  
Although all bilaterian animals have a related set of Hox genes, the genomic organization of this gene complement comes in different flavors. In some unrelated species, Hox genes are clustered; in others, they are not. This indicates that the bilaterian ancestor had a clustered Hox gene family and that, subsequently, this genomic organization was either maintained or lost. Remarkably, the tightest organization is found in vertebrates, raising the embarrassingly finalistic possibility that vertebrates have maintained best this ancestral configuration. Alternatively, could they have co-evolved with an increased ;organization' of the Hox clusters, possibly linked to their genomic amplification, which would be at odds with our current perception of evolutionary mechanisms? When discussing the why's and how's of Hox gene clustering, we need to account for three points: the mechanisms of cluster evolution; the underlying biological constraints; and the developmental modes of the animals under consideration. By integrating these parameters, general conclusions emerge that can help solve the aforementioned dilemma.  相似文献   

12.
Back in time: a new systematic proposal for the Bilateria   总被引:4,自引:0,他引:4  
Conventional wisdom suggests that bilateral organisms arose from ancestors that were radially, rather than bilaterally, symmetrical and, therefore, had a single body axis and no mesoderm. The two main hypotheses on how this transformation took place consider either a simple organism akin to the planula larva of extant cnidarians or the acoel Platyhelminthes (planuloid-acoeloid theory), or a rather complex organism bearing several or most features of advanced coelomate bilaterians (archicoelomate theory). We report phylogenetic analyses of bilaterian metazoans using quantitative (ribosomal, nuclear and expressed sequence tag sequences) and qualitative (HOX cluster genes and microRNA sets) markers. The phylogenetic trees obtained corroborate the position of acoel and nemertodermatid flatworms as the earliest branching extant members of the Bilateria. Moreover, some acoelomate and pseudocoelomate clades appear as early branching lophotrochozoans and deuterostomes. These results strengthen the view that stem bilaterians were small, acoelomate/pseudocoelomate, benthic organisms derived from planuloid-like organisms. Because morphological and recent gene expression data suggest that cnidarians are actually bilateral, the origin of the last common bilaterian ancestor has to be put back in time earlier than the cnidarian-bilaterian split in the form of a planuloid animal. A new systematic scheme for the Bilateria that includes the Cnidaria is suggested and its main implications discussed.  相似文献   

13.
The origin and evolution of ANTP superclass genes has raised controversial discussions. While recent evidence suggests that a true Hox cluster emerged after the cnidarian bilaterian split, the origin of the ANTP superclass as a whole remains unclear. Based on analyses of bilaterian genomes, it seems very likely that clustering has once been a characteristic of all ANTP homeobox genes and that their ancestors have emerged through several series of cis-duplications from the same genomic region. Since the diploblastic Cnidaria possess orthologs of some non-Hox ANTP genes, at least some steps of the expansion of this hypothetical homeobox gene array must have occurred in the last common ancestor of both lineages--but it is unknown to what extent. By screening the unassembled Nematostella genome, we have identified unambiguous orthologs to almost all non-Hox ANTP genes which are present in Bilateria--with the exception of En, Tlx and (possibly) Vax. Furthermore, Nematostella possesses ANTP genes that are missing in some bilaterian lineages, like the rough gene or NK7. In addition, several ANTP homeobox gene families have been independently duplicated in Nematostella. We conclude that the last cnidarian/bilaterian ancestor already harboured the almost full complement of non-Hox ANTP genes before the Hox system evolved.  相似文献   

14.
Comparison of whole genome sequences of representative animals enables reconstruction of the ancestral bilaterian genome: the starting point from which most extant animal lineages evolved. The Hox gene cluster patterns the anterior-posterior axis of bilaterians. Here we show that this cluster was embedded within a larger homeobox gene cluster, the Super-Hox cluster, in the ancestral bilaterian. This Super-Hox cluster contained at least eight genes alongside the core Hox genes ('EuHox' genes).  相似文献   

15.
Among the bilaterally symmetrical, triploblastic animals (the Bilateria), a conserved set of developmental regulatory genes are known to function in patterning the anterior–posterior (AP) axis. This set includes the well-studied Hox cluster genes, and the recently described genes of the ParaHox cluster, which is believed to be the evolutionary sister of the Hox cluster ( Brooke et al. 1998 ). The conserved role of these axial patterning genes in animals as diverse as frogs and flies is believed to reflect an underlying homology (i.e., all bilaterians derive from a common ancestor which possessed an AP axis and the developmental mechanisms responsible for patterning the axis). However, the origin and early evolution of Hox genes and ParaHox genes remain obscure. Repeated attempts have been made to reconstruct the early evolution of Hox genes by analyzing data from the triphoblastic animals, the Bilateria ( Schubert et al. 1993 ; Zhang and Nei 1996 ). A more precise dating of Hox origins has been elusive due to a lack of sufficient information from outgroup taxa such as the phylum Cnidaria (corals, hydras, jellyfishes, and sea anemones). In combination with outgroup taxa, another potential source of information about Hox origins is outgroup genes (e.g., the genes of the ParaHox cluster). In this article, we present cDNA sequences of two Hox-like genes ( anthox2 and anthox6 ) from the sea anemone, Nematostella vectensis. Phylogenetic analysis indicates that anthox2 (=Cnox2) is homologous to the GSX class of ParaHox genes, and anthox6 is homologous to the anterior class of Hox genes. Therefore, the origin of Hox genes and ParaHox genes occurred prior to the evolutionary split between the Cnidaria and the Bilateria and predated the evolution of the anterior–posterior axis of bilaterian animals. Our analysis also suggests that the central Hox class was invented in the bilaterian lineage, subsequent to their split from the Cnidaria.  相似文献   

16.
Several molecular data sets suggest that acoelomorph flatworms are not members of the phylum Platyhelminthes but form a separate branch of the Metazoa that diverged from all other bilaterian animals before the separation of protostomes and deuterostomes. Here we examine the Hox gene complement of the acoel flatworms. In two distantly related acoel taxa, we identify only three distinct classes of Hox gene: an anterior gene, a posterior gene, and a central class gene most similar to genes of Hox classes 4 and 5 in other Bilateria. Phylogenetic analysis of these genes, together with the acoel caudal homologue, supports the basal position of the acoels. The similar gene sets found in two distantly related acoels suggest that this reduced gene complement may be ancestral in the acoels and that the acoels may have diverged from other bilaterians before elaboration of the 8- to 10-gene Hox cluster that characterizes most bilaterians.  相似文献   

17.
The Radiata and the evolutionary origins of the bilaterian body plan   总被引:2,自引:0,他引:2  
The apparent conservation of cellular and molecular developmental mechanisms observed in a handful of bilaterian metazoans has spawned a "race" to reconstruct the bilaterian ancestor. Knowledge of this ancestor would permit us to reconstruct the evolutionary changes that have occurred along specific bilaterian lineages. However, comparisons among extant bilaterians provide an unnecessarily limited view of the ancestral bilaterian. Since the original bilaterians are believed by many to be derived from a radially symmetrical ancestor, additional evidence might be obtained by examining present-day radially symmetrical animals. We briefly review pertinent features of the body plans of the extant radial eumetazoan phyla, the Cnidaria, and Ctenophora, in the context of revealing potential evolutionary links to the bilaterians.  相似文献   

18.
Because of their importance for proper development of the bilaterian embryo, Hox genes have taken center stage for investigations into the evolution of bilaterian metazoans. Taxonomic surveys of major protostome taxa have shown that Hox genes are also excellent phylogenetic markers, as specific Hox genes are restricted to one of the two great protostome clades, the Lophotrochozoa or the Ecdysozoa, and thus support the phylogenetic relationships as originally deduced by 18S rDNA studies. Deuterostomes are the third major group of bilaterians and consist of three major phyla, the echinoderms, the hemichordates, and the chordates. Most morphological studies have supported Hemichordata+Chordata, whereas molecular studies support Echinodermata+Hemichordata, a clade known as Ambulacraria. To test these competing hypotheses, complete or near complete cDNAs of eight Hox genes and four Parahox genes were isolated from the enteropneust hemichordate Ptychodera flava. Only one copy of each Hox gene was isolated suggesting that the Hox genes of P. flava are arranged in a single cluster. Of particular importance is the isolation of three posterior or Abd-B Hox genes; these genes are only shared with echinoderms, and thus support the monophyly of Ambulacraria.  相似文献   

19.

Background  

Hox and the closely-related ParaHox genes, which emerged prior to the divergence between cnidarians and bilaterians, are the most well-known members of the ancient genetic toolkit that controls embryonic development across all metazoans. Fundamental questions relative to their origin and evolutionary relationships remain however unresolved. We investigate here the evolution of metazoan Hox and ParaHox genes using the HoxPred program that allows the identification of Hox genes without the need of phylogenetic tree reconstructions.  相似文献   

20.
The clustered Hox genes show a conserved role in patterning the body axis of bilaterian metazoans. Increasingly, a broader phylogenetic sampling of non-model system organisms is being examined to detect a correlation, if any, between Hox gene evolution, and body plan innovations. To assess how Hox gene expression and function evolve with changing cluster arrangements, we must be able to reliably assign gene orthologies between Hox genes. Recent evidence suggests that a four-gene proto-Hox cluster duplicated to form the precursor of the present cluster and an additional sister-cluster, the ParaHox group. Here, phylogenetic methods are used to determine Hox-gene orthologies and to infer probable clustering events leading to the current bilaterian Hox complement. This analysis supports the ParaHox hypothesis and gives first confirmation that ind (intermediate neuroblasts defective) is an anterior ParaHox ortholog from protostomes. This analysis supports a proto-Hox cluster of four genes in which the central-class member of the ParaHox cluster may have been lost. It is also proposed here that ancestral diploblasts had central-class members of both Hox and ParaHox clusters. Primitive Hox gene ancestors are estimated by phylogenetic methods and found to have no strong affinity to any particular class of extant Hox members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号