首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The F-box protein, Ufo1, recruits Ho endonuclease to the SCF(Ufo1) complex for ubiquitylation. Both ubiquitylated Ho and Ufo1 are transferred by the UbL-UbA protein, Ddi1, to the 19S Regulatory Particle (RP) of the proteasome for degradation. The Ddi1-UbL domain binds Rpn1 of the 19S RP, the Ddi1-UbA domain binds ubiquitin chains on the degradation substrate. Here we used complex reconstitution in vitro to identify stages in the transfer of Ho and Ufo1 from the SCF(Ufo1) complex to the proteasome. We report SCF(Ufo1) complex at the proteasome formed in the presence of Ho. Subsequently Ddi1 is recruited to this complex by interaction between the Ddi1-UbL domain and Ufo1. The core of Ddi1 binds both Ufo1 and Rpn1; this interaction confers specificity of SCF(Ufo1) for Ddi1. The substrate-shield model predicts that Ho would protect Ufo1 from degradation and we find that Ddi1 binds Ho, Ufo1, and Rpn1 simultaneously forming a complex for transfer of Ho to the 19S RP. In contrast, in the absence of Ho, Rpn1 displaces Ufo1 from Ddi1 indicating a higher affinity of the Ddi1-UbL for the 19S RP. However, at high Rpn1 levels there is synergistic binding of Ufo1 to Ddi1 that is dependent on the Ddi1-UbA domain. Our interpretation is that in the absence of substrate, the Ddi1-UbL binds Rpn1 while the Ddi1-UbA binds ubiquitin chains on Ufo1. This would promote degradation of Ufo1 and disassembly of SCF(Ufo1) complexes.  相似文献   

2.
Ho endonuclease initiates a mating type switch by making a double-strand break at the mating type locus, MAT. Ho is marked by phosphorylation for rapid destruction by functions of the DNA damage response, MEC1, RAD9, and CHK1. Phosphorylated Ho is recruited for ubiquitylation via the SCF ubiquitin ligase complex by the F-box protein, Ufo1. Here we identify a further DNA damage-inducible protein, the UbL-UbA protein Ddi1, specifically required for Ho degradation. Ho interacts only with Ddi1; it does not interact with the other UbL-UbA proteins, Rad23 or Dsk2. Ho must be ubiquitylated to interact with Ddi1, and there is no interaction when Ho is produced in mec1 or Deltaufo1 mutants that do not support its degradation. Ddi1 binds the proteasome via its N-terminal ubiquitin-like domain (UbL) and interacts with ubiquitylated Ho via its ubiquitin-associated domain (UbA); both domains of Ddi1 are required for association of ubiquitylated Ho with the proteasome. Despite being a nuclear protein, Ho is exported to the cytoplasm for degradation. In the absence of Ddi1, ubiquitylated Ho is stabilized and accumulates in the cytoplasm. These results establish a role for Ddi1 in the degradation of a natural ubiquitylated substrate. The specific interaction between Ho and Ddi1 identifies an additional function associated with DNA damage involved in its degradation.  相似文献   

3.
SCF ubiquitin protein ligases and phosphorylation-dependent proteolysis   总被引:13,自引:0,他引:13  
Many key activators and inhibitors of cell division are targeted for degradation by a recently described family of E3 ubiquitin protein ligases termed Skp1-Cdc53-F-box protein (SCF) complexes. SCF complexes physically link substrate proteins to the E2 ubiquitin-conjugating enzyme Cdc34, which catalyses substrate ubiquitination, leading to subsequent degradation by the 26S proteasome. SCF complexes contain a variable subunit called an F-box protein that confers substrate specificity on an invariant core complex composed of the subunits Cdc34, Skp1 and Cdc53. Here, we review the substrates and pathways regulated by the yeast F-box proteins Cdc4, Grr1 and Met30. The concepts of SCF ubiquitin ligase function are illustrated by analysis of the degradation pathway for the G1 cyclin Cln2. Through mass spectrometric analysis of Cdc53 associated proteins, we have identified three novel F-box proteins that appear to participate in SCF-like complexes. As many F-box proteins can be found in sequence databases, it appears that a host of cellular pathways will be regulated by SCF-dependent proteolysis.  相似文献   

4.
During cell proliferation, protein degradation is strictly regulated by the cell cycle and involves two complementary ubiquitin ligase complexes, the SCF (Skp, Cullin, F-box) and APC/C (Anaphase Promoting Complex/Cyclosome) ubiquitin ligases. SCF ligases are constitutively active and generally target only proteins after they have been selected for degradation, usually by phosphorylation. In contrast, APC/C complexes are themselves activated by phosphorylation and their substrates contain a targeting signal known as degron, a consensus amino acid sequence such as a D-Box. SCF complexes degrade proteins during the G1 phase. However, as DNA synthesis begins, the SCF complexes are degraded and APC/C complexes are activated. APC-2, a protein crucial to cell division, initiates anaphase by triggering the degradation of multiple proteins. This study explores an unexpected interaction between APC-2 and SCFFBG1. We found that FBG1 is a promiscuous ubiquitin ligase with many partners. Immunoprecipitation experiments demonstrate that FBG1 and APC2 interact directly. Mutagenesis-based experiments show that this interaction requires a D-Box found within the FBG1 F-box domain. Unexpectedly, we demonstrate that co-expression with FBG1 increases total APC2 levels. However, free APC2 is decreased, inhibiting cell proliferation. Finally, FACS analysis of cell populations expressing different forms of FBG1 demonstrate that this ubiquitin ligase induces S-phase arrest, illustrating the functional consequences of the interaction described. In summary, we have discovered a novel APC2 inhibitory activity of FBG1 independent from its function as ubiquitin ligase, providing the basis for future studies of FBG1 in aging and cancer.  相似文献   

5.
Mitochondrial morphology depends on balanced fusion and fission events. A central component of the mitochondrial fusion apparatus is the conserved GTPase Fzo1 in the outer membrane of mitochondria. Mdm30, an F-box protein required for mitochondrial fusion in vegetatively growing cells, affects the cellular Fzo1 concentration in an unknown manner. We demonstrate that mitochondrial fusion requires a tight control of Fzo1 levels, which is ensured by Fzo1 turnover. Mdm30 binds to Fzo1 and, dependent on its F-box, mediates proteolysis of Fzo1. Unexpectedly, degradation occurs along a novel proteolytic pathway not involving ubiquitylation, Skp1-Cdc53-F-box (SCF) E3 ubiquitin ligase complexes, or 26S proteasomes, indicating a novel function of an F-box protein. This contrasts to the ubiquitin- and proteasome-dependent turnover of Fzo1 in alpha-factor-arrested yeast cells. Our results therefore reveal not only a critical role of Fzo1 degradation for mitochondrial fusion in vegetatively growing cells but also the existence of two distinct proteolytic pathways for the turnover of mitochondrial outer membrane proteins.  相似文献   

6.
The ubiquitin system of intracellular protein degradation controls the abundance of many critical regulatory proteins. Specificity in the ubiquitin system is determined largely at the level of substrate recognition, a step that is mediated by E3 ubiquitin ligases. Analysis of the mechanisms of phosphorylation directed proteolysis in cell cycle regulation has uncovered a new class of E3 ubiquitin ligases called SCF complexes, which are composed of the subunits Skp1, Rbx1, Cdc53 and any one of a large number of different F-box proteins. The substrate specificity of SCF complexes is determined by the interchangeable F-box protein subunit, which recruits a specific set of substrates for ubiquitination to the core complex composed of Skp1, Rbx1, Cdc53 and the E2 enzyme Cdc34. F-box proteins have a bipartite structure--the shared F-box motif links F-box proteins to Skp1 and the core complex, whereas divergent protein-protein interaction motifs selectively bind their cognate substrates. To date all known SCF substrates are recognised in a strictly phosphorylation dependent manner, thus linking intracellular signalling networks to the ubiquitin system. The plethora of different F-box proteins in databases suggests that many pathways will be governed by SCF-dependent proteolysis. Indeed, genetic analysis has uncovered roles for F-box proteins in a variety of signalling pathways, ranging from nutrient sensing in yeast to conserved developmental pathways in plants and animals. Moreover, structural analysis has revealed ancestral relationships between SCF complexes and two other E3 ubiquitin ligases, suggesting that the combinatorial use of substrate specific adaptor proteins has evolved to allow the regulation of many cellular processes. Here, we review the known signalling pathways that are regulated by SCF complexes and highlight current issues in phosphorylation dependent protein degradation.  相似文献   

7.
8.
Two families of E3 ubiquitin ligases are prominent in cell cycle regulation and mediate the timely and precise ubiquitin–proteasome-dependent degradation of key cell cycle proteins: the SCF (Skp1/Cul1/F-box protein) complex and the APC/C (anaphase promoting complex or cyclosome). While certain SCF ligases drive cell cycle progression throughout the cell cycle, APC/C (in complex with either of two substrate recruiting proteins: Cdc20 and Cdh1) orchestrates exit from mitosis (APC/CCdc20) and establishes a stable G1 phase (APC/CCdh1). Upon DNA damage or perturbation of the normal cell cycle, both ligases are involved in checkpoint activation. Mechanistic insight into these processes has significantly improved over the last ten years, largely due to a better understanding of APC/C and the functional characterization of multiple F-box proteins, the variable substrate recruiting components of SCF ligases. Here, we review the role of SCF- and APC/C-mediated ubiquitylation in the normal and perturbed cell cycle and discuss potential clinical implications of SCF and APC/C functions. This article is part of a Special Issue entitled: Ubiquitin–Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.  相似文献   

9.
Ubiquitin ligases direct the transfer of ubiquitin onto substrate proteins and thus target the substrate for proteasome-dependent degradation. SCF complexes are a family of ubiquitin ligases composed of a common core of components and a variable component called an F-box protein that defines substrate specificity. Distinct SCF complexes, defined by a particular F-box protein, target different substrate proteins for degradation. Although a few have been identified to be involved in important biological pathways, such as the cell division cycle and coordinating cellular responses to changes in environmental conditions, the role of the overwhelming majority of F-box proteins is not clear. Creating inhibitors that will block the in vivo activities of specific SCF ubiquitin ligases may provide identification of substrates of these uncharacterized F-box proteins. Using Saccharomyces cerevisiae as a model system, we demonstrate that overproduction of polypeptides corresponding to the amino terminus of the F-box proteins Cdc4p and Met30p results in specific inhibition of their SCF complexes. Analyses of mutant amino-terminal alleles demonstrate that the interaction of these polypeptides with their full-length counterparts is an important step in the inhibitory process. These results suggest a common means to inhibit specific SCF complexes in vivo.  相似文献   

10.
The ubiquitin protein ligase SCF(Skp2) is composed of Skp1, Cul1, Roc1/Rbx1 and the F-box protein Skp2, the substrate-recognition subunit. Levels of Skp2 decrease as cells exit the cell cycle and increase as cells re-enter the cycle. Ectopic expression of Skp2 in quiescent fibroblasts causes mitogen-independent S-phase entry. Hence, mechanisms must exist for limiting Skp2 protein expression during the G(0)/G(1) phases. Here we show that Skp2 is degraded by the proteasome in G(0)/G(1) and is stabilized when cells re-enter the cell cycle. Rapid degradation of Skp2 in quiescent cells depends on Skp2 sequences that contribute to Cul1 binding and interference with endogenous Cul1 function in serum-deprived cells induces Skp2 expression. Furthermore, recombinant Cul1-Roc1/Rbx1-Skp1 complexes can catalyse Skp2 ubiquitylation in vitro. These results suggest that degradation of Skp2 in G(0)/G(1) is mediated, at least in part, by an autocatalytic mechanism involving a Skp2-bound Cul1-based core ubiquitin ligase and imply a role for this mechanism in the suppression of SCF(Skp2) ubiquitin protein ligase function during the G(0)/G(1) phases of the cell cycle.  相似文献   

11.
NEDD8/Rub1 is a ubiquitin (Ub)-like molecule that covalently ligates to target proteins through an enzymatic cascade analogous to ubiquitylation. This modifier is known to target all cullin (Cul) family proteins. The latter are essential components of Skp1/Cul-1/F-box protein (SCF)-like Ub ligase complexes, which play critical roles in Ub-mediated proteolysis. To determine the role of the NEDD8 system in mammals, we generated mice deficient in Uba3 gene that encodes a catalytic subunit of NEDD8-activating enzyme. Uba3(-/-) mice died in utero at the periimplantation stage. Mutant embryos showed selective apoptosis of the inner cell mass but not of trophoblastic cells. However, the mutant trophoblastic cells could not enter the S phase of the endoreduplication cycle. This cell cycle arrest was accompanied with aberrant expression of cyclin E and p57(Kip2). These results suggested that the NEDD8 system is essential for both mitotic and the endoreduplicative cell cycle progression. beta-Catenin, a mediator of the Wnt/wingless signaling pathway, which degrades continuously in the cytoplasm through SCF Ub ligase, was also accumulated in the Uba3(-/-) cytoplasm and nucleus. Thus, the NEDD8 system is essential for the regulation of protein degradation pathways involved in cell cycle progression and morphogenesis, possibly through the function of the Cul family proteins.  相似文献   

12.
13.
In eukaryotes, E3 ubiquitin ligases (E3s) mediate the ubiquitylation of proteins that are destined for degradation by the ubiquitin-proteasome system. In SKP1/CDC53/F-box protein (SCF)-type E3 complexes, the interchangeable F-box protein confers specificity to the E3 ligase through direct physical interactions with the degradation substrate. The vast majority of the approximately 700 F-box proteins from the plant model organism Arabidopsis thaliana remain to be characterized. Here, we investigate the previously uncharacterized and evolutionarily conserved Arabidopsis F-box protein 7 (AtFBP7), which is encoded by a unique gene in Arabidopsis (At1g21760). Several apparent fbp7 loss-of-function alleles do not have an obvious phenotype. AtFBP7 is ubiquitously expressed and its expression is induced after cold and heat stress. When following up on a reported co-purification of the eukaryotic elongation factor-2 (eEF-2) with YLR097c, the apparent budding yeast orthologue of AtFBP7, we discovered a general defect in protein biosynthesis after cold and heat stress in fbp7 mutants. Thus, our findings suggest that AtFBP7 is required for protein synthesis during temperature stress.  相似文献   

14.
During the G0/G1-S phase transition, the timely synthesis and degradation of key regulatory proteins is required for normal cell cycle progression. Two of these proteins, c-Myc and cyclin E, are recognized by the Cdc4 E3 ligase of the Skp1/Cul1/Rbx1 (SCF) complex. SCF(Cdc4) binds to a similar phosphodegron sequence in c-Myc and cyclin E proteins resulting in ubiquitylation and degradation of both proteins via the 26 S proteosome. Since the prolyl isomerase Pin1 binds the c-Myc phosphodegron and participates in regulation of c-Myc turnover, we hypothesized that Pin1 would bind to and regulate cyclin E turnover in a similar manner. Here we show that Pin1 regulates the turnover of cyclin E in mouse embryo fibroblasts. Pin1 binds to the cyclin E-Cdk2 complex in a manner that depends on Ser384 of cyclin E, which is phosphorylated by Cdk2. The absence of Pin1 results in an increased steady-state level of cyclin E and stalling of the cells in the G1/S phase of the cell cycle. The cellular changes that result from the loss of Pin1 predispose Pin1 null mouse embryo fibroblasts to undergo more rapid genomic instability when immortalized by conditional inactivation of p53 and sensitizes these cells to more aggressive Ras-dependent transformation and tumorigenesis.  相似文献   

15.
The multiprotein von Hippel-Lindau (VHL) tumor suppressor and Skp1-Cul1-F-box protein (SCF) complexes belong to families of structurally related E3 ubiquitin ligases. In the VHL ubiquitin ligase, the VHL protein serves as the substrate recognition subunit, which is linked by the adaptor protein Elongin C to a heterodimeric Cul2/Rbx1 module that activates ubiquitylation of target proteins by the E2 ubiquitin-conjugating enzyme Ubc5. In SCF ubiquitin ligases, F-box proteins serve as substrate recognition subunits, which are linked by the Elongin C-like adaptor protein Skp1 to a Cul1/Rbx1 module that activates ubiquitylation of target proteins, in most cases by the E2 Cdc34. In this report, we investigate the functions of the Elongin C and Skp1 proteins in reconstitution of VHL and SCF ubiquitin ligases. We identify Elongin C and Skp1 structural elements responsible for selective interaction with their cognate Cullin/Rbx1 modules. In addition, using altered specificity Elongin C and F-box protein mutants, we investigate models for the mechanism underlying E2 selection by VHL and SCF ubiquitin ligases. Our findings provide evidence that E2 selection by VHL and SCF ubiquitin ligases is determined not solely by the Cullin/Rbx1 module, the target protein, or the integrity of the substrate recognition subunit but by yet to be elucidated features of these macromolecular complexes.  相似文献   

16.
F-box proteins, components of the Skp1-Cullin1-F-box (SCF) protein E3 ubiquitin ligase complex, serve as the variable component responsible for substrate recognition and recruitment in SCF-mediated proteolysis. F-box proteins interact with Skp1 through the F-box motif and with ubiquitination substrates through C-terminal protein interaction domains. F-box proteins regulate plant development, various hormonal signal transduction processes, circadian rhythm, and cell cycle control. We isolated an F-box protein gene from wheat spikes at the onset of flowering. The Triticum aestivum cyclin F-box domain (TaCFBD) gene showed elevated expression levels during early inflorescence development and under cold stress treatment. TaCFBD green fluorescent protein signals were localized in the cytoplasm and plasma membrane. We used yeast two-hybrid screening to identify proteins that potentially interact with TaCFBD. Fructose bisphosphate aldolase, aspartic protease, VHS, glycine-rich RNA-binding protein, and the 26S proteasome non-ATPase regulatory subunit were positive candidate proteins. The bimolecular fluorescence complementation assay revealed the interaction of TaCFBD with partner proteins in the plasma membranes of tobacco cells. Our results suggest that the TaCFBD protein acts as an adaptor between target substrates and the SCF complex and provides substrate specificity to the SCF of ubiquitin ligase complexes.  相似文献   

17.
18.
Skp2 is well known as the F-box protein of the SCF(Skp2) x Roc1 complex targeting p27 for ubiquitylation. Skp2 also forms complexes with cyclin A, which is particularly abundant in cancer cells due to frequent Skp2 overexpression, but the mechanism and significance of this interaction remain unknown. Here, we report that Skp2-cyclin A interaction is mediated by novel interaction sequences on both Skp2 and cyclin A, distinguishing it from the well known RXL-hydrophobic patch interaction between cyclins and cyclin-binding proteins. Furthermore, a short peptide derived from the mapped cyclin A binding sequences of Skp2 can block Skp2-cyclin A interaction but not p27-cyclin A interaction, whereas a previously identified RXL peptide can block p27-cyclin A interaction but not Skp2-cyclin A interaction. Functionally, Skp2-cyclin A interaction is separable from Skp2 ability to mediate p27 ubiquitylation. Rather, Skp2-cyclin A interaction serves to directly protect cyclin A-Cdk2 from inhibition by p27 through competitive binding. Finally, we show that disruption of cyclin A binding with point mutations in the cyclin A binding domain of Skp2 compromises the ability of overexpressed Skp2 to counter cell cycle arrest by a p53/p21-mediated cell cycle checkpoint without affecting its ability to cause degradation of cellular p27 and p21. These findings reveal a new functional mechanism of Skp2 and a new regulatory mechanism of cyclin A.  相似文献   

19.
D-type cyclins play a pivotal role in G(1)-S progression of the cell cycle, and their expression is frequently deregulated in cancer. Cyclin D1 has a half-life of only ~30 min as a result of its ubiquitylation and proteasomal degradation, with various F-box proteins, including Fbxo4, Fbxw8, Skp2, and Fbxo31, having been found to contribute to its ubiquitylation. We have now generated Fbxo4-deficient mice and found no abnormalities in these animals. Cyclin D1 accumulation was thus not observed in Fbxo4(-/-) mouse tissues. The half-life of cyclin D1 in mouse embryonic fibroblasts (MEFs) prepared from Fbxo4(-/-), Fbxw8(-/-), and Fbxo4(-/-); Fbxw8(-/-) mice also did not differ from that in wild-type MEFs. Additional depletion of Skp2 and Fbxo31 in Fbxo4(-/-); Fbxw8(-/-) MEFs by RNA interference did not affect cyclin D1 stability. Although Fbxo31 depletion in MEFs increased cyclin D1 abundance, this effect appeared attributable to upregulation of cyclin D1 mRNA. Furthermore, abrogation of the function of the Skp1-Cul1-F-box protein (SCF) complex or the anaphase-promoting complex/cyclosome (APC/C) complexes did not alter the half-life of cyclin D1, whereas cyclin D1 degradation was dependent largely on proteasome activity. Our genetic analyses thus do not support a role for any of the four F-box proteins examined in cyclin D1 degradation during normal cell cycle progression. They suggest the existence of other ubiquitin ligases that target cyclin D1 for proteolysis.  相似文献   

20.
Ubiquitin-dependent proteolysis of specific target proteins is required for several important steps during the cell cycle. Degradation of such proteins is strictly cell cycle-regulated and triggered by two large ubiquitin ligases, termed anaphase-promoting complex (APC) and Skp1/Cullin/F-box complex (SCF). Here we show that yeast Ran-binding protein 1 (Yrb1p), a predominantly cytoplasmic protein implicated in nucleocytoplasmic transport, is required for cell cycle regulated protein degradation. Depletion of Yrb1p results in the accumulation of unbudded G(1) cells and of cells arrested in mitosis implying a function of Yrb1p in the G(1)/S transition and in the progression through mitosis. Temperature-sensitive yrb1-51 mutants are defective in APC-mediated degradation of the anaphase inhibitor protein Pds1p and in degradation of the cyclin-dependent kinase inhibitor Sic1p, a target of SCF. Thus, Yrb1p is crucial for efficient APC- and SCF-mediated proteolysis of important cell cycle regulatory proteins. We have identified the UBS1 gene as a multicopy suppressor of yrb1-51 mutants. Ubs1p is a nuclear protein, and its deletion is synthetic lethal with a yrb1-51 mutation. Interestingly, UBS1 was previously identified as a multicopy suppressor of cdc34-2 mutants, which are defective in SCF activity. We suggest that Ubs1p may represent a link between nucleocytoplasmic transport and ubiquitin ligase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号