首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme adenylosuccinate (sAMP) synthetase has been partially purified from Dictyostelium discoideum using hadacidin-Sepharose 4B affinity chromatography, anion-exchange high-performance liquid chromatography (HPLC), and gel-filtration HPLC, resulting in a 2600-fold purification. Using a newly developed HPLC procedure to assay activity, it has been found that D. discoideum adenylosuccinate synthetase activity has apparent Km values for the substrates IMP, GTP, and aspartate of 36, 23, and 714 microM, respectively. The analog guanosine-5'-(beta, gamma-imino)triphosphate was found to be an inhibitor of GTP with a Ki of 15 microM, and IMP was competitively inhibited by its analog formycin B monophosphate with a Ki of 80 microM. An analysis of these kinetic data showed a pattern consistent with a fully random terter mechanism. Hadacidin, an analog of aspartate, was an inhibitor of that substrate at 86 microM. Other analogs of hadacidin were synthesized and examined for their effect on the sAMP synthetase activity. Compared to hadacidin, which produced 100% inhibition at 5 mM, it was observed that N-acetyl-N-hydroxyglycine, N-formylglycine, N-acetylglycine, and N-hydroxyglycine all inhibited between 50 and 75%, with N-(thiocarboxy)-L-aspartic anhydride less effective at 27%, and N-benzoylglycine at only 6%. N-Formylsarcosine, N-acetylmethionine, O-methylpyruvate oxime, and hadacidin methylester had no effect at this concentration. The adenylosuccinate synthetase activity was dependent on metal ions with maximum activity being obtained with Mg2+. The ability of the aspartate analog hadacidin to bind to the purified adenylosuccinate synthetase was demonstrated using anion-exchange HPLC and [formyl-14C]hadacidin. The radioactivity coeluted with the adenylosuccinate synthetase and the bound, radiolabeled hadacidin was displaced by excess aspartate.  相似文献   

2.
Adenylosuccinate synthetase (EC 6.3.4.4) from rabbit muscle efficiently catalyzes the formation of 2'-deoxyadenylosuccinate and beta-D-arabinosylade-nylosuccinate from 2'-dIMP and beta-D-arabinosylIMP (Spector, T. and Miller, RL. (1976) Biochim. Biophys. Acta 445, 509-517). These novel analogs of adenylosuccinate were synthesized with this enzyme and their kinetic constants were determined with adenylosuccinate lyase purified from Ehrlich ascites cells. 2'-Deoxyadenylosuccinate and beta-D-arabinosyladenylosuccinate were readily cleaved to 2'-dAMP and beta-D-arabinosylAMP, respectively. Their Km values were similar to that of adenylosuccinate (3-6 micronM) and their substrate efficiencies (V/Km) were 120 for 2-deoxyadenylosuccinate and 32 for beta-D-arabinosyl-adenylosuccinate, compared to a value of 100 for adenylosuccinate. The products of the reactions, 2'-dAMP and beta-D-arabinosylAMP, were competitive inhibitors with Ki values of 5 and 87 micronM, respectively. ATP and ADP were considerably weaker competitive inhibitors with Ki values of 200-300 micronM. IMP, GMP, xanthosine 5'-monophosphate, 6-thioIMP and 6-thioGMP had Ki values greater than 200 micronM.  相似文献   

3.
Lee P  Gorrell A  Fromm HJ  Colman RF 《Biochemistry》1999,38(18):5754-5763
Adenylosuccinate synthetase from Escherichia coli is inactivated in a biphasic reaction by 6-(4-bromo-2,3-dioxobutyl)thioadenosine 5'-monophosphate (6-BDB-TAMP) at pH 7.0 and 25 degrees C. The initial fast-phase inactivation is not affected by the presence of active-site ligands and can be completely eliminated by blocking Cys291 of the enzyme with N-ethylmaleimide (NEM). Reaction of the NEM-treated enzyme with 6-BDB-[32P]TAMP results in 2 mol of reagent incorporated/mol of enzyme subunit. The inactivation kinetics of the slow-phase exhibit an apparent KI of 40.6 microM and kmax of 0.0228 min-1. Active-site ligands, either adenylosuccinate or IMP and GTP, completely prevent inactivation of the enzyme by 6-BDB-TAMP, whereas IMP or IMP and aspartate is much less effective in protection. 6-BDB-TAMP-inactivated enzyme has a 3-fold increase in Km for aspartate with no change in Km for IMP or GTP. Protease digestion of 6-BDB-[32P]TAMP inactivated enzyme reveals that both Arg131 and Arg303 are modified by the affinity-labeling reagent. The crystal structure [Poland, B. W., Fromm, H. J., and Honzatko, R. B. (1996) J. Mol. Biol. 264, 1013-1027] and site-directed mutagenesis [Kang, C., Sun, N., Poland, B. W., Gorrell, A., and Fromm, H. J. (1997) J. Biol. Chem. 272, 11881-11885] of E. coli adenylosuccinate synthetase show that Arg303 interacts with the carboxyl group of aspartate and the 2'-OH of the ribose of IMP and Arg131 is involved in stabilizing aspartate in the active site of the enzyme. We conclude that 6-BDB-TAMP functions as a reactive adenylosuccinate analogue in modifying both Arg131 and Arg303 in the active site of adenylosuccinate synthetase.  相似文献   

4.
Adenylosuccinate synthetases from different sources contain an N-terminal glycine-rich sequence GDEGKGK, which is homologous to the conserved sequence GXXXXGK found in many other guanine nucleotide-binding proteins or enzymes. To determine the role of this sequence in the structure and function of Escherichia coli adenylosuccinate synthetase, site-directed mutagenesis was performed to generate five mutant enzymes: G12V (Gly12----Val), G15V (Gly15----Val), G17V (Gly17----Val), K18R (Lys18----Arg), and I19T (Ile19----Thr). Comparison of the kinetic properties of the wild-type enzyme and those of the mutant enzymes revealed that the sequence is critical for enzyme activity. Replacement of Gly12, Gly15, or Gly17 with Val, or replacement of Lys18 with Arg, resulted in significant decreases in the kcat/Km values of the enzyme. Because the consensus sequence GXXXXGK(T/S) has been found in many GTP-binding proteins, isoleucine at position 19 in the E. coli adenylosuccinate synthetase was changed to threonine to produce the sequence GDEGKGKT. This mutation, which more closely resembles the consensus sequence, resulted in a 160-fold increase in the Km value for substrate GTP; however, there were no great changes for the other two substrates, IMP and aspartate. Based on these data, we suggest that the N-terminal glycinerich sequence in E. coli adenylosuccinate synthetase plays a more important role in enzyme catalysis than in substrate binding. In addition, a hydrophobic amino acid residue such as isoleucine, leucine, or valine, rather than threonine, may play a critical role in GTP binding in adenosuccinate synthetase. These findings suggest that the glycine-rich sequence in adenylosuccinate synthetase functions differently relative to those in other GTP binding proteins or enzymes.  相似文献   

5.
DL-threo-beta-Fluoroaspartate is a substrate for the two enzymes in de novo purine biosynthesis that use aspartate, namely 4-(N-succino)-5-aminoimidazole-4-carboxamide ribonucleotide (SAICAR) synthetase and adenylosuccinate synthetase. With both enzymes, Vmax with threo-beta-fluoroaspartate is about 50% of that observed with aspartate. The products of the two enzyme reactions, threo-beta-fluoro-SAICAR and threo-beta-fluoroadenylosuccinate, are inhibitors of adenylosuccinate lyase purified from rat skeletal muscle. In 20 mM phosphate buffer, pH 7.4, the KI values for threo-beta-fluoro-SAICAR are 5 and 3 microM and for threo-beta-fluoroadenylosuccinate are 3 and 1 microM, in the SAICAR and adenylosuccinate cleavage reactions, respectively. In 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer, pH 7.4, the KI values for threo-beta-fluoro-SAICAR are approximately 0.14 and 0.03 microM and for threo-beta-fluoroadenylosuccinate are approximately 0.05 and 0.015 microM, in the same two reactions, respectively. These KI values are one-half to one-hundredth of the Km values for SAICAR and adenylosuccinate, the two substrates of adenylosuccinate lyase. After an 8-h incubation with 45 microM threo-beta-fluoroaspartate, H4 cells contain 200-300 microM threo-beta-fluoro-SAICAR and 60-90 microM threo-beta-fluoroadenylosuccinate. These concentrations of fluoro analogs are sufficient to substantially inhibit adenylosuccinate lyase and hence the de novo synthesis of purines in H4 cells.  相似文献   

6.
Adenylosuccinate synthetase, encoded by the purA gene of Escherichia coli, catalyzes the first committed step toward AMP in the de novo purine biosynthetic pathway and plays an important role in the interconversion of purines. A 3.2-kb DNA fragment, which carries the purA gene, was cloned into the temperature-inducible, high-copy-number plasmid vector, pMOB45. Upon temperature induction, cells containing this plasmid produce adenylosuccinate synthetase at approximately 40 times the wild-type level. A scheme is presented for the purification of the overproduced adenylosuccinate synthetase to homogeneity in amounts sufficient for studies of its structure and mechanism. The wild-type and the overproduced adenylosuccinate synthetase enzyme preparations were judged to be identical by the following criteria. The amino acid sequence at the N-terminus of the overproduced enzyme proved identical to the corresponding sequence of the wild-type enzyme. Michaelis constants for both the wild-type and overproduced enzyme preparations were the same. And (iii) both proteins shared similar chromatographic behavior and the same mobility during sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Results from size-exclusion chromatography and SDS-polyacrylamide gel electrophoresis suggest that adenylosuccinate synthetase exists as a dimer of identical, 48,000-Da, subunits.  相似文献   

7.
Adenylosuccinate synthetase (EC 6.3.4.4) catalyzes the first step in formation of AMP from IMP. At least two isozymes exist in vertebrate tissue. An acidic form, present in most tissues, has been suggested to be involved in de novo biosynthesis while a basic isozyme, which predominates in muscle, appears to function in the purine nucleotide cycle. Antibodies specific for the basic isozyme detect a single protein in mouse tissues with highest levels in skeletal muscle, tongue, esophagus, and heart tissue consistent with a role for the enzyme in muscle metabolism. A series of degenerate oligonucleotides were constructed based on peptide sequences from purified rat muscle enzyme and then used to clone a mouse muscle cDNA encoding the basic isozyme. The clone contains a open reading frame of 1356 bases with 452 amino acids. Northern analysis of RNA from mouse tissues showed a tissue distribution similar to that of the protein, indicating a high level of gene expression in muscle. Transfection of COS cells with the mouse muscle cDNA allows expression of a functional protein with a molecular mass of approximately 50 kDa, consistent with the open reading frame and the size of the isolated rat enzyme. The deduced amino acid sequence of the mouse synthetase is 47 and 37% identical to the synthetase sequences from Dictyostelium discoideum and Escherichia coli, respectively. The availability of antibodies and cDNA clones specific for the basic isozyme of adenylosuccinate synthetase from muscle will facilitate future genetic and biochemical analysis of this protein and its role in muscle physiology.  相似文献   

8.
A cDNA coding for UMP-CMP kinase from Dictyostelium discoideum was isolated from a lambda gt11 expression library and sequenced. The corresponding mRNA has a size of 0.7 kilobase and is down-regulated during early development of D. discoideum. Southern blotting demonstrated that the UMP-CMP kinase is encoded by a single gene. The deduced amino acid sequence of UMP-CMP kinase shows a high degree of homology with adenylate kinases from different sources with the highest degree of homology to cytosolic adenylate kinase from vertebrate muscle (43%). The enzyme expressed in Escherichia coli after cloning the cDNA into an ATG expression vector was purified and analyzed for its structural and kinetic properties. The UMP-CMP kinase uses preferentially ATP (Km,app = 25 microM) as phosphate donor and is specific for UMP (Km,app = 0.4 mM) and CMP (Km,app = 0.1 mM). The enzyme is strongly inhibited by the substrate analogue P1-(adenosine-5')-P5-(uridine-5')-pentaphosphate (Ki between 0.05 and 0.1 microM) and is inactivated by modification of free thiol groups with 5,5'-dithiobis(2-nitrobenzoic acid).  相似文献   

9.
Most parasitic protozoa lack the de novo purine biosynthetic pathway and rely exclusively on the salvage pathway for their purine nucleotide requirements. Enzymes of the salvage pathway are, therefore, candidate drug targets. We have cloned the Plasmodium falciparum adenylosuccinate synthetase gene. In the parasite, adenylosuccinate synthetase is involved in the synthesis of AMP from IMP formed during the salvage of the purine base, hypoxanthine. The gene was shown to code for a functionally active protein by functional complementation in a purA mutant strain of Escherichia coli, H1238. This paper reports the conditions for hyperexpression of the recombinant protein in E. coli BL21(DE3) and purification of the protein to homogeneity. The enzyme was found to require the presence of dithiothreitol during the entire course of the purification for activity. Glycerol and EDTA were found to stabilize enzyme activity during storage. The specific activity of the purified protein was 1143.6 +/- 36.8 mUnits/mg. The K(M)s for the three substrates, GTP, IMP, and aspartate, were found to be 4.8 microM, 22.8 microM, and 1.4 mM, respectively. The enzyme was a dimer on gel filtration in buffers of low ionic strength but equilibrated between a monomer and a dimer in buffers of increased ionic strength.  相似文献   

10.
Chemical modification of adenylosuccinate synthetase from Escherichia coli with phenylglyoxal resulted in an inhibition of enzyme activity with a second-order rate constant of 13.6 M-1 min-1. The substrates, GTP or IMP, partially protected the enzyme against inactivation by the chemical modification. The other substrate, aspartate, had no such effect even at a high concentration. In the presence of both IMP and GTP during the modification, nearly complete protection of the enzyme against inactivation was observed. Stoichiometry studies with [7-14C]phenylglyoxal showed that only 1 reactive arginine residue was modified by the chemical reagent and that this arginine residue could be shielded by GTP and IMP. Sequence analysis of tryptic peptides indicated that Arg147 is the site of phenylglyoxal chemical modification. This arginine has been changed to leucine by site-directed mutagenesis. The mutant enzyme (R147L) showed increased Michaelis constants for IMP and GTP relative to the wild-type system, whereas the Km for aspartate exhibited a modest decrease as compared with the native enzyme. In addition, kcat of the R147L mutant decreased by a factor of 1.3 x 10(4). On the bases of these observations, it is suggested that Arg147 is critical for enzyme catalysis.  相似文献   

11.
A new affinity label, 8-(4-bromo-2,3-dioxobutylthio)guanosine 5'-triphosphate (8-BDB-TGTP), has been synthesized by initial reaction of GTP to form 8-Br-GTP, followed by its conversion to 8-thio-GTP, and finally coupling with 1,4-dibromobutanedione to produce 8-BDB-TGTP. 8-BDB-TGTP and its synthetic intermediates were characterized by thin-layer chromatography, UV, (31)P NMR spectroscopy, as well as by bromide and phosphorus analysis. Escherichia coli adenylosuccinate synthetase is inactivated by 8-BDB-TGTP at pH 7.0 at 25 degrees C. Pretreatment of the enzyme with N-ethylmaleimide (NEM) blocks the exposed Cys(291) and leads to simple pseudo-first-order kinetics of inactivation. The inactivation exhibits a nonlinear relationship of initial inactivation rate versus 8-BDB-TGTP concentration, indicating the reversible association of 8-BDB-TGTP with the enzyme prior to the formation of a covalent bond. The inactivation kinetics exhibit an apparent K(I) of 115 microM and a k(max) of 0.0262 min(-1). Reaction of the NEM-treated adenylosuccinate synthetase with 8-BDB-[(3)H]TGTP results in 1 mol of reagent incorporated/mol of enzyme subunit. Adenylosuccinate or IMP plus GTP completely protects the enzyme against 8-BDB-TGTP inactivation, whereas IMP or GTP alone provide partial protection against inactivation. AMP is much less effective in protection. The results of ligand protection studies suggest that E. coli adenylosuccinate synthetase may accommodate 8-BDB-TGTP as a GTP analog. The new affinity label may be useful for identifying catalytic amino acid residues of protein proximal to the guanosine ring.  相似文献   

12.
Diadenosine tetraphosphate activates cytosol 5'-nucleotidase   总被引:3,自引:0,他引:3  
The rate of hydrolysis of IMP (0.5 mM) by cytosol 5'-nucleotidase from Artemia embryos was increased up to 7-fold by concentrations of around 10 microM diadenosine tetraphosphate (Ap4A). Half maximal activation of the enzyme was accomplished with 5 microM Ap4A. The Km (S 0.5) values of the nucleotidase for IMP, GMP, AMP, XMP and CMP decreased about 10 fold in the presence of 10 microM Ap4A. Maximum velocity of the enzyme was not affected by Ap4A. ATP had been previously described as an activator of the enzyme. However, comparatively with Ap4A, concentrations of ATP two orders of magnitude higher are needed to elicit similar effects on the enzyme. Preliminary results indicate that Ap4A is also an activator of the cytosol 5'-nucleotidase from rat liver.  相似文献   

13.
The enzymes of the purine nucleotide cycle-AMP deaminase, adenylosuccinate synthetase, and adenylosuccinate lyase-were examined as a functional unit in an in vitro system which simulates the purine nucleotide composition of sarcoplasm. Activity of each cycle enzyme in extracts of rat skeletal muscle was observed to increase as ATP/ADP, reflecting the energy state of the system, was lowered from approximately 50 to 1. The increase in AMP deaminase activity could be attributed to effects of energy state and factors such as AMP concentration, which are obligatorily coupled to energy state. The increases in synthetase and lyase activities were accounted for by increases in the concentration of IMP and adenylosuccinate, respectively. The inhibitory influence of IMP concentration on synthetase activity reported in other systems was not observed in this system; synthetase activity progressively increased as IMP concentration was raised to approximately 4 mM, and apparent saturation occurred at concentrations above 4 mM. Also, adenylosuccinate was found to be an activator of AMP deaminase. The results of this study document that the activities of the enzymes of the purine nucleotide cycle increase in parallel at low energy states, and the components of the cycle function as a coordinated unit with individual enzyme activities linked via concentrations of cycle intermediates.  相似文献   

14.
The URA7-encoded CTP synthetase [EC 6.3.4.2, UTP:ammonia ligase (ADP-forming)] in the yeast Saccharomyces cerevisiae is phosphorylated on a serine residue and stimulated by cAMP-dependent protein kinase (protein kinase A) in vitro. In vivo, the phosphorylation of CTP synthetase is mediated by the RAS/cAMP pathway. In this work, we examined the hypothesis that amino acid residue Ser424 contained in a protein kinase A sequence motif in the URA7-encoded CTP synthetase is the target site for protein kinase A. A CTP synthetase synthetic peptide (SLGRKDSHSA) containing the protein kinase A motif was a substrate (Km = 30 microM) for protein kinase A. This peptide also inhibited (IC50 = 45 microM) the phosphorylation of purified wild-type CTP synthetase by protein kinase A. CTP synthetase with a Ser424 --> Ala (S424A) mutation was constructed by site-directed mutagenesis. The mutated enzyme was not phosphorylated in response to the activation of protein kinase A activity in vivo. Purified S424A mutant CTP synthetase was not phosphorylated and stimulated by protein kinase A. The S424A mutant CTP synthetase had reduced Vmax and elevated Km values for ATP and UTP when compared with the protein kinase A-phosphorylated wild-type enzyme. The specificity constants for ATP and UTP for the S424A mutant CTP synthetase were 4.2- and 2.9-fold lower, respectively, when compared with that of the phosphorylated enzyme. In addition, the S424A mutant enzyme was 2.7-fold more sensitive to CTP product inhibition when compared with the phosphorylated wild-type enzyme. These data indicated that the protein kinase A target site in CTP synthetase was Ser424 and that the phosphorylation of this site played a role in the regulation of CTP synthetase activity.  相似文献   

15.
Summary The enzymes adenylosuccinate synthetase (EC 6.3.4.4 IMP: L-aspartate ligase [GDP-forming]), adenylosuccinate lyase (EC 4.3.2.2) and AMP deaminase (EC 3.5.4.6 AMP aminohydrolase) were demonstrated inHelix aspersa hepatopancreas tissue. The presence of these enzymes along with high levels of aspartate transaminase is presumptive evidence for the operation in this tissue of the purine nucleotide cycle. In the absence of evidence that glutamate dehydrogenase acts to release ammonia during amino acid catabolism, it is suggested that the purine nucleotide cycle serves this function. Glutamine synthetase (EC 6.3.1.2 L-glutamate: ammonia ligase [ADP-forming]) was shown to be present primarily in the cytosolic fraction ofHelix hepatopancreas. Since the operation of the purine nucleotide cycle results in the release of ammonia in the cytosol, the localization of glutamine synthetase in this compartment indicates that it is the primary ammonia-detoxifying enzyme and is consistent with the suggestion that the purine nucleotide cycle serves as the major pathway for amino acid catabolism.Supported by grants from the USPHS National Institute of Allergic and Infections Diseases (AI 05006) and the National Science Foundation (PCM-75-13161)  相似文献   

16.
The use of high-performance liquid chromatography to identify and quantitate five purine-metabolizing enzymes from a partially purified subcellular fraction of the eucaryotic microorganism Dictyostelium discoideum is described. All HPLC separations were carried out in an isocratic manner using reverse-phase C18 as the stationary phase. The mobile phase consisted of a phosphate buffer with either methanol or acetonitrile as cosolvent, and optimal separation conditions were attained by varying the organic concentration or the pH of the buffer or by employing paired-ion chromatographic techniques. Substrates and products were detected at either 254 nm for the purines or 295 nm for the formycin analogs. An adenosine kinase activity was identified, and it was demonstrated that formycin A (FoA) could be substituted for adenosine as the phosphate acceptor, yielding FoAMP as the product. With FoA as the substrate an apparent Km of 18.2 microM and an apparent Vmax of 32.4 mmol min-1 mg-1 were observed for the activity. A purine-nucleoside phosphorylase activity was found to cleave adenosine to adenine and ribosylphosphate. FoA was not found to be a substrate for this activity due to the unusual formycin C-glycosyl bond which was not hydrolyzed by enzymes or chemically with either HCl or NaOH. An adenylate deaminase activity was found to be present in the cytosolic S-100 of cells harvested during the onset of development, and this deaminase activity was greatly stimulated by ATP. With FoAMP as the substrate, an apparent Km of 236 microM and Vmax of 2.78 mumol min-1 mg-1 were observed. The deamination of FoAMP could be inhibited by the addition of the natural substrate AMP. An apparent Ki value of 136 microM was determined from initial rate data. An adenylosuccinate synthetase activity was observed to have a Km value for GTP, IMP, and aspartic acid of 23, 34, and 714 microM, respectively. The formycin analog FoIMP was not a substrate with this activity but was a competitive inhibitor of IMP. Finally hypoxanthine-guanine phosphoribosyltransferase was found to have Km and Vmax values for hypoxanthine of 55.5 microM and 34.3 nmol-1 min-1 mg-1. When guanine was used as the substrate, the rate of nucleotide formation was 50% that with hypoxanthine as the substrate. The advantages of using HPLC to examine the interconnecting activities of a multienzyme complex in subcellular fractions are discussed, including the increased sensitivity obtained by using formycin analogs in the assay procedures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Vertebrates possess two isozymes of adenylosuccinate synthetase. The acidic isozyme is similar to the synthetase from bacteria and plants, being involved in the de novo biosynthesis of AMP, whereas the basic isozyme participates in the purine nucleotide cycle. Reported here is the first instance of overexpression and crystal structure determination of a basic isozyme of adenylosuccinate synthetase. The recombinant mouse muscle enzyme purified to homogeneity in milligram quantities exhibits a specific activity comparable with that of the rat muscle enzyme isolated from tissue and K(m) parameters for GTP, IMP, and l-aspartate (12, 45, and 140 microm, respectively) similar to those of the enzyme from Escherichia coli. The mouse muscle and E. coli enzymes have similar polypeptide folds, differing primarily in the conformation of loops, involved in substrate recognition and stabilization of the transition state. Residues 65-68 of the muscle isozyme adopt a conformation not observed in any previous synthetase structure. In its new conformation, segment 65-68 forms intramolecular hydrogen bonds with residues essential for the recognition of IMP and, in fact, sterically excludes IMP from the active site. Observed differences in ligand recognition among adenylosuccinate synthetases may be due in part to conformational variations in the IMP pocket of the ligand-free enzymes.  相似文献   

18.
Dissociation constants of Escherichia coli adenylosuccinate synthetase with IMP, GTP, adenylosuccinate, and AMP (a competitive inhibitor for IMP) were determined by measuring the extent of quenching of the intrinsic tryptophan fluorescence of the enzyme. The enzyme has one binding site for each of these ligands. Aspartate and GDP did not quench the fluorescence to any great extent, and their dissociation constants could not be determined. These ligand binding studies were generally supportive of the kinetic mechanism proposed earlier for the enzyme. Cys291 was modified with the fluorescent chromophores N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonate and tetramethylrhodamine maleimide in order to measure enzyme conformational changes attending ligand binding. The excitation and emission spectra of these fluorophores are not altered by the addition of active site binding ligands. TbGTP and TbGDP were used as native reporter groups, and changes in their fluorescence on complexing with the enzyme and various ligands made it possible to detect conformational changes occurring at the active site. Evidence is presented for abortive complexes of the type: enzyme-TbGTP-adenylosuccinate and enzyme-TbGTP-adenylosuccinate-aspartate. These results suggest that the IMP and aspartate binding sites are spatially separated.  相似文献   

19.
Folylpolyglutamate synthetase (FPGS) was isolated from human liver cytosol by 0-30% (w/v) ammonium sulfate fractionation and characterized biochemically. Using aminopterin (AMT), L-[3H]glutamate and MgATP as cosubstrates, maximal gamma-L-glutamylation activity was observed in the presence of the activators KCl and NaHCO3. ATP and 2-mercaptoethanol were each required for enzyme activity and stability. In the absence of ATP, human liver FPGS rapidly inactivated at 37 degrees C (t1/2 approximately 8 min), whereas FPGS isolated from rabbit liver was significantly more stable (t1/2 = 68 min). Both folates and antifolates were effectively polyglutamylated by the isolated human liver enzyme. Km parameters determined for AMT (Km = 4.3 microM) were similar to those determined for several reduced folates (tetrahydrofolic acid, dihydrofolic acid, and folinic acid; Km = 3-7 microM), while significantly higher Km values were observed for methotrexate (MTX) and 5-methyltetrahydrofolic acid (Km = 50-60 microM) and for folic acid (Km = 100 microM). All of the substrates examined exhibited Vmax values ranging from 30 to 90% of the AMT value (Vmax = 935 pmol product/mg/h). The order of reactivity for these substrates differed from that determined in parallel studies for FPGS isolated from rat and rabbit liver. In the case of AMT and several reduced folates, inhibition of human liver FPGS was observed at substrate concentrations at or above 50-250 microM. FPGS isolated from six individual human livers exhibited highly similar biochemical and kinetic properties, suggesting the presence of the same or at least highly similar enzyme species in each individual, with a five-fold interindividual range in specific activities observed. Comparison of MTX with its higher polyglutamates (MTX-Glu2 to MTX-Glu6) as FPGS substrates indicated a significant decrease in Vmax values with increasing glutamate chain length which was partially compensated for by a corresponding decrease in Km. Consistent with these observations, the isolated enzyme was unable to synthesize polyglutamates higher than MTX-Glu3 when MTX was supplied as substrate, raising the question as to how MTX polyglutamates containing up to five or six gamma-L-glutamate residues are formed in vivo.  相似文献   

20.
Mast cells contain spleen-type prostaglandin D synthetase   总被引:2,自引:0,他引:2  
Prostaglandin D synthetase activity in the cytosol (100,000 x g, 1-h supernatant) fraction of peritoneal mast cells of adult rats (105.0 nmol/min/mg protein) was the highest among such activities in various rat tissues and cells. As judged by the absolute requirement for glutathione for the reaction (Km = 300 microM), the Km value for prostaglandin H2 (200 microM), and insensitivity of the activity to 1 mM 1-chloro-2,4-dinitrobenzene, the enzyme in mast cells was similar to rat spleen prostaglandin D synthetase and differed from rat brain prostaglandin D synthetase or glutathione S-transferase, all of which catalyze the isomerase reaction from prostaglandin H2 to prostaglandin D2. In immunotitration analyses, the activity in mast cells showed a titration curve exactly identical with that of the purified spleen-type enzyme and almost completely absorbed by an excess amount of antibody against this enzyme, but it remained unchanged after incubation with antibodies against the brain-type enzyme and glutathione S-transferase isozymes thus far purified. In Western blot after two-dimensional electrophoresis of crude extracts of mast cells, a single immunoreactive spot was observed with antibody against the spleen-type enzyme at the same position as that of the purified enzyme (Mr = 26,000, pI = 5.2). Furthermore, the immunoreactive protein obtained from mast cells showed the same peptide fingerprints as those of the purified spleen-type enzyme, after partial digestion with Staphylococcus aureus V8 protease or trypsin. In immunoperoxidase staining, the immunoreactivity of the spleen-type enzyme was found in the cytosol of tissue mast cells in various organs such as thymus, intestine, stomach, and skin of adult rats. These findings indicate that prostaglandin D2 is produced by the spleen-type synthetase in mast cells of various tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号