首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Repair of damaged DNA by Arabidopsis cell extract   总被引:5,自引:0,他引:5       下载免费PDF全文
All living organisms have to protect the integrity of their genomes from a wide range of genotoxic stresses to which they are inevitably exposed. However, understanding of DNA repair in plants lags far behind such knowledge in bacteria, yeast, and mammals, partially as a result of the absence of efficient in vitro systems. Here, we report the experimental setup for an Arabidopsis in vitro repair synthesis assay. The repair of plasmid DNA treated with three different DNA-damaging agents, UV light, cisplatin, and methylene blue, after incubation with whole-cell extract was monitored. To validate the reliability of our assay, we analyzed the repair proficiency of plants depleted in AtRAD1 activity. The reduced repair of UV light- and cisplatin-damaged DNA confirmed the deficiency of these plants in nucleotide excision repair. Decreased repair of methylene blue-induced oxidative lesions, which are believed to be processed by the base excision repair machinery in mammalian cells, may indicate a possible involvement of AtRAD1 in the repair of oxidative damage. Differences in sensitivity to DNA polymerase inhibitors (aphidicolin and dideoxy TTP) between plant and human cell extracts were observed with this assay.  相似文献   

2.
3.
Chimeric oligonucleotides are synthetic molecules comprised of RNA and DNA bases assembled in a double hairpin conformation. These molecules have been shown to direct gene conversion events in mammalian cells and animals through a process involving at least one protein from the DNA mismatch repair pathway. The mechanism of action for gene repair in mammalian cells has been partially elucidated through the use of a cell-free extract system. Recent experiments have expanded the utility of chimeric oligonucleotides to plants and have demonstrated genotypic and phenotypic conversion, as well as Mendelian transmission. Although these experiments showed correction of point and frameshift mutations, the biochemical and mechanistic aspects of the process were not addressed. In this paper, we describe the establishment of cell-free extract systems from maize (Zea mays), banana (Musa acuminata cv Rasthali), and tobacco (Nicotiana tabacum). Using a genetic readout system in bacteria and chimeric oligonucleotides designed to direct the conversion of mutations in antibiotic-resistant genes, we demonstrate gene repair of point and frameshift mutations. Whereas extracts from banana and maize catalyzed repair of mutations in a precise fashion, cell-free extracts prepared from tobacco exhibited either partial repair or non-targeted nucleotide conversion. In addition, an all-DNA hairpin molecule also mediated repair albeit in an imprecise fashion in all cell-free extracts tested. This system enables the mechanistic study of gene repair in plants and may facilitate the identification of DNA repair proteins operating in plant cells.  相似文献   

4.
Many mammalian cells exhibit damage-inducible phenomena that resemble the bacterial SOS functions. However, whereas RecA plays a prominent role in the prokaryotic SOS response, in mammalian cells so far no enhanced recombination as a result of treatment with DNA-damaging agents of the cells, rather than of infecting viruses, has been found. In order to study recombination as a UV-inducible cellular phenomenon we infected UV-irradiated normal and repair-deficient human fibroblasts with a mixed population of adenovirus 5 (Ad5) mutants that carried a deletion in the E1A or the E2A gene. Wild-type recombinant progeny viruses were readily obtained, but no enhanced recombination was observed at any UV dose given to the cells, nor at any time point between -6 h and +4 days between irradiation and infection. Control experiments, in which we infected unirradiated cells with UV-irradiated Ad5 deletion mutants (a test for recombination targeted at UV-damaged DNA) showed a strong increase in wild-type recombinant viruses when both deletion mutants had been irradiated compared to the additive effect of irradiation of either one of the mutants alone. Therefore, this study shows that UV irradiation results in an enhanced recombination activity in cells that is specifically targeted to damaged DNA, but it does not cause a general (untargeted) recombinational response (enhanced recombination) in the cell.  相似文献   

5.
We are using an SV40-based shuttle vector, pZ189, to study mechanisms of mutagenesis in mammalian cells. The vector can be treated with mutagens in vitro and replicated in animal cells; resulting mutants can be selected and amplified in bacteria for DNA sequencing. This versatile vector system has allowed us to explore several different questions relating to the mutagenic process. We have studied the direct effects of template damage caused by UV or benzo[a]pyrene diolepoxide by treating vector DNA with these agents and then replicating the damaged DNA in monkey cells. Mutational mechanisms were deduced from the spectrum of mutations induced in the supF target gene of the vector DNA. To study the role of indirect effects of DNA damage on mutagenesis in mammalian cells, we have treated the cells and the vector DNA separately with DNA-damaging agents. We find that pretreatment of cells with DNA-damaging agents, or with conditioned medium from damaged cells, causes an enhancement of mutagenesis of a UV-damaged vector. Thus, DNA damage can act indirectly to enhance the mutagenic process. We also have preliminary evidence that pZ189 can be used in an in vitro DNA replication system to study the process of mutation fixation on the biochemical level. We believe that the pZ189 vector will prove to be as useful for in vitro studies of mutational mechanisms as it has been for in vivo studies.  相似文献   

6.
UV irradiation of simian virus 40 (SV40)-transformed human and hamster cells induced them both to express a mutator phenotype and to produce SV40. The mutator could also be activated indirectly by transfecting unirradiated cells with UV-damaged calf thymus DNA. In contrast, UV-damaged exogenous DNA failed to rescue SV40 from unirradiated transformed cells. These results suggest that the expression of transforming viruses and of cellular mutator functions is regulated by at least partially independent mechanisms. Unlike the activation of a cellular mutator phenotype, the rescue of SV40 from virus-transformed mammalian cells by UV light might require that the integrated viral DNA and/or specific cellular sequences are directly damaged.  相似文献   

7.
We searched for nucleotide excision repair in human cell-free extracts using two assays: damage-specific incision of DNA (the nicking assay) and damage-stimulated DNA synthesis (the repair synthesis assay). HeLa cell-free extract prepared by the method of Manley et al. (1980) has a weak nicking activity on UV irradiated DNA and the nicking is only slightly reduced when pyrimidine dimers are eliminated from the substrate by DNA photolyase. In contrast to the nicking assay, the extract gives a strong signal with UV irradiated substrate in the repair synthesis assay. The repair synthesis activity is ATP dependent and is reduced by about 50% by prior treatment of the substrate with DNA photolyase indicating that this fraction of repair synthesis is due to removal of pyrimidine dimers by nucleotide excision. Psoralen and cisplatin adducts which are known to be removed by nucleotide excision repair also elicited repair synthesis activity 5-10 fold above the background synthesis. When M13RF DNA containing a uniquely placed psoralen adduct was used in the reaction, complete repair was achieved in a fraction of molecules as evidenced by the restoration of psoralen inactivated KpnI restriction site. This activity is absent in xeroderma pigmentosum group A cells. We conclude that our cell-free extract contains the human nucleotide excision repair enzyme activity.  相似文献   

8.
The human immunodeficiency virus type 1 (HIV-1) Vpr protein induces cell cycle arrest at the border of G(2) and M similar to the arrest caused by agents which damage DNA. We determined whether the presence of Vpr would affect the ability of cells to repair DNA. We developed a shuttle vector system to analyze the effect of Vpr upon the repair of UV-damaged DNA. Our results demonstrated that the presence of Vpr decreased the rate of deletions in this system. Of note, cells arrested in G(2) by other genotoxic agents also increased the frequency of DNA repair of UV-damaged shuttle vectors. We did not observe any direct effect of Vpr upon the rate of double-strand break repair and/or nucleotide excision repair of genomic DNA in cells. Our results suggest a role for HIV-1 Vpr in altering the frequency of DNA repair, a property which may have importance for HIV-1 replication and pathogenesis.  相似文献   

9.
Kupiec M 《Mutation research》2000,451(1-2):91-105
Prokaryotic and eukaryotic cells have developed a network of DNA repair systems that restore genomic integrity following DNA damage from endogenous and exogenous genotoxic sources. One of the mechanisms used to repair damaged chromosomes is genetic recombination, in which information present as a second chromosomal copy is used to repair a damaged region of the genome. In this review, I summarized what is known about the molecular and cellular mechanisms by which various DNA-damaging agents induce recombination in yeast. The yeast Saccharomyces cerevisiae has served as an excellent model organism to study the induction of recombination. It has helped to define the basic phenomenology and to isolate the genes involved in the process. Given the evolutionary conservation of the various DNA repair systems in eukaryotes, it is likely that the knowledge gathered about induced recombination in yeast is applicable to mammalian cells and thus to humans. Many carcinogens are known to induce recombination and to cause chromosomal rearrangements. An understanding of the mechanisms, by which genotoxic agents cause increased levels of recombination will have important consequences for the treatment of cancer, and for the assessment of risks arising from exposure to genotoxic agents in humans.  相似文献   

10.
11.
Nucleotide excision repair (NER) is the primary mechanism for the removal of many lesions from DNA. This repair process can be broadly divided in two stages: first, incision at damaged sites and second, synthesis of new DNA to replace the oligonucleotide removed by excision. In order to dissect the repair mechanism, we have recently devised a method to analyze the incision reaction in vitro in the absence of repair synthesis (1). Damage-specific incisions take place in a repair reaction in which mammalian cell-free extracts are mixed with undamaged and damaged plasmids. Most of the incision events are accompanied by excision. Using this assay, we investigated here various parameters that specifically affect the level of damage-dependent incision activity by cell-free extracts in vitro. We have defined optimal conditions for the reaction and determined the kinetics of the incision with cell-free extracts from human cells. We present direct evidence that the incision step of NER is ATP-dependent. In addition, we observe that Mn2+ but no other divalent cation can substitute for Mg2+ in the incision reaction.  相似文献   

12.
Cultured human and embryonic chick fibroblasts possess different enzyme-mediated processes to repair cyclobutyl pyrimidine dimers induced in their deoxyribonucleic acid (DNA) by ultraviolet (UV) radiation. While dimers are corrected in human cells by excision repair, a photoenzymatic repair process exists in embryonic chick cells for the removal of these potentially deleterious UV photoproducts. We have utilized a sensitive enzymatic assay to monitor the disappearance, i.e. repair, of dimer-containing sites in fused populations of human and chick cells primarily consisting of multinucleate human/chick heterokaryons. Fused cultures were constructed such that UV photoproducts were present only in chick DNA when evaluating excision repair and only in human DNA when evaluating photoenzymatic repair. Based on the kinetics of site removal observed in these cultures we are led to conclude the following: Within heterokaryons per se the photoreactivating enzyme derived from chick nuclei and at least one excision-repair enzyme (presumably a UV endonuclease) derived from human nuclei act on UV-damaged DNA in foreign nuclei with an efficiency equal to that displayed toward their own nuclear DNA. Hence, after cell fusion these chick and human repair enzymes are apparently able to diffuse into foreign nuclei and once therein competently attack UV-irradiated DNA independently of its origin. In harmony with the situation in nonfused parental cultures, in heterokaryons the chick photoenzymatic repair process rapidly removed all dimer-containing sites from human DNA including the residual fraction normally acted upon slowly by the human excision-repair process.  相似文献   

13.
14.
The mammalian non-histone "high mobility group" A (HMGA) proteins are the primary nuclear proteins that bind to the minor groove of AT-rich DNA. They may, therefore, influence the formation and/or repair of DNA lesions that occur in AT-rich DNA, such as cyclobutane pyrimidine dimers (CPDs) induced by UV radiation. Employing both stably transfected lines of human MCF7 cells containing tetracycline-regulated HMGA1 transgenes and primary Hs578T tumor cells, which naturally overexpress HMGA1 proteins, we have shown that cells overexpressing HMGA1a protein exhibit increased UV sensitivity. Moreover, we demonstrated that knockdown of intracellular HMGA1 concentrations via two independent methods abrogated this sensitivity. Most significantly, we observed that HMGA1a overexpression inhibited global genomic nucleotide excision repair of UV-induced CPD lesions in MCF-7 cells. Consistent with these findings in intact cells, DNA repair experiments employing Xenopus oocyte nuclear extracts and lesion-containing DNA substrates demonstrated that binding of HMGA1a markedly inhibits removal of CPDs in vitro. Furthermore, UV "photo-foot-printing" demonstrated that CPD formation within a long run of Ts (T(18)-tract) in a DNA substrate changes significantly when HMGA1 is bound prior to UV irradiation. Together, these results suggest that HMGA1 directly influences both the formation and repair of UV-induced DNA lesions in intact cells. These findings have important implications for the role that HMGA protein overexpression might play in the accumulation of mutations and genomic instabilities associated with many types of human cancers.  相似文献   

15.
Nucleotide excision repair (NER) removes damage from DNA in a tightly regulated multiprotein process. Defects in NER result in three different human disorders, xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS). Two cases with the combined features of XP and CS have been assigned to the XP-D complementation group. Despite their extreme UV sensitivity, these cells appeared to incise their DNA as efficiently as normal cells in response to UV damage. These incisions were, however, uncoupled from the rest of the repair process. Using cell-free extracts, we were unable to detect any incision activity in the neighbourhood of the damage. When irradiated plasmids were introduced into unirradiated XP-D/CS cells, the ectopically introduced damage triggered the induction of breaks in the undamaged genomic DNA. XP-D/CS cells thus have a unique response to sensing UV damage, which results in the introduction of breaks into the DNA at sites distant from the damage. We propose that it is these spurious breaks that are responsible for the extreme UV sensitivity of these cells.  相似文献   

16.
17.
Escherichia coli endonuclease III and mammalian repair enzymes cleave UV-irradiated DNA at AP sites formed by the removal of cytosine photoproducts by the DNA glycosylase activity of these enzymes. Poly(dG-[3H]dC) was UV irradiated and incubated with purified endonuclease III. 3H-Containing material was released in a fashion consistent with Michaelis-Menten kinetics. This 3H material was determined to be cytosine by chromatography in two independent systems and microderivatization. 3H-Containing material was not released from nonirradiated copolymer. When poly(dA-[3H]dU) was UV irradiated, endonuclease III released 3H-containing material that coeluted with uracil hydrate (6-hydroxy-5,6-dihydrouracil). Similar results are obtained by using extracts of HeLa cells. There results indicate that the modified cytosine residue recognized by endonuclease III and the mammalian enzyme is cytosine hydrate (6-hydroxy-5,6-dihydrocytosine). Once released from DNA through DNA-glycosylase action, the compound eliminates water, reverting to cytosine. This is consistent with the known instability of cytosine hydrate. The repairability of cytosine hydrate in DNA suggests that it is stable in DNA and potentially genotoxic.  相似文献   

18.
The fission yeast, Schizosaccharomyces pombe, possesses a UV-damaged DNA endonuclease-dependent excision repair (UVER) pathway in addition to nucleotide excision repair pathway for UV-induced DNA damage. We examined cyclobutane pyrimidine dimer removal from the myo2 locus on the nuclear genome and the coI locus on the mitochondrial genome by the two repair pathways. While nucleotide excision repair repairs damage only on the nuclear genome, UVER efficiently removes cyclobutane pyrimidine dimers on both nuclear and mitochondrial genomes. The ectopically expressed wild type UV-damaged DNA endonuclease was localized to both nucleus and mitochondria, while modifications of N-terminal methionine codons restricted its localization to either of two organelles, suggesting an alternative usage of multiple translation initiation sites for targeting the protein to different organelles. By introducing the same mutations into the chromosomal copy of the uvde(+) gene, we selectively inactivated UVER in either the nucleus or the mitochondria. The results of UV survival experiments indicate that although UVER efficiently removes damage on the mitochondrial genome, UVER in the mitochondria hardly contributes to UV resistance of S. pombe cells. We suggest a possible UVER function in mitochondria as a backup system for other UV damage tolerance mechanisms.  相似文献   

19.
Unscheduled DNA synthesis after UV irradiation is demonstrated in late pre-implantation stage and early post-implantation stage mouse embryos by autoradiographic techniques. There was no significant difference in the capacity of morula and blastocyst nuclei to carry out unscheduled DNA synthesis. Irradiated trophoblast nuclei had significantly more grains than irradiated morula or blastocyst nuclei and inner cell mass nuclei had significantly fewer grains. These observations indicate that early mammalian embryos possess enzymes required for excision repair of UV-damaged DNA.  相似文献   

20.
Nitric oxide (NO) induces deamination of guanine, yielding xanthine and oxanine (Oxa). Furthermore, Oxa reacts with polyamines and DNA binding proteins to form cross-link adducts. Thus, it is of interest how these lesions are processed by DNA repair enzymes in view of the genotoxic mechanism of NO. In the present study, we have examined the repair capacity for Oxa and Oxa–spermine cross-link adducts (Oxa–Sp) of enzymes involved in base excision repair (BER) and nucleotide excision repair (NER) to delineate the repair mechanism of nitrosative damage to guanine. Oligonucleotide substrates containing Oxa and Oxa–Sp were incubated with purified BER and NER enzymes or cell-free extracts (CFEs), and the damage-excising or DNA-incising activity was compared with that for control (physiological) substrates. The Oxa-excising activities of Escherichia coli and human DNA glycosylases and HeLa CFEs were 0.2–9% relative to control substrates, implying poor processing of Oxa by BER. In contrast, DNA containing Oxa–Sp was incised efficiently by UvrABC nuclease and SOS-induced E.coli CFEs, suggesting a role of NER in ameliorating genotoxic effects associated with nitrosative stress. Analyses of the activity of CFEs from NER-proficient and NER-deficient human cells on Oxa–Sp DNA confirmed further the involvement of NER in the repair of nitrosative DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号