首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
In a previous paper, we described and discussed the possible functions of calcospherite-rich cells (R* cells) in the digestive gland of the shore crab, Carcinus maenas. We recently realised that electron micrographs in this publication presented neither typical R* cells nor their calcium phosphate granules. Indeed, our pictures showed spermatophores (filled with typical spermatozoa) that had contamined hepatopancreatic cell suspensions. As the present study indicates, this contamination is difficult to detect by optical microscopy because unstained R* cells closely resemble spermatophores. However, morphological differences between these cell types appear clearly when observed by electron microscopy. The present paper describes a comparative study of cell populations isolated from female digestive glands; it validates our previous results obtained with male hepatopancreas and suggests a low containation of those male cell fractions by spermatophores.  相似文献   

2.
Summary The sinus gland of Carcinus maenas consists of the swollen axonal endings of the neurosecretory cells of the major ganglia and acts as a storage release centre for the membrane bound neurosecretory material. These neurosecretory granules fall into five different types based on size and electron density. Their contents are released by exocytosis of the primary granules or smaller units budded from the primary granules.I thank Professor E. Naylor for his constant advice and Professor E. W. Knight-Jones, Department of Zoology, University College, Swansea, for the provision of laboratory facilities. I am grateful to the Science Research Council for the financial support. Finally, I thank the Electron Microscope Unit, Southampton General Hospital, where the work was completed.  相似文献   

3.
Summary The sinus gland of the shore crab, Carcinus maenas, is a compact assembly of interdigitating neurosecretory axon endings abutting upon the thin basal lamina of a central hemolymph lacuna. Four types of axon endings are distinguishable by the size distribution, shape, electron density and core structure of their neurosecretory granules. One additional type of axon ending is characterized by electron-lucent vacuoles and vesicles. The axon profiles are surrounded by astrocyte-like glial cells. Various fixations followed by epoxy- or Lowicrylembedding were compared in order to optimize the preservation of the fine structure of the granule types and the antigenicity of their peptide hormone contents. By use of specific rabbit antisera, the crustacean hyperglycemic, molt-inhibiting, pigment-dispersing, and red-pigment-concentrating hormones were assigned to the four distinct granule types which showed no overlap of immunostaining. Epi-polarization microscopy and ultrathin section analysis of immunogold-stained Lowicrylembedded specimens revealed that immunoreactivity to Leu-enkephalin and proctolin is co-localized with moltinhibiting hormone immunoreactivity in the same type of granule. The size and core structure of the immunocytochemically identified granule types vary little with the different pretreatments but, in some cases, to a statistically significant extent. The present results are compared with those from earlier studies of sinus glands in different crustaceans. The methods of granule identification used in this study supplement the classical approach in granule typing; they are easier to perform and more reliable for the analysis of release phenomena in identified secretory neurons supplying the neurohemal sinus gland.  相似文献   

4.
Summary R*-cells of the digestive gland of Carcinus maenas have been investigated functionally and morphologically. A comparison of the capacity of separated cell suspensions to synthesize glycogen gave support to the hypothesis that R and R* cells belong to the same cell line. The unexpected observation of R* cells in gastric juice suggests that their release could represent a mode of redistribution of carbohydrate stores when the feeding activity of the crab is lower. Under electron microscopy, the calcospherites of R* cells appeared to be surrounded by multiple membranous layers, and displayed tubular and vesicular structures in their core. High glucose-6-phosphatase (G6Pase) activity in the subcellular fraction that is enriched in calcospherites suggests that these membranes are derived from the endoplasmic reticulum, via a process in which the enzyme plays a key role. We propose that this is the way by which the R cell differentiates into R* cell.  相似文献   

5.
Summary The phyllobranchiate gills of the green shore crab Carcinus maenas have been examined histologically and ultrastructurally. Each gill lamella is bounded by a chitinous cuticle. The apical surface of the branchial epithelium contacts this cuticle, and a basal lamina segregates the epithelium from an intralamellar hemocoel. In animals acclimated to normal sea water, five epithelial cell types can be identified in the lamellae of the posterior gills: chief cells, striated cells, pillar cells, nephrocytes, and glycocytes. Chief cells are the predominant cells in the branchial epithelium. They are squamous or low cuboidal and likely play a role in respiration. Striated cells, which are probably involved in ionoregulation, are also squamous or low cuboidal. Basal folds of the striated cells contain mitochondria and interdigitate with the bodies and processes of adjacent cells. Pillar cells span the hemocoel to link the proximal and distal sides of a lamella. Nephrocytes are large, spherical cells with voluminous vacuoles. They are rimmed by foot processes or pedicels and frequently associate with the pillar cells. Glycocytes are pleomorphic cells packed with glycogen granules and multigranular rosettes. The glycocytes often mingle with the nephrocytes. Inclusion of the nephrocytes and glycocytes as members of the branchial epithelium is justified by their participation in intercellular junctions and their position internal to the epithelial basal lamina.  相似文献   

6.
Summary The appearance of neurosecretory granules in the crab sinus gland was studied after fixation at different pHs. Whereas at pH 7.0 the neurosecretory granules were pleomorphic with respect to electron density, at pH 5.0 or 6.0 all the granules remained electron dense. The possible role of maturation as an explanation of this observation is discussed.ERA 493 CNRS  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号