首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims

A comparison was performed between plant species to determine if extractable, rather than total soil Se, is more effective at predicting plant Se accumulation over a full growing season.

Methods

Durum wheat (Triticum turgidum L.) and spring canola (Brassica napus L.) were sown in potted soil amended with 0, 0.1, 1.0, or 5.0 mg kg?1 Se as SeO4 2? or SeO3 2?. In addition, SeO4 2?-amended soils were amended with 0 or 50 mg kg?1 S as SO4 2?. Soils were analyzed for extractable and total concentration of Se ([Se]). Twice during the growing season plants were harvested and tissue [Se] was determined.

Results

Plants exposed to SeO3 2? accumulated the least Se. Fitted predictive models for whole plant accumulation based on extractable soil [Se] were similar to models based on total [Se] in soil (R2?=?0.73 or 0.74, respectively) and selenium speciation and soil [S] were important soil parameters to consider. As well, soil S amendments limited Se toxicity.

Conclusions

Soil quality guidelines (SQGs) based on extractable Se should be considered for risk assessment, particularly when Se speciation is unknown. Predictive models to estimate plant Se uptake should include soil S, a modifier of Se accumulation.  相似文献   

2.

Aims

The objective of this study was to determine the relative importance of transpirational pull, Se speciation, sulfate and species on Se accumulation by plants, in order to determine which of these factors must be considered in the future development of models to predict Se accumulation by plants.

Methods

Seedlings of durum wheat (Triticum turgidum L. var durum cv ‘Kyle’) and spring canola (Brassica napus L. var Hyola 401) were grown hydroponically and exposed to SeO 4 2- (selenate) with or without SO 4 2- (sulfate), or to HSeO 3 - (biselenite) under different transpiration regimes altered through ‘low’ (~50%) or ‘high’ (~78%) relative humidity (RH). Plants were harvested after 0, 8, 16, or 24?h exposures, digested, and analyzed for Se by GFAAS.

Results

Accumulation and distribution of Se by plants is dependent on plant species, Se speciation in the nutrient solution, SO 4 2- competition, and transpiration regimes. Canola accumulated and translocated more Se than wheat. In wheat and canola, the greatest accumulation and translocation of Se occurred when plants were exposed to SeO 4 2- without SO 4 2- compared to solutions of SeO 4 2- with SO 4 2- or HSeO 3 2- . Wheat plants exposed to SeO 4 2- and SO 4 2- had an increased Se accumulation and translocation under increased transpiration rates than when exposed to SeO 4 2- without SO 4 2- or HSeO 3 2- . On the other hand, increases in transpiration increased the translocation of Se to canola shoots when exposed to HSeO 3 - more than any other treatments.

Conclusions

Overall, our results suggest that plant species is the most important factor influencing Se accumulation and translocation, but that these endpoints can be modified by climate and specific soil Se or S content. Models to predict accumulation of Se by plants must consider all of these factors to accurately calculate the mechanisms of uptake and translocation.  相似文献   

3.
Effects of picolinic acid (2-pyridinecarboxylic acid) and chromium(III) picolinate was studied on the chromium (Cr) accumulation of fodder radish (Raphanus sativus L. convar. oleiformis Pers., cv. Leveles olajretek) and komatsuna (Brassica campestris L. subsp. napus f. et Thoms. var. komatsuna Makino, cv. Kuromaru ) grown in a pot experiment. Control cultures, grown in an uncontaminated soil (UCS; humous sand with pHKCl 7.48, sand texture with 12.4% clay+silt content, organic carbon 0.56%, CaCO3 2.2%, CEC 6.2 cmolc kg–1, Cr 10.6 mg kg–1), accumulated low amounts of chromium (less than 5.4 g g–1) in their roots or shoots. When this UCS was artificially contaminated with 100 mg kg–1 Cr (CrCl3) later picolinic acid treatment promoted the translocation of chromium into the shoots of both species. In fodder radish shoots Cr concentration reached 30.4 g g–1 and in komatsuna shoots 44.5 g g–1. Application of ethylene diamine tetra-acetic acid (EDTA) to this Cr contaminated soil had similar effect to picolinic acid. When the UCS was amended with leather factory sewage sediment (which resulted in 853 mg kg–1 Cr in soil), Cr mobilization was observed only after repeated soil picolinic acid applications. From a galvanic mud contaminated soil (brown forest soil with pHKCl 6.77, loamy sand texture with 26.6% clay+silt content, organic carbon 1.23%, CaCO3 0.7%, CEC 24.5 cmolc kg–1, Cd 5.0 mg kg–1, Cr 135 mg kg–1, and Zn 360 mg kg–1) the rate of Cr mobilization was negligible, only a slight increase was observed in Cr concentration of fodder radish shoots after repeated picolinic acid treatments of soil. Presumably picolinic acid forms a water soluble complex (chromium(III) picolinate) with Cr in the soil, which promotes translocation of this element (and also Cu) into the shoots of plants. The rate of complex formation may be related to the binding forms and/or concentration of Cr in soil and also to soil characteristics (i.e. pH, CEC), since the rate of Cr translocation was the following: artificially contaminated soil > leather factory sewage sediment amended soil > galvanic mud contaminated soil. Four times repeated 10 mg kg–1 chromium(III) picolinate application to UCS multiplied the transport of chromium to shoots, as compared to single 10 mg kg–1 CrCl3 treatment. This also suggests that chromium(III) picolinate is forming in the picolinic acid treated Cr-contaminated soils, and plants more readily accumulates and translocates organically bound Cr than ionic Cr. Picolinic acid promotes Cr translocation in soil-plant system. This could be useful in phytoextraction (phytoremediation) of Cr contaminated soils or in the production of Cr enriched foodstuffs.  相似文献   

4.
Bañuelos  G.S.  Zambrzuski  S.  Mackey  B. 《Plant and Soil》2000,224(2):251-258
This two-part study compared the efficacy of different plant species to extract Se from soils irrigated with Se-laden effluent. The species used were: Brassica napus L. (canola), Brassica juncea Czern L. and Coss (Indian mustard), and Hordeum vulgare L. (barley). In Study 1 we irrigated the plants with a saline effluent containing 0.150 mg Se L–1, while in Study 2, the same species were planted in a saline soil selenized with 2 mg Se L–1. Plants were simultaneously harvested 120 days after planting. In Study 1, there were only slight effects of treatment on dry matter (DM) yield. Plant Se concentrations averaged 21 g Se g–1DM for the Brassica species, and 4.0 g Se g–1 DM for barley. Total Se added to soils via effluent decreased by 40% for Brassica species and by 20% for barley. In Study 2, total DM decreased for all species grown in saline soils containing Se. Plant Se concentrations averaged 75 g g–1 DM for Brassica species and 12 g Se g–1 DM for barley. Total Se added to soils prior to planting decreased by 40% for Brassica species and up to 12% for barley. In both studies, plant accumulation of Se accounted for at least 50% of the Se removed in soils planted to Brassica and up to 20% in soils planted to barley. Results show that although the tested Brassica species led to a significant reduction in Se added to soil via use of Se-laden effluent, additional plantings are necessary to further decrease Se content in the soil.  相似文献   

5.
Ambus  Per  Jensen  Erik Steen 《Plant and Soil》1997,197(2):261-270
Managing the crop residue particle size has the potential to affect N conservation in agricultural systems. We investigated the influence of barley (Hordeum vulgare) and pea (Pisum sativum) crop residue particle size on N mineralization and denitrification in two laboratory experiments. Experiment 1: 15N-labelled ground (3 mm) and cut (25 mm) barley residue, and microcrystalline cellulose+glucose were mixed into a sandy loam soil with additional inorganic N. Experiment 2: inorganic15 N and C2H2 were added to soils with barley and pea material after 3, 26, and 109 days for measuring gross N mineralization and denitrification.Net N immobilization over 60 days in Experiment 1 cumulated to 63 mg N kg-1 soil (ground barley), 42 (cut barley), and 122 (cellulose+glucose). More N was seemingly net mineralized from ground barley (3.3 mg N kg-1 soil) than from cut barley (2.7 mg N kg-1 soil). Microbial biomass peaked at day 4 with the barley treatments and at day 14 with the cellulose+glucose whereafter the biomass leveled out at values 79 mg C kg-1 (ground), 104 (cut), and 242 (cellulose+glucose) higher than for the control soil. Microbial growth yields were similar for the two barley treatments, ca. 60 mg C g-1 substrate C added, which was lower than the 142 mg C g-1 C added with cellulose+glucose. This suggests that the 75% (w/w) holocelluloses and sugars contained with the barley material remained physically protected despite grinding. In Experiment 2 gross mineralization on day 3 was 4.8 mg N kg-1 d-1 with ground pea, twice as much as for all other treatments. On day 26 the treatment with ground barley had the greatest gross N mineralization. In static cores ground barley denitrified 11-fold more than did cut barley, whereas denitrification was similar for the two pea treatments. In suspensions denitrification was similar for the two treatments both with barley and pea residue.We conclude that the higher microbial activity associated with the initial decomposition of ground plant material is due to a more intimate plant residue-soil contact. On the long term, grinding the plant residues has no significant effect on N dynamics.  相似文献   

6.
Antioxidative and growth-promoting effect of selenium on senescing lettuce   总被引:8,自引:1,他引:7  
Xue  Tailin  Hartikainen  Helinä  Piironen  Vieno 《Plant and Soil》2001,237(1):55-61
In human and animal cells, Se plays an essential role in antioxidation and exerts an antiaging function but it is toxic at high dietary intake. To increase its intake in forage and foodstuffs, Se fertilization is adopted in some countries where soils are low in bioavailable Se, even though higher plants are regarded not to require Se. To test its ability to counteract senescence-related oxidative stress in higher plants, a pot experiment was carried out with lettuce (Lactuca sativa) cultivated with increasing amounts of H2SeO4. The yields harvested 7 or 14 weeks after sowing revealed that a low Se dosage (0.1 mg kg–1 soil) stimulated the growth of senescing seedlings (dry weight yield by 14%) despite a decreased chlorophyll concentration. The growth-promoting function was related to diminished lipid peroxidation. In young and senescing plants, the antioxidative effect of Se was associated with the increased activity of glutathione peroxidase (GSH-Px). In the senescing plants, the added Se strengthened the antioxidative capacity also by preventing the reduction of tocopherol concentration and by enhancing superoxide dismutase (SOD) activity. When no Se was added, tocopherols and SOD activity diminished during plant senescence. The higher Se dosage (1.0 mg kg–1 soil) was toxic and reduced the yield of young plants. In the senescing plants, it diminished the dry weight yield but not the fresh weight yield.  相似文献   

7.
The effect of soil acidity on root and rhizosheath development in wheat and barley seedlings was investigated in an acid Ferrosol soil to which various amounts of lime (CaCO3) were applied to modify soil Al concentrations (pH (CaCl2): 4.22 to 5.35 and Al (CaCl2 extract): 17.7 to 0.4 mg kg?1 soil; respectively), and Ferrosol soil from an adjacent location at the same site which had a higher Al concentration (pH 4.19; 29.2 mg kg?1 Al). The cereal lines were selected on the basis of differences in their rate of root growth, Al-resistance and root hair morphology. Root morphology was assessed after 7 days of growth. The length of fine (mainly lateral) roots of Al-sensitive genotypes was more sensitive to soil Al concentrations than that of the coarse (mainly primary) roots. The experiments demonstrated that even where root growth was protected by expression of the TaALMT1 gene for Al-resistance, root-soil contact was diminished by soil acidity because root hair length (in many lines), and root hair density and rhizosheath formation (all lines) were adversely affected by soil acidity. In the case of Al-sensitive lines, fine root growth and rhizosheath mass were reduced over much the same range of soil Al concentrations (i.e. >3–6 mg kg?1 Al). Although Al-resistant lines could maintain fine root length under these conditions, they were similarly unable to maintain rhizosheath mass. This finding may help to explain why Al-resistant wheats which yield relatively well in deep acid soils, may also benefit from application of lime to the surface layers of the soil.  相似文献   

8.
Summary NaCl was added to the nutrient solution of 4–6-week old Mesembryanthemum crystallinum plants so that the concentration rose by 50 mM per day. Ten to fifteen days after a concentration of 400 mM was reached, pronounced diurnal oscillations of malate levels indicated that plants had changed from C3-photosynthesis to crassulacean acid metabolism (CAM). Due to the NaCl-treatment the solute potential (s) decreased from about -6 bar to -25 bar, and the water potential () changed from about -5 bar to -23 bar on average. showed small diurnal oscillations both in controls and NaCl-treated plants, with an amplitude of 1 to 3 bar, the value at the end of the dark phase being less negative than that at the end of the light phase. Changes of ion levels due to the NaCl-treatment were average increases in Na+ and Cl- from 10–20 to 370–470 mmol kg-1 FW and from below 10 to 280–325 mmol kg-1 FW, respectively, and a decrease in K+ from 70–80 to 25 mmol kg-1 FW. These changes of ion levels corresponded very closely to an increase of dry weight in per cent of fresh weight observed during the NaCl-treatment (e.g. a change of 2% in one experiment), and osmotically they matched the measured change in s (e.g. about 18–20 bar in one experiment).Most of the organic solutes analysed did not show any significant changes as a result of the NaCl-treatment. The following compounds were identified within the respective ranges of concentrations: mannitol (0.2 to 0.5 mmol kg-1 FW), sum of quaternary ammonium compounds (60 to 140 mg kg-1 FW), choline (0.1 to 0.4 mmol kg-1 FW), betaine (0.3 to 0.7 mmol kg-1 FW), hexoses (2–9 mmol kg-1 FW), pentoses (1–5 mmol kg-1 FW) and sucrose (2–4 mmol kg-1 FW). The levels of proline and of total amino acids minus proline rose during the NaCl-treatment from 0.1–1 mmol kg-1 FW to 2.5–5 mmol kg-1 FW and from 2.5–4 mmol kg-1 FW to 6–8 mmol kg-1 FW, respectively.The changes of s and , and of Na+- and Cl--levels were complete, and new steady levels were attained by the time 400 mM NaCl was reached in the nutrient solution, i.e. many days before pronounced diurnal malate oscillations indicated that the change from C3-photosynthesis to CAM had occurred. The attainment of new steady levels of proline and K+, however, was much slower and coincided with the onset of CAM.Dedicated to Professor Dr.Dr.h.c. Michael Evenari on the occasion of his 75th birthday in appreciation of his great achievements in promoting experimental ecology and with gratitude for encouragements and help with the investigation of the adaptation of Mesembryanthemum crystallinum  相似文献   

9.
Abstract. The effect of SeO3 and SeO4 on NO3 assimilation in 8-d-old barley (Hordeum vulgare L.) seedlings was studied over a 24-h period. Selenite at 0.1 mol. m? in the uptake solutions severely inhibited the induction of NO3 uptake and active nitrate reductases. Selenate, at 1.0 mol m?3 in the nutrient solution, had little effect on induction of activities of these systems until after 12 h; however, when the seedlings were pretreated with 1.0 mol m?3 SeO4 for 24 h, subsequent NO3 uptake from SeO4-free solutions was inhibited about 60%. Sulphate partially alleviated the inhibitory effect of SeO3 when supplied together in the ambient solutions, but had no effect in seedlings pretreated with SeO3. By contrast, SO4 partially alleviated the inhibitory effect of SeO4 even in seedlings pretreated with SeO4. Since uptake of NO3 by intact seedlings was also inhibited by SeO3, the percentage of the absorbed NO3 that was reduced was not affected. By contrast, SeO4, which affected NO3 uptake much less, inhibited the percentage reduced of that absorbed. However, when supplied to detached leaves, both SeO3 and SeO4 inhibited the in vivo reduction of NO3 as well as the induction of nitrate reductase and nitrite reductase activities. Selenite was more inhibitory than SeO4; approximately a five to 10 times higher concentration of SeO4 than SeO3 was required to achieve similar inhibition. In detached leaves, the inhibitory effect of both SeO3 and SeO4 on in vivo NO3 reduction as well as on the induction of nitrate reductase activity was partially alleviated by SO4. The inhibitory effects of Se salts on the induction of nitrite reductase were, however, completely alleviated by SO4. The results show that in barley seedlings SeO3 is more toxic than SeO4. The reduction of SeO4 to SeO3 may be a rate limiting step in causing Se toxicity.  相似文献   

10.
The aim of this study is to investigate the effects of arbuscular mycorrhizal fungi (AMF) on garlic plants growth and the uptake of selenium (Se). Garlic plants were grown in the pots inoculated with Glomus fasciculatum and G. mosseae and maintained in a greenhouse. Three weeks after planting, the pots had received different concentrations of Se (5, 10, 15, 20, 25 mg kg?1 of soil) in the form of selenium dioxide (SeO2) at 3 weeks intervals up to 12 weeks. For physiological and biochemical analysis, the samples were randomly collected from five plants of each experiment. Maximum AM infection, spore population and plant biomass were observed in the roots of mycorrhizal-mediated plants without Se, and they were gradually declined in both mycorrhizal and non-mycorrhizal (NM) plants with increasing concentrations of Se. Among the two Glomus species tested, G. fasciculatum-mediated plants showed higher AM infection, spore population and plant biomass than G. mosseae. No differences were observed for the uptake of Se in mycorrhizal plants and NM plants. However, NM plants uptake more Se than mycorrhizal plants. Higher contents of total chlorophyll and sugars were observed in plants inoculated with G. fasciculatum without Se and they were decreased in the presence of Se. In contrast, increased amount of glutathione peroxidase was observed at increasing concentrations of Se up to 20 mg kg?1. High-performance liquid chromatography data revealed that SeO2 converted to organic form of Se as γ-glutamyl-Se-methylselenocysteine. These results are basis for further investigations on the role of AMF on plant growth and uptake of Se in crop plants.  相似文献   

11.
Cadmium (Cd) is an important environmental pollutant present in soil, water, air, and food. Selenium (Se) can antagonize some metal element toxicity including Cd. To investigate the cytotoxicity of Cd and the protective effects of Se on bird immunocytes in vitro, chicken splenic lymphocytes with CdCl2 (10?6 mol/L), Na2SeO3 (10?7 mol/L), and the mixture (10?7 mol/L Na2SeO3 and 10?6 mol/L CdCI2) were incubated for 12, 24, 36, and 48 h, respectively. A high level of malondialdehyde (MDA) and reactive oxygen species (ROS) productions were observed in Cd treatment group; the activities of catalase (CAT), glutathione peroxidise (GSH-Px), superoxide dismutase (SOD), and the mitochondrial inner transmembrane potential (ΔΨm) were significantly lower in Cd treatment group than those in controls (P?P?mRNA level of Bak, p53, caspase-3, caspase-9, and cytochrome c (Cyt c) and decreased Bcl-2, Bcl-xl, and CaM were observed in Cd treatment group. Se ameliorated ΔΨm and [Ca2+]i for mitochondria function restoring, and Se was able to modulate the expression of relative genes. In conclusion, concurrent treatment with Se reduced the Cd-induced morphological changes and oxidative stress, ion disorder, and apoptosis, suggesting that the toxic effects of Cd on the chicken splenic lymphocytes were partly meliorated by Se.  相似文献   

12.
High levels of naturally occurring selenium (Se) are often found in conjunction with different forms of salinity in central California. Plants considered for use in phytoremediation of high Se levels must therefore be salt tolerant. Selenium accumulation was evaluated for the following species under increasing salt (NaCl and CaCl) conditions:Brassica napus L. (canola),Hibiscus cannibinus L. (kenaf),Festuca arundinacea L. (tall fescue), andLotus tenuis L. (birdsfoot trefoil). The experimental design was a complete randomized block with four salt treatments of <1, 5, 10, and 20 dS m-1, four plant species, three blocks, and six replicates per treatment. Ninety days after growing in the respective salt treated soil with a Se concentration of 2 mg Se kg-1 soil, added as Na2SeO4, all plant species were completely harvested. Among the species tested, shoot and root dry matter yield of kenaf was most significantly (p<0.001) affected by the highest salt treatment and tall fescue and canola were the least affected species. Generally there was a decrease in tissue accumulation of Se with increasing salt levels, except that low levels of salinity stimulated Se accumulation in canola. Canola leaf and root tissue accumulated the highest concentrations of Se (315 and 80 mg Se kg-1 DM) and tall fescue the least (35 and 7 mg Se kg-1 DM). Total soil Se concentrations all harvest were significantly (p<0.05) lower for all species at all salt treatments. Removal of Se from soil was greatest by canola followed by birdsfoot trefoil, kenaf and tall fescue. Among the four species, canola was the best candidate for removing Se under the tested salinity conditions. Kenaf may be effective because of its large biomass production, while tall fescue and birdsfoot trefoil may be effective because they can be repeatedly clipped as perennial crops.  相似文献   

13.
Crosbie  Julie  Longnecker  Nancy  Davies  Fleur  Robson  Alan 《Plant and Soil》1993,(1):449-452
Seed of narrow-leafed lupin (Lupinus angustifolius L.) produced in Western Australia often has low manganese (Mn) concentration because of low Mn availability in the soil during grain filling. A major problem of lupin production is poor seedling establishment. We tested the hypothesis that low Mn concentration in lupin seeds decreases emergence.The experiment was a factorial design comparing emergence of lupins (cv. Gungurru) grown under glasshouse conditions from seed with 2 different internal Mn concentrations (7 or 35 mg Mn kg–1 DW) and with 2 external Mn fertiliser treatments (0 or 10 mg MnSO4.H2O kg–1 soil). There were no visible differences between the seeds. Emergence was monitored and plants were harvested 17 days after sowing.Emergence was approximately 60% in all pots sown with low Mn compared to 100% in pots sown with high Mn seed. Application of Mn did not increase the final emergence of low Mn seed. Seed viability was assessed by staining with tetrazolium chloride, a common test used in seed testing laboratories. All high Mn seed were viable while 34% of low Mn seed were completely or partly unstained and therefore were non-viable. We have shown that low Mn supply during seed filling may lead to production of non-viable seed that cannot be visually distinguished from viable seed..  相似文献   

14.
The present study was conduced to investigate the synergistic effects of combined treatments with Se-methylselenocysteine (SeMSC) and vitamin E (Vit E) in reversing oxidative stress induced by ethanol in serum and different tissues of rats. Sixty female rats were randomly divided into six groups for 30 days’ consecutive pretreatments as followed: control (I), physiological saline (II), 2.8 μg kg−1 Se as SeMSC (III), 2.8 μg kg−1 Se as sodium selenite (Na2SeO3, IV), 5 mg kg−1 α-tocopherol as α-tocopherol acetate (Vit E, V), 5 mg kg−1 α-tocopherol as α-tocopherol acetate and 2.8 μg kg−1 Se as SeMSC (VI). All animals in groups II–VI were treated by ethanol treatment to cause oxidative stress. After 6 h of ethanol treatment, the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), the contents of total antioxidant capacity (T-AOC), malondialdehyde (MDA), glutathione (GSH) and carbonyl protein (CP) in the serum, liver, heart and kidney were measured. The result showed that the individual SeSMC, Na2SeO3 and vitamin E could effectively increase the SOD, T-AOC, GSH-Px and GSH contents as well as significantly decrease the MDA and CP concentrations in the tissues of ethanol-induced rats. At the same dose on different forms of Se, SeMSC showed greater antioxidant activity than Na2SeO3. Moreover, group VI (SeMSC and α-tocopherol acetate) showed much better antioxidant activity than individual group III (SeMSC) and V (α-tocopherol acetate) due to the synergistic effect.  相似文献   

15.
The potential to phytoextract uranium (U) from a sandy soil contaminated at low levels was tested in the greenhouse. Two soils were tested: a control soil (317 Bq 238U kg-1) and the same soil washed with bicarbonate (69 Bq 238U kg-1). Ryegrass (Lolium perenne cv. Melvina), Indian mustard (Brassica juncea cv. Vitasso), and Redroot Pigweed (Amarathus retroflexus) were used as test plants.

The annual removal of the soil activity with the biomass was less than 0.1%. The addition of citric acid (25 mmol kg-1) 1 week before the harvest increased U uptake up to 500-fold. With a ryegrass and mustard yield of 15000 kg ha-1 and 10000 kg ha-1, respectively, up to 3.5% and 4.6% of the soil activity could annually be removed with the biomass.

With a desired activity reduction level of 1.5 and 5 for the bicarbonate washed and control soil, respectively, it would take 10 to 50 years to attain the release limit.

A linear relationship between the plant 238U concentration and the 238U concentration in the soil solution of the control, bicarbonate-washed, or citric acid-treated soil points to the importance of the soil solution activity concentration in determining U uptake and hence to the importance of solubilising agents to increase plant uptake.

However, citric acid addition resulted in a decreased dry weight production (all plants tested) and crop regrowth (in case of ryegrass).  相似文献   


16.
Requirement, uptake, and subcellular distribution of Na2 75SeO3 in the larvae of the insectC. cephalonica was investigated. That Se is well tolerated byC. cephalonica upto an added level of 2 ppm in the diet is suggested by the observed increase in body weight, total protein, and succinate dehydrogenase levels. Significant increases in the State 3 respiration ensued with Se supplementation up to 2 ppm in the mitochondrial oxidation of D-glycerol 1-phosphate, succinate and NADH, along with concomitant unaltered State 4 respiration, leading to enhanced RCR values. Maximal uptake of75Se was registered in the larvae maintained on basal diet when subjected to short-term exposure to 0.5 ppm75Se level. When exposure level was further increased up to 20 ppm, the observed decrease in the uptake of75Se suggested that Se status of larvae itself controlled the tissue uptake. Subcellular distribution pattern revealed maximal incorporation of75Se (cpm/g tissue) in the supernatant fraction, whereas, maximal specific75Se activity (cpm/mg protein) was associated with the mitochondrial fraction. Autoradiography of the soluble fractions indicated the presence of single selenoprotein in the larval group with short term 2 ppm75Se exposure. Inherent Se controls both the extent and the nature of distribution of mitochondrial75Se incorporation. Uptake of45Ca by the insect mitochondria was enhanced by dietary Se up to 2 ppm but was unaffected by addition ofin vitro 75Se in the medium. A more fundamental role for Se in the mitochondrial energy metabolism emerges from these studies.  相似文献   

17.
Selenium as an anti-oxidant and pro-oxidant in ryegrass   总被引:12,自引:1,他引:12  
Hartikainen  Helinä  Xue  Tailin  Piironen  Vieno 《Plant and Soil》2000,225(1-2):193-200
Selenium is an essential element for antioxidation reactions in human and animals. In order to study its biological role in higher plants, ryegrass (Lolium perenne) was cultivated in a soil without Se or amended with increasing dosages of H2SeO4 (0.1, 1.0, 10.0 and 30.0 mg Se kg−1). Ryegrass was harvested twice and the yields were analyzed for antioxidative systems and growth parameters. Selenium exerted dual effects: At low concentrations it acted as an antioxidant, inhibiting lipid peroxidation, whereas at higher concentrations, it was a pro-oxidant, enhancing the accumulation of lipid peroxidation products. The antioxidative effect was associated with an increase in glutathione peroxidase (GSH-Px) activity, but not with superoxide dismutase (SOD) and αα-tocopherol, which was the only tocopherol detected. In the second yield, the diminished lipid peroxidation due to a proper Se addition coincided with promoted plant growth. The oxidative stress found at the Se addition level ≥ 10 mg kg−1 resulted in drastic yield losses. This result indicates that the toxicity of Se can be attributed, in addition to metabolic disturbances, to its pro-oxidative effects. Neither the growth-promoting nor the toxic effect of Se could be explained by the changes in the total chlorophyll concentration. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Phytoextraction has been identified as one of the most propitious methods of phytoremediation. This pot experiment were treated with varying amounts of (ethylenediamine triacetic acid) EDTA 3–15, (Nitriloacetic acid) NTA 3–10, (Ammonium citrate) NH4 citrate 10 – 25 mmol and one mg kg–1Cd, filled with 5 kg soil. The addition of chelators significantly increased Cd concentration in soil and plant. The results showed that maximum Cd uptake was noted under root, shoot and leaf of castor plant tissue (2.26, 1.54, and 0.72 mg kg–1) under EDTA 15, NTA 10, and NH4 citrate 25 mmol treatments respectively, and in soil 1.08, 1.06 and 0.52 mg kg–1 pot–1 under NH4 citrate 25, NTA 10 and EDTA 15 mmol treatments respectively, as against to control (p < 0.05). Additions of chelators reduction biomass under the EDTA 15 mmol as compared to other treatments, However, Bioconcentration factor (BCF), translocation factor (TF) and remediation factor (RF) were significantly increased under EDTA 15 and NH4 citrate 25 mmol as against control. Our results demonstrated that castor plant proved satisfactory for phytoextraction on contaminated soil, and EDTA 15 and NH4 citrate 25 mmol had the affirmative effect on the Cd uptake in the artificial Cd-contaminated soil.  相似文献   

19.
Pishchik  V.N.  Vorobyev  N.I.  Chernyaeva  I.I.  Timofeeva  S.V.  Kozhemyakov  A.P  Alexeev  Y.V.  Lukin  S.M. 《Plant and Soil》2002,243(2):173-186
Bacterial inoculants of the commercially available plant growth promoting rhizobacteria (PGPR) Arthrobacter mysorens 7, Flavobacterium sp. L30, and Klebsiella mobilis CIAM 880 were selected to obtain ecologically safe barley crop production on cadmium (Cd) polluted soils. All the PGPR immobilized 24–68% soluble cadmium from soil suspension. A. mysorens 7 and K. mobilis CIAM 880 were highly resistant to Cd and grew in up to 1 and 3 mmol CdCl2 on DAS medium respectively. All PGPR were able to fix nitrogen (276–1014 nmol mg–1 bacterial DW) and to produce indole acetic acid (IAA) (126–330 nmol mg–1 bacterial DW) or ethylene (4.6–13.5 nmol bacterial DW). All the PGPR actively colonized barley root system and rhizosphere and significantly stimulated root elongation of barley seedlings (up to 25%), growing on soil containing 5 or 15 mg Cd kg–1 of soil. Created in the simulation mathematical model confirms our hypothesis that PGPR beneficial effect on barley growing under Cd-stress is a complex process. One of mechanisms underlying this effect might be increase of bacterial migration from rhizoplane to rhizosphere, where PGPR bind soluble free Cd ions in biologically unavailable complex forms. Among the studied PGPR K. mobilis CIAM 880 was the most effective inoculant. Inoculation with K. mobilis CIAM 880 of barley plants growing on Cd contaminated soil (5 mg Cd kg–1 of soil) under field conditions increased by 120% grain yield and 2-fold decreased Cd content in barley grain. The results suggest that the using K. mobilis CIAM 880 is an effective way to increase the plant yield on poor and polluted areas.  相似文献   

20.
Oxidative stress or formation of faulty proteins due to non-specific replacement of sulphur by selenium(Se)/mineral imbalance can be one of the reasons for Se phytotoxicity. Present investigation reports the effect of Se on photosynthetic efficiency, anti-oxidative status and micronutrients in maize. Selenate-Se application (1–32 mg kg?1 soil) showed significant growth reduction after 30 days of sowing and all the plants died with concentration higher than 4 mg kg?1 soil. Lower Se doses increased dry matter, chlorophyll, proline and activities of defence enzymes viz. peroxidase, catalase and superoxide dismutase and decreased malondialdehyde, glutathione and glutathione reductase activity as compared to control. All the parameters showed the reverse trend with Se treatment of 4 mg kg?1 soil. Concentration of nutrients (K, P, S, Mn, Mg and Ca) in leaves decreased with application of increasing Se doses. Shoot and root weight decreased (8.5–31.9% and 12–24%, respectively) in response to varying Se doses and highest Se accumulation in these tissues was observed with Se @ 4 mg kg?1 soil. The phyto-toxic effects of higher Se doses may be due to its prooxidant effects and disturbances in nutrients level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号