首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A neuropathogenic variant of Friend murine leukemia virus (FrMLV), clone A8, has been shown to cause thymoma and infiltration of leukemic cells to organs at 7-8 weeks post-infection in rats with a more rapid progression than clone 57. We have previously reported that the determinant for induction of aggressive leukemia in rats is located in the ClaI-AatII fragment containing the long terminal repeat (LTR) and the 5' half of the 5' leader sequence of A8 virus. Further studies of chimeric viruses restricted the determinant for the induction of thymoma to only the 0.6-kb ClaI-KpnI fragment of A8. This fragment contains a 0.1 kb region of the 3' terminus of the env gene, the intergenic region, the U3, and the 5' half of the R region in the LTR. Major differences in the fragment between A8 and 57 viruses were found in the U3 region, especially in the enhancer motifs. These results indicate that the enhancer region of A8-LTR contributes to the manifestation of thymoma with rapid progression in rats.  相似文献   

2.
3.
4.
In addition to the env gene, a 0.3‐kb fragment containing the R‐U5‐5′ leader sequence is essential for the induction of spongiform neurodegeneration by Friend murine leukemia virus (Fr‐MLV) clone A8 and it also influences expression of the Env protein. Kinetic studies were carried out using two recombinant viruses, R7f, carrying the A8 0.3‐kb fragment, and Rec5, carrying the 0.3‐kb fragment of the non‐neuropathogenic Fr‐MLV clone 57. These analyses suggested that the 0.3‐kb fragment influenced the expression level of the Env protein by regulating the amount of spliced env‐mRNA rather than the amount of total viral mRNA or viral production.  相似文献   

5.
Friend murine leukemia virus clone A8 causes spongiform neurodegeneration in the rat brain. A 0.3-kb fragment containing the R-U5-5' leader sequence of A8 is required in addition to the A8-env gene to induce spongiosis. The A8-env gene is a primary determinant of neuropathogenicity. Comparative studies of the neuropathogenic virus R7f, which carries the 0.3-kb fragment of A8 and A8-env on the background of the non-neuropathogenic clone 57, and the non-neuropathogenic virus Rec5, which carries A8-env on the background of 57, showed that the 0.3-kb fragment of A8 was responsible for increasing the ratio of Env/Gag expression in the brain, but not in the spleen.  相似文献   

6.
H Fu  S Y Kim    W D Park 《The Plant cell》1995,7(9):1395-1403
To examine which sequences are involved in regulating the potato sucrose synthase gene Sus3-65, we examined a series of deletion and substitution constructs in transgenic potato and tobacco plants. In a construct containing 3.9 kb of 5' flanking region, substitution of the native 3' sequence with the nopaline synthase 3' sequence and deletion of the leader intron did not significantly affect expression in vegetative tissues. However, in a construct containing only 320 bp of 5' flanking region, these changes had marked effects. Replacing the native 3' sequences with nopaline synthase 3' sequences caused a six- to 20-fold increase in expression in vascular tissue, and removing the leader intron almost completely abolished expression in potato plants. Surprisingly, removal of the leader intron from either the full-length construct or a construct containing only 320 bp of 5' flanking sequence reduced expression in vascular tissue of tobacco anthers at later stages of development but increased expression in pollen by more than 100-fold.  相似文献   

7.
8.
In the pre-mRNA processing machinery of eukaryotic cells, U6 snRNA is located at or near the active site for pre-mRNA splicing catalysis, and U6 is involved in catalyzing the first chemical step of splicing. We have further defined the roles of key features of yeast U6 snRNA in the splicing process. By assaying spliceosome assembly and splicing in yeast extracts, we found that mutations of yeast U6 nt 56 and 57 are similar to previously reported deletions of U2 nt 27 or 28, all within yeast U2-U6 helix Ia. These mutations lead to the accumulation of yeast A1 spliceosomes, which form just prior to the Prp2 ATPase step and the first chemical step of splicing. These results strongly suggest that, at a late stage of spliceosome assembly, the presence of U2-U6 helix Ia is important for promoting the first chemical step of splicing, presumably by bringing together the 5' splice site region of pre-mRNA, which is base paired to U6 snRNA, and the branchsite region of the intron, which is base paired to U2 snRNA, for activation of the first chemical step of splicing, as previously proposed by Madhani and Guthrie [Cell, 1992, 71: 803-817]. In the 3' intramolecular stem-loop of U6, mutation G81C causes an allele-specific accumulation of U6 snRNP. Base pairing of the U6 3' stem-loop in yeast spliceosomes does not extend as far as to include the U6 sequence of U2-U6 helix Ib, in contrast to the human U6 3' stem-loop structure.  相似文献   

9.
Hamajima S  Hirano H  Horiuchi S  Ono S 《IUBMB life》1999,48(3):293-298
To elucidate the mechanism of the estrogen-dependent induction of chicken riboflavin-binding protein (RfBP), we analyzed the 5'-upstream structure of its gene. A noncoding exon exists there, and around this sequence, 9 widely spaced half-palindromic estrogen-response element (ERE) motifs (5'-GGTCA or 5'-TGACC) were found. Furthermore, an imperfect ERE-like palindromic sequence (5'-ATGTCANNNTGACAT-3') was also found at the 2.25 kb upstream region. No consensus palindromic ERE was observed. By luciferase reporter assay, the regions containing the half ERE motifs and the imperfect ERE showed estrogen-dependent enhancer activities, suggesting that these two characteristic sequences might confer estrogen-inducibility upon the chicken RfBP gene. However the activities were lower than that of a consensus ERE. It remains uncertain whether these sequences act cooperatively.  相似文献   

10.
Poliovirus infection is accompanied by translational control that precludes translation of 5'-capped mRNAs and facilitates translation of the uncapped poliovirus RNA by an internal initiation mechanism. Previous reports have suggested that the capped alfalfa mosaic virus coat protein mRNA (AIMV CP RNA), which contains an unstructured 5' leader sequence, is unusual in being functionally active in extracts prepared from poliovirus-infected HeLa cells (PI-extracts). To identify the cis-acting nucleotide elements permitting selective AIMV CP expression, we tested capped mRNAs containing structured or unstructured 5' leader sequences in addition to an mRNA containing the poliovirus internal ribosome entry site (IRES). Translations were performed with PI-extracts and extracts prepared from mock-infected HeLa cells (MI-extracts). A number of control criteria demonstrated that the HeLa cells were infected by poliovirus and that the extracts were translationally active. The data strongly indicate that translation of RNAs lacking an internal ribosome entry site, including AIMV CP RNA, was severely compromised in PI-extracts, and we find no evidence that the unstructured AIMV CP RNA 5' leader sequence acts in cis to bypass the poliovirus translational control. Nevertheless, cotranslation assays in the MI-extracts demonstrate that mRNAs containing the unstructured AIMV CP RNA 5' untranslated region have a competitive advantage over those containing the rabbit alpha-globin 5' leader. Previous reports of AIMV CP RNA translation in PI-extracts likely describe inefficient expression that can be explained by residual cap-dependent initiation events, where AIMV CP RNA translation is competitive because of a diminished quantitative requirement for initiation factors.  相似文献   

11.
Dicistronic mRNA expression vectors efficiently translate a 5' open reading frame (ORF) and contain a selectable marker within the 3' end which is inefficiently translated. In these vectors, the efficiency of translation of the selectable 3' ORF is reduced approximately 100-fold and is highly dependent on the particular sequences inserted into the 5' cloning site. Upon selection for expression of the selection marker gene product, deletions within the 5' ORF occur to yield more efficient translation of the selectable marker. We have generated improved dicistronic mRNA expression vectors by utilization of a putative internal ribosomal entry site isolated from encephalomyocarditis (EMC) virus. Insertion of the EMC virus leader sequence upstream of an ORF encoding either a wildtype or methotrexate resistant dihydrofolate reductase (DHFR) reduces DHFR translation up to 10-fold in a monocistronic DHFR expression vector. However, insertion of another ORF upstream of the EMC leader to produce a dicistronic mRNA does not further reduce DHFR translation. In the presence of the EMC virus leader, DHFR translation is not dependent on sequences inserted into the 5' end of the mRNA. We demonstrate that stable high level expression of inserted cDNAs may be rapidly achieved by selection for methotrexate resistance in DHFR deficient as well as DHFR containing cells. In contrast to previously described dicistronic expression vectors, these new vectors do not undergo rearrangement or deletion upon selection for amplification by propagation in increasing concentrations of methotrexate. The explanation may be either that the EMC virus leader sequence allows internal initiation of translation or that cryptic splice sites in the EMC virus sequence mediate production of monocistronic mRNAs. These vectors may be generally useful to rapidly obtain high level expression of cDNA genes in mammalian cells.  相似文献   

12.
Small nuclear ribonucleoproteins (snRNPs) containing U1 and U5 snRNAs from HeLa cells have been fractionated using a combination of isopycnic centrifugation in cesium chloride and ion-exchange chromatography on DEAE-Sepharose. The procedure is based on the extreme stability conferred upon snRNPs by Mg2+ enabling them to withstand the very high ionic strength that prevails in cesium chloride. U1 snRNP prepared by this method contains all nine major proteins (68K, A, B, B', C, D, E, F, G) corresponding to those previously identified by immunoprecipitation and is therefore precipitable by anti-RNP and anti-Sm antibodies. U5 snRNP purified in this way contains the common D to G proteins and is also enriched in a 25 X 10(3) Mr protein that may be U5 snRNP-specific. The core-resistant U5 snRNA sequence (nucleotide 84 to 3' OH) covered by D to G proteins is extended by only six nucleotides. A similar situation is seen in U4-U6 snRNP, which we have obtained in a sufficiently pure form to examine protected sequences. However, the core-resistant sequence of U4 (nucleotide 116 to 3' OH) in U4-U6 snRNP is extended by 37 nucleotides, suggesting that the protein composition of this particle could be more complex than that of U5 snRNP. The ribonucleoprotein organization of snRNPs is summarized and discussed in view of our current knowledge on snRNA sequences protected by proteins.  相似文献   

13.
14.
15.
The wild mouse ecotropic retrovirus CasBrE causes a spongiform neurodegenerative disease after neonatal inoculation, with an incubation period ranging from 2 to 12 months. We previously showed that introduction of long terminal repeat (LTR) and gag-pol sequences from a strain of Friend murine leukemia virus (FB29) resulted in a dramatic acceleration of the onset of the disease. The chimeric virus FrCasE, which consisted of the FB29 genome containing 3' pol and env sequences from the wild mouse virus, induced a highly predictable, lethal neurodegenerative disease with an incubation period of only 16 days. Here we report that the sequences which are primary determinants of the length of the incubation period are located in the 5' end of the viral genome between a KpnI site in the R region of the LTR and a PstI site immediately 5' of the start codon for pr65gag (R-U5-5' leader). This region contains the tRNA primer binding site, splice donor site for the subgenomic env mRNA, and the packaging sequence. Computer-assisted sequence analysis failed to find evidence of a consensus sequence for a DNA enhancer in this region. In addition, sequences within a region of the genome between a ClaI site at the 3' end of env to the KpnI site in the R region of the LTR (inclusive of U3) also influenced the incubation period of the disease, but the effect was distinctly weaker than that of the R-U5-5' leader sequence. This U3 effect, however, appeared to be independent of the number of direct repeats, since deletion of one of two duplicated 42-base repeats containing consensus sequences of nuclear-factor binding domains had no effect on the incubation period of the disease. On the basis of Southern blot analysis of total viral DNA in the tissues, the effect of these sequences on the incubation period appeared to be related to the level of virus replication in the central nervous system. All of the chimeric viruses analyzed, irrespective of neurovirulence, replicated to comparable levels in the spleen and induced comparable levels of viremia.  相似文献   

16.
17.
18.
Our previous evidence suggests that heterogeneous nuclear ribonucleoprotein (hnRNP) A1 plays a part in the regulation of the Cyp2a5 gene by interacting with the 3' untranslated region (UTR) of the CYP2A5 mRNA. However, the exact role of this interaction is not clear. The aim of the present work was to gain further insight into the regulation process of Cyp2a5. For this purpose the 3' UTR of CYP2A5 was fused to the coding region of luciferase mRNA. Luciferase recombinants containing either the full length 3' UTR, or the 3' UTR lacking a previously described 71 nucleotide (nt) region (the hnRNP A1 primary binding site), were transiently expressed in cells expressing or lacking hnRNP A1. The expression of the luciferase recombinants was examined both at mRNA and enzyme activity levels. The results disclosed that the presence of hnRNP A1 was required for the high expression of the recombinant carrying the full length 3' UTR of CYP2A5. Deletion of the hnRNP A1 primary binding site dramatically modified the expression pattern: the mRNA levels and luciferase activities of the deletion mutant were independent from hnRNP A1. These results conclusively demonstrate that the 71 nt region in the 3' UTR of CYP2A5 mRNA can confer hnRNP A1-dependent regulation to a gene. In addition, comparison of RNA levels and luciferase activities suggested that regions flanking the hnRNP A1 binding site could regulate translation of the CYP2A5 mRNA. These results are consistent with a model in which the binding of hnRNP A1 to the 71 nt putative hairpin-loop region in the CYP2A5 mRNA 3' UTR upregulates mRNA levels possibly by protecting the mRNA from degradation.  相似文献   

19.
We have constructed a cDNA library from the cytoplasmic RNAs of Raji cells, a Burkitt's lymphoma cell line latently infected with Epstein-Barr virus. We report here the characterization of a cDNA representing a spliced RNA transcribed from the IR1-U2 region of the viral genome. The cDNA is 1007 bp long. The 5' region contains three tandem repeats of two exons, 66 and 132 bp, which are transcribed from the IR1 repeats. The 3' region is formed from four exons transcribed from U2. An open reading frame extends from the 5' end to position 784, and includes the repeats. This reading frame presumably corresponds to the carboxy-terminal 261 amino acids of a polypeptide containing several repeats of a 66 amino acid sequence. Since it would be encoded by the IR1-U2 region of the viral genome, the putative polypeptide might be involved in the process of growth-transformation of B-lymphocytes.  相似文献   

20.
U4 snRNA is phylogenetically highly conserved and organized in several domains. To determine the function of each of the domains of human U4 snRNA in the multi-step process of snRNP and spliceosome assembly, we used reconstitution procedures in combination with snRNA mutagenesis. The highly conserved 5' terminal domain of U4 snRNA consists of the stem I and stem II regions that have been proposed to base pair with U6 snRNA, and the 5' stem-loop structure. We found that each of these structural elements is essential for spliceosome assembly. However, only the stem II region is required for U4-U6 interaction, and none of these elements for Sm protein binding. In contrast, the 3' terminal domain of U4 snRNA containing the Sm binding site is dispensable for both U4-U6 interaction and spliceosome assembly. Our results support an organization of the U4 snRNP into multiple functional domains, each of which acts at distinct stages of snRNP and spliceosome assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号