首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) spectra of both enantiomers of naringenin (4',5,7-trihydroxyflavanone) in acetonitrile solution have been measured. The enantiomers were obtained by chiral HPLC separation of the racemic sample. DFT calculations have been performed for relevant conformers and subsequent evaluations of VCD spectra are compared with VCD experiments: safe assignment of the absolute configuration is provided, based in particular on the VCD data. The relevance of the rotational conformers of the hydroxyl groups and of the mobility of phenol moiety is studied: based on this, we provide a first interpretation of the observed intense and broad couplet at 1325/1350 cm(-1). Four conformers contribute to this pattern with different sign and amplitude as shown by DFT calculations. Time dependent DFT calculations have been performed and compared with ECD experimental data, under the same assumption of conformational properties and mobilities investigated by VCD.  相似文献   

2.
Bednárová L  Malon P  Bour P 《Chirality》2007,19(10):775-786
Experimental studies suggest that amide bond may significantly deviate from planar arrangement even in linear peptides and proteins. In order to find out the extent to which such deviation may influence principal amide spectroscopic properties, we conducted a computational study of nonplanar N-methylacetamide (NMA) conformers. Vibrational absorption, Raman, and electronic spectra including optical activity were simulated with ab initio and density functional theory (DFT) methods. According to the results, small nonplanarity deviations may be detectable by nonpolarized spectroscopic techniques, albeit as subtle spectral changes. The optical activity methods, such as the vibrational circular dichroism (VCD), Raman optical activity (ROA), and electronic circular dichroism (CD, ECD), provide enhanced information about the amide nonplanarity, because planar amide is not optically active (chiral). For VCD, however, the inherently chiral contribution in most peptides and proteins most probably provides very weak signal in comparison with other contributions, such as the dipolar coupling. For the electronic CD, the nonplanarity contribution is relatively big and causes a strong CD couplet in the n-pi* absorption region accompanied by a red frequency shift. The pi-pi* CD region is relatively unaffected. The ROA spectroscopy appears most promising for the nonplanarity detection and the inherent chiral signal may dominate entire spectral parts. The amide I and III vibrational ROA bands are most challenging experimentally because of their relatively weak coupling to other peptide vibrations.  相似文献   

3.
This article reports vibrational circular dichroism (VCD) and electronic circular dichroism (ECD) spectroscopic studies in acetonitrile on the chiral Rh(2)(O-Phe-Cbz)(1)(OAc)(3) and Rh(2)(O-Phe-Ac)(1)(OAc)(3) complexes (abbreviated Rh(2)Z(1) and Rh(2)Ac(1) , respectively; Phe, L-phenylalanine; Cbz, benzyloxycarbonyl; Ac, acetyl) supported by theoretical calculations. The ECD spectra of the complexes depend on temperature that indicates the conformational mobility of the chiral ligands. Calculations of the VCD spectra were performed at ab initio (DFT) level of theory using Gaussian 03 [B3LYP functional combined with the LANL2DZ basis set for the dirhodium core and the 6-31G(d) basis set for other atoms]. The population-weighted sums of the computed VCD spectra of the conformers are in excellent agreement with the experimental VCD spectra. The combination of the VCD and ECD spectroscopic methods led us to the structural characterization of the complexes.  相似文献   

4.
5.
Morita HE  Kodama TS  Tanaka T 《Chirality》2006,18(10):783-789
Infrared (IR) and vibrational circular dichroism (VCD) spectra of chiral camphor, camphorquinone and camphor-10-sulfonic acid (CSA), known as standard compounds for electronic circular dichroism (ECD) spectroscopy, are measured and their vibrational frequencies, infrared intensities, and rotational strengths are calculated using density functional theory (DFT). The observed IR and VCD spectra of chiral camphor and camphorquinone in carbon tetrachloride solution are reproduced by the DFT calculations, but those of CSA are not. DFT calculations of hydration models, where an anionic CSA specifically binds a few water molecules, are carried out. The average of the simulated VCD spectra in the hydration models is more consistent with the observed spectra. In addition, the wavelengths and dipole and rotational strengths for chiral camphor, camphorquinone, anionic CSA, and the hydration models were calculated by time-dependent DFT. In the region of 280-300 nm, the calculated wavelengths of the ECD bands for chiral camphor and camphorquinone coincide with the observed wavelengths that have been reported, and the calculated wavelengths for the hydration models are closer to the observed wavelengths reported than are those calculated for chiral anionic CSA. Consequently, the analysis combined with VCD and ECD spectroscopy using DFT calculations can elucidate the chirality of optically active molecules, even in an aqueous solution.  相似文献   

6.
Readily available chiral trianglimine and their (poly)oxygenated congeners represent a unique class of macrocyclic rigid compounds optimal for testing electronic and vibrational circular dichroism exciton chirality methods. Electronic and vibrational circular dichroism spectra of such trianglimines are strongly affected by polar substituents in macrocycle skeletons. Double substitution by OH groups in each aromatic fragment of the macrocycle causes sign reversal of the exciton couplet in the region of the strongest UV absorption. On the other hand, electronic circular dichroism spectrum of the macrocycle having 2 methoxy groups shows 2 exciton couplets—the long‐wavelength positive and the second of the negative sign, observed at the shorter wavelengths. VCD spectra of macrocyclic imines show vibrational exciton couplets in the region of strong C=N stretches. The signs of these couplets are positive and the opposite of the diamine chirality. For trianglimine macrocycles the interpretation of VCD spectra in terms of excitons is much more convincing than for electronic circular dichroism spectra. By contrast, trans‐1,2‐diaminocyclohexane–based vicinal diimines, being a one‐third of the respective macrocycle, do not exhibit any vibrational exciton effect. Experimental data were confronted with DFT calculations. We observed good‐to‐excellent agreement between experimental and computed data.  相似文献   

7.
Tanaka T  Kodama TS  Morita HE  Ohno T 《Chirality》2006,18(8):652-661
Structures of model compounds mimicking aromatic amino acid residues in proteins are optimized by density functional theory (DFT), assuming that the main-chain conformation was a random coil. Excitation energies and dipole and rotational strengths for the optimized structures were calculated based on time-dependent DFT (TD-DFT). The electronic circular dichroism (ECD) bands of the models were significantly affected by side-chain conformations. Hydration models of the aromatic residues were also subjected to TD-DFT calculations, and the ECD bands of these models were found to be highly perturbed by the hydration of the main-chain amide groups. In addition to calculating the random-coil conformation, we also performed TD-DFT calculations of the aromatic residue models, assuming that the main-chain conformation was an alpha-helix or beta-strand. As expected, the overall feature of the ECD bands was also perturbed by the main-chain conformations. Moreover, vibrational circular dichroism (VCD) spectra of the hydration models in a random-coil structure were simulated by DFT, which showed that the VCD spectra are more sensitive to the side-chain conformations than the ECD spectra. The present results show that analyses combining ECD and VCD spectroscopy and using DFT calculations can elucidate the main- and side-chain conformations of aromatic residues in proteins.  相似文献   

8.
The development of density functional theory (DFT) methods for the calculation of vibrational circular dichroism (VCD), electronic circular dichroism (ECD), and transparent spectral region optical rotation (OR) has revolutionized the determination of the absolute configurations (ACs) of chiral molecules using these chiroptical properties. We report the concerted application of DFT calculations of VCD, ECD, and OR to the determination of the ACs of the isoschizozygane alkaloid natural products, isoschizogaline, and isochizogamine, whose ACs have not previously been determined. The ACs of naturally occurring (-)-isoschizogaline and (-)-isoschizogamine, are both determined definitively to be 2R, 7R, 20S, 21S.  相似文献   

9.
McConnell O  He Y  Nogle L  Sarkahian A 《Chirality》2007,19(9):716-730
Phenylglycidols substituted in the 2-, 3-, and 4- positions with fluorine, chlorine, and trifluoromethyl, and with methoxy in the 3- position, were synthesized from the corresponding E-cinnamic acids and separated into their (R,R)- and (S,S)- enantiomers using subcritical fluid chromatography with mixtures of MeOH in CO(2), on either a Chiralpak AD or AS chiral stationary phase. These compounds and commercially-available (R,R)- and (S,S)-phenylglycidol were analyzed for their vibrational circular dichroism (VCD), electronic circular dichroism (ECD), and optical rotation (OR) properties to exemplify a strategy whereby the absolute stereochemistry of common and key chiral intermediates is established early in the structure-activity and structure-property relationship phase of a drug discovery program in a pharmaceutical company. From this study, substituents in the phenyl group of the synthesized molecules were found not to grossly alter spectroscopic features, and therefore, diagnostic absorption bands in the respective VCD spectra, and the sign and shape of the measured ECD curves could be used to determine and track the absolute stereochemistry of analogs without necessarily requiring time-consuming ab initio calculations of all low energy conformers for all compounds. VCD, OR, and ECD calculations for the determination of absolute configuration carried out at the DFT level with the hybrid B3PW91 functional and the TZVP basis set were found to be especially useful in this study.  相似文献   

10.
The increasing interest in peptidomimetics of biological relevance prompted us to synthesize a series of cyclic peptides comprising trans‐2‐aminocyclohexane carboxylic acid (Achc) or trans‐2‐aminocyclopentane carboxylic acid (Acpc). NMR experiments in combination with MD calculations were performed to investigate the three‐dimensional structure of the cyclic peptides. These data were compared to the conformational information obtained by electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) spectroscopy. Experimental VCD spectra were compared to theoretical VCD spectra computed quantum chemically at B3LYP/6‐31G(d) density functional theory (DFT) level. The good agreement between the structural features derived from the VCD spectra and the NMR‐based structures underlines the applicability of VCD in studying the conformation of small cyclic peptides. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
Chiral α‐methylbenzyl amine is a well known and often used chiral auxiliary, e.g., in the resolution of racemates or asymmetric catalysis. In this work, α‐methylbenzyl amine and its derivatives N,α‐dimethylbenzyl amine, N,N,α‐trimethylbenzyl amine, and bis[α‐methylbenzyl] amine were investigated by vibrational circular dichroism (VCD) spectroscopy and density functional theory (DFT). For all compounds, stable low energy conformers were obtained by the DFT calculations and based on those, the theoretical vibrational absorption (VA) and VCD spectra were calculated and compared with experimental spectra. Hence, the absolute configurations and conformational preferences were determined. A qualitative comparison of all the experimental VCD spectra of the investigated chiral molecules supported by the calculated ones is given which clearly shows similarities between the spectra of the different chiral amines. These can be assigned to vibrations of the unchanged chiral center. Chirality 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
The absolute configurations of three synthesized anthracycline analogues have been determined using vibrational circular dichroism (VCD) spectroscopy and the density functional theory (DFT) calculations. The experimental VCD spectra of the three compounds have been measured for the first time in the film state, prepared from their CDCl3 solutions. Conformational searches for the monomers and some dimers of the three compounds have been performed at the DFT level using the B3LYP functional and the 6‐311G** and 6‐311++G** basis sets. The corresponding vibrational absorption and VCD spectra have been calculated. The good agreement between the experimental and the calculated spectra allows one to assign the absolute configurations of the three compounds with high confidence. In addition, the dominant conformers of the three compounds have also been identified. Chirality, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
The vibrational circular dichroism (VCD) spectra of perezone and dihydroperezone measured from CDCl3 solutions were quite similar, suggesting analogous conformations for both molecules. Their absolute configurations were confirmed by comparison of the experimental VCD spectrum of each compound with curves generated from theoretical calculations using density functional theory (DFT) at the B3LYP/DGDZVP level of theory taking into account their conformational mobility. Conformational analysis of the 8-(R) enantiomer showed 19 low energy conformers in a 2.4 kcal/mol energy range, while for 8-(R), with the saturated side alkyl chain, 34 conformers were considered in the first 2 kcal/mol. Initial analyses were carried out using a Monte Carlo searching with the MMFF94 molecular mechanics force field, all MMFF94 conformers were geometrically optimized using DFT at the B3LYP/6-31G(d) level of theory, followed by reoptimization and calculations of their vibrational frequencies at the B3LYP/DGDZVP level. Good agreement between the theoretical 8-(R) enantiomers and experimental VCD curves were observed for both.  相似文献   

14.
The absolute configurations (AC) of natural occurring 6-hydroxyeuryopsin (1), of its acetyl derivative 2, and of eremophilanolide 8 were confirmed by comparison of the experimental vibrational circular dichroism (VCD) spectra with theoretical curves generated from density functional theory (DFT) calculations. Initial analyses were carried out using a Monte Carlo searching with the MMFF94 molecular mechanics force field. All MMFF94 conformers were further optimized using DFT at the B3LYP/6-31G(d) level of theory, followed by calculations of their vibrational frequencies at the B3LYP/6-31G(d,p); the VCD spectra of 2 and 8 were also calculated at the B3PW91/DGDZVP level of theory. Good agreement between theoretical and experimental VCD curves unambiguously verified the 4S,5R,6S absolute configuration for 1 and 2, and the 1S,4S,5R,6S,8S,10S configuration for 8.  相似文献   

15.
Vibrational circular dichroism (VCD) spectroscopic features of type II beta-turns were characterized previously, but, criteria for differentiation between beta-turn types had not been established yet. Model tetrapeptides, cyclized through a disulfide bridge, were designed on the basis of previous experimental results and the observed incidence of amino acid residues in the i + 1 and i + 2 positions in beta-turns, to determine the features of VCD spectra of type I and II beta-turns. The results were correlated with electronic circular dichroism (ECD) spectra and VCD spectra calculated from conformational data obtained by molecular dynamics (MD) simulations. All cyclic tetrapeptides yielded VCD signals with a higher frequency negative and a lower frequency positive couplet with negative lobes overlapping. MD simulations confirmed the conformational homogeneity of these peptides in solution. Comparison with ECD spectroscopy, MD, and quantum chemical calculation results suggested that the low frequency component of VCD spectra originating from the tertiary amide vibrations could be used to distinguish between types of beta-turn structures. On the basis of this observation, VCD spectroscopic features of type II and VIII beta-turns and ECD spectroscopic properties of a type VIII beta-turn were suggested. The need for independent experimental as well as theoretical investigations to obtain decisive conformational information was recognized.  相似文献   

16.
The optical spectroscopic characterization of γ‐turns in solution is uncertain and their distinction from β‐turns is often difficult. This work reports systematic ECD and vibrational circular dichroism (VCD) spectroscopic studies on γ‐turn model cyclic tetrapeptides cyclo(Ala‐β‐Ala‐Pro‐β‐Ala) ( 1 ), cyclo(Pro‐β‐Ala‐Pro‐β‐Ala) ( 2 ) and cyclo(Ala‐β‐Ala‐Ala‐β‐Ala) ( 3 ). Conformational analysis performed at the 6‐31G(d)/B3LYP level of theory using an adequate PCM solvent model predicted one predominant conformer for 1‐3 , featuring two inverse γ‐turns. The ECD spectra in ACN of 1 and 2 are characterized by a negative n→π* band near 230 nm and a positive π→π* band below 200 nm with a long wavelength shoulder. The ECD spectra in TFE of 1‐3 show similar spectra with blue‐shifted bands. The VCD spectra in ACN‐d3 of 1 and 2 show a +/?/+/? amide I sign pattern resulting from four uncoupled vibrations in the case of 1 and a sequence of two positive couplets in the case of 2 . A ?/+/+/? amide I VCD pattern was measured for 3 in TFE‐d2. All three peptides give a positive couplet or couplet‐like feature (+/?) in the amide II region. VCD spectroscopy, in agreement with theoretical calculations revealed that low frequency amide I vibrations (at ~1630 cm?1 or below) are indicative of a C7 H‐bonded inverse γ‐turns with Pro in position 2, while γ‐turns encompassing Ala absorb at higher frequency (above 1645 cm?1). Chirality, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Two diastereoisomeric pairs of bis‐oxazolines, provided with a stereogenic center at carbon 4 and based on the 3,3′‐bithiophene atropisomeric scaffold, were synthesized and structurally characterized. They differ in the substituents at positions 2 and 5 of the thiophene rings, which are functionalized with methyl (1) or phenyl (2) groups, respectively. In vibrational circular dichroism (VCD) spectra, recorded in CCl4 solutions, it is possible to distinctly recognize the characteristic features of axial and central stereogenic elements. In tandem with Density Functional Theory (DFT) calculations, the absolute configuration (AC) of the diastereoisomers was safely established. In this case, VCD was shown to be superior to ECD (electronic circular dichroism) in the assignment of AC. The normal modes, evaluated from DFT calculations, show that the VCD signals in correspondence with the stereogenic axis of the bithiophene unit are different for 1 and 2. The VCD spectra of a molecular analog of 1, the (S)‐2,2′,5,5′‐tetramethyl‐4,4′‐bis‐(diphenylphosphino)‐3,3′‐bithiophene oxide (3), characterized by the same 3,3′‐bithiophene scaffold, but devoid of stereogenic centers, exhibits signals similar to those observed in the case of diastereoisomer (aS,R,R)‐1a, associated with almost identical normal modes. Chirality 28:686–695, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
《Chirality》2017,29(11):653-662
The primary purpose of this work was to demonstrate the suitability of circular dichroism (CD) spectroscopy in stereochemical studies of α,β ‐unsaturated oximes, with particular emphasis on determination of E and Z geometry of the oxime double bond. As models for this study, O‐phenyl and O‐triphenylmethyl (trityl) oximes of 4‐hydroxy‐2‐methylcyclopent‐2‐en‐1‐one were selected. These model compounds differ in both absolute configuration at C4 carbon atom and E Z configuration of the oxime double bond. The basic dichroic technique applied was electronic circular dichroism (ECD) assisted by quantum‐chemical calculations and vibrational circular dichroism (VCD) for selected cases. Such an approach enabled effective implementation of both goals. Thus, we were able to associate the signs of Cotton effects in the range of 190–240 nm with the absolute configuration at C4 and within 240–300 nm with the E ‐ or Z ‐geometry of the oxime double bond. Within this work, optical activity of the protecting trityl group was also studied towards formation of the propeller‐shaped conformations by using the same combined CD/DFT methodology. As shown, the helical structure of the trityl group has a considerable influence on the ECD spectra. However, the MPM and PMP conformers of the trityl group are in fact almost equally populated in the conformational equilibrium, making it impossible to distinguish them. On the other hand, rotamers of the hydroxyl group at C4 show a decisive impact on the VCD spectra in both phenoxy and trityl oximes.  相似文献   

19.
Vibrational circular dichroism (VCD) provides alternative views of protein and peptide conformation with advantages over electronic (UV) CD (ECD) or IR spectroscopy. VCD is sensitive to short-range order, allowing it to discriminate beta-sheet and various helices as well as disordered structure. Quantitative secondary structure analyses use protein VCD bandshapes, but are best combined with ECD and IR for balance. Much recent work has focused on empirical and theoretical VCD analyses of peptides, with detailed prediction of helix, sheet and hairpin spectra and site-specific application of isotopic substitution for structure and folding.  相似文献   

20.
《Chirality》2017,29(5):178-192
The program CDSpecTech was developed to facilitate the analysis of chiroptical spectra, which include the following: vibrational circular dichroism (VCD) and corresponding vibrational absorption (VA) spectra; vibrational Raman optical activity (VROA) and corresponding vibrational Raman spectra; electronic circular dichroism (ECD) and corresponding electronic absorption (EA) spectra. In addition, the program allows for generating optical rotatory dispersion (ORD) as the Kramers–Kronig transform of ECD spectra. The simulation of theoretical spectra from transition strengths can be achieved using different bandshape profiles. The experimental and simulated theoretical spectra can be visually compared by displaying them together. A unique feature of CDSpecTech is performing spectral analysis using the ratio spectra; i.e., the dimensionless dissymmetry factor (DF) spectrum, which is the ratio of CD to absorption spectra, and the dimensionless circular intensity difference (CID) spectrum, which is the ratio of VROA to vibrational Raman spectra. The quantitative agreement between experimental and simulated theoretical spectra can also be assessed from the numerical similarity overlap between them. Two different similarity overlap methods are available. The program uses a graphical user interface which allows for ease of use and facilitates the analysis. All these features make CDSpecTech a valuable tool for the analysis of chiroptical spectra. The program is freely available on the World Wide Web.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号