首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Secreted PCSK9 binds to cell surface LDL receptor (LDLR) and directs the receptor for lysosomal degradation. PCSK9 is potent at inducing LDLR degradation in cultured liver-derived cells, but it is considerably less active in immortalized fibroblasts. We examined PCSK9 trafficking in SV-589 human skin fibroblasts incubated with purified recombinant wild-type PCSK9 or gain-of-function mutant PCSK9-D374Y with increased LDLR binding affinity. Despite LDLR-dependent PCSK9 uptake, cell surface LDLR levels in SV-589 fibroblasts were only modestly reduced by wild-type PCSK9, even at high nonphysiological concentrations (20 µg/ml). Internalized 125I-labeled wild-type PCSK9 underwent lysosomal degradation at high levels, indicating its dissociation from recycling LDLRs. PCSK9-D374Y (2 µg/ml) reduced cell surface LDLRs by approximately 50%, but this effect was still blunted compared with HepG2 hepatoma cells. Radioiodinated PCSK9-D374Y was degraded less efficiently in SV-589 fibroblasts, and Alexa488-labeled PCSK9-D374Y trafficked to both lysosomes and endocytic recycling compartments. Endocytic recycling assays showed that more than 50% of internalized PCSK9-D374Y recycled to the cell surface compared with less than 10% for wild-type PCSK9. These data support that wild-type PCSK9 readily dissociates from the LDLR within early endosomes of SV-589 fibroblasts, contributing to PCSK9-resistance. Although a large proportion of gain-of-function PCSK9-D374Y remains bound to LDLR in these cells, degradative activity is still diminished.  相似文献   

3.
Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a secreted protein that binds to the epidermal growth factor-like-A domain of the low density lipoprotein receptor (LDLR) and mediates LDLR degradation in liver. Gain-of-function mutations in PCSK9 are associated with autosomal dominant hypercholesterolemia in humans. Size-exclusion chromatography of human plasma has shown PCSK9 to be partly associated with undefined high molecular weight complexes within the LDL size range. We used density gradient centrifugation to isolate LDL in plasma pooled from 5 normolipidemic subjects and report that >40% of total PCSK9 was associated with LDL. Binding of fluorophore-labeled recombinant PCSK9 to isolated LDL in vitro was saturable with a KD ∼ 325 nm. This interaction was competed >95% by excess unlabeled PCSK9, and competition binding curves were consistent with a one-site binding model. An N-terminal region of the PCSK9 prodomain (amino acids 31–52) was required for binding to LDL in vitro. LDL dose-dependently inhibited binding and degradation of cell surface LDLRs by exogenous PCSK9 in HuH7 cells. LDL also inhibited PCSK9 binding to mutant LDLRs defective at binding LDL. These data suggest that association of PCSK9 with LDL particles in plasma lowers the ability of PCSK9 to bind to cell surface LDLRs, thereby blunting PCSK9-mediated LDLR degradation.  相似文献   

4.
PCSK9 enhances the cellular degradation of the LDL receptor (LDLR), leading to increased plasma LDL cholesterol. This multidomain protein contains a prosegment, a catalytic domain, a hinge region, and a cysteine-histidine rich domain (CHRD) composed of three tightly packed modules named M1, M2, and M3. The CHRD is required for the activity of PCSK9, but the mechanism behind this remains obscure. To define the contribution of each module to the function of PCSK9, we dissected the CHRD structure. Six PCSK9 deletants were generated by mutagenesis, corresponding to the deletion of only one (ΔM1, ΔM2, ΔM3) or two (ΔM12, ΔM13, ΔM23) modules. Transfection of HEK293 cells showed that all deletants were well processed and expressed compared with the parent PCSK9 but that only those lacking the M2 module were secreted. HepG2 cells lacking endogenous PCSK9 (HepG2/shPCSK9) were used for the functional analysis of the extracellular or intracellular activity of PCSK9 and its deletants. To analyze the ability of the deletants to enhance the LDLR degradation by the intracellular pathway, cellular expressions revealed that only the ΔM2 deletant retains a comparable total LDLR-degrading activity to full-length PCSK9. To probe the extracellular pathway, HepG2/shPCSK9 cells were incubated with conditioned media from transfected HEK293 or HepG2/shPCSK9 cells, and cell surface LDLR levels were analyzed by FACS. The results showed no activity of any secreted deletant compared with PCSK9. Thus, although M2 is dispensable for secretion, its presence is required for the extracellular activity of PCSK9 on cell surface LDLR.  相似文献   

5.
Proprotein convertase subtilisin-kexin-9 (PCSK9) inhibition markedly augments the LDL lowering action of statins. The combination is being evaluated for long-term effects on atherosclerotic disease outcomes. However, effects of combined treatment on hepatic cholesterol and bile acid metabolism have not yet been reported. To study this, PCSK9-Y119X mutant (knockout) and wild-type mice were treated with or without atorvastatin for 12 weeks. Atorvastatin progressively lowered plasma LDL in each group, but no differences in liver cholesterol, cholesterol ester, or total bile acid concentrations, or in plasma total bile acid levels were seen. In contrast, atorvastatin increased fecal total bile acids (∼2-fold, P < 0.01) and cholesterol concentrations (∼3-fold, P < 0.01) versus controls for both PCSK9-Y119X and wild-type mice. All 14 individual bile acids resolved by LC-MS, including primary, secondary, and conjugated species, reflected similar increases. Expression of key liver bile acid synthesis genes CYP7A1 and CYP8B1 were ∼2.5-fold higher with atorvastatin in both strains, but mRNA for liver bile acid export and reuptake transporters and conjugating enzymes were not unaffected. The data suggest that hepatocyte cholesterol and bile acid homeostasis is maintained with combined PCSK9 and HMG-CoA reductase inhibition through efficient liver enzymatic conversion of LDL-derived cholesterol into bile acids and excretion of both, with undisturbed enterohepatic recycling.  相似文献   

6.
Annexin A2 (AnxA2) was reported to be an extracellular endogenous inhibitor of proprotein convertase subtilisin kexin type 9 (PCSK9) activity on cell-surface LDL receptor degradation. In this study, we investigated the effect of silencing the expression of AnxA2 and PCSK9 in HepG2 and Huh7 cells to better define the role of AnxA2 in PCSK9 regulation. AnxA2 knockdown in Huh7 cells significantly increased PCSK9 protein levels as opposed to AnxA2 knockdown in HepG2 cells. However, HepG2 cells overexpressing AnxA2 had lower levels of PCSK9 protein. Overall, our data revealed a plausible new role of AnxA2 in the reduction of PCSK9 protein levels via a translational mechanism. Moreover, the C-terminal Cys/His-rich domain of PCSK9 is crucial in the regulation of PCSK9 activity, and we demonstrated by far-Western blot assay that the M1 and M2 domains are necessary for the specific interaction of PCSK9''s C-terminal Cys/His-rich domain and AnxA2. Finally, we produced and purified recombinant PCSK9 from humans and mice, which was characterized and used to perform 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate LDL cell-based assays on the stable knockdown HepG2 and Huh7 cells. We also demonstrated for the first time the equipotency of human and mouse PCSK9 R218S on human cells.  相似文献   

7.
BackgroundsAtherosclerotic Cardiovascular Disease (ASCVD) is defined as ischemic or endothelial dysfunction-various inflammatory diseases, which is mainly caused by excessive low-density lipoprotein cholesterol (LDL-C) in circulating blood. Gynostemma pentaphyllum is a traditional Chinese medicine, and total Gypenosides are used for the treatment of hyperlipidemia and to reduce circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) level. However, which gypenoside involved in the modulation of PCSK9 expression is still unknown.PurposeThis study aimed to discover effective PCSK9 inhibitors from Gypenosides in accordance with the 2019 ESC/EAS guidelines.MethodsHPLC was employed to determine major six components of Gypenosides. The inhibitory activity on secreted PCSK9 in HepG2 of six major compounds from Gypenosides were screened by ELISA. The level of low-density lipoprotein (LDL) receptor (LDLR) was determined by Flow cytometry and Immunofluorescence. The expression levels of PCSK9, LDLR and Sterol-regulatory element binding proteins-2 (SREBP-2) were analyzed by qPCR and Western blot. DiI-LDL was added to evaluated LDL uptake into HepG2.ResultsThe results suggested that the mRNA and protein levels of PCSK9 were down-regulated by Gypenoside LVI and the LDLR degradation in lysosomes system was inhibited, thereby leading to an increasing in LDL uptake into HepG2 cells. Furthermore, Gypenoside LVI decreased PCSK9 expression induced by stains. Altogether, Gypenoside LVI enhances LDL uptake into HepG2 cells by increased LDLR level on cell-surface and suppressed PCSK9 expression.ConclusionThis indicates that Gypenoside LVI can be used as a useful supplement for statins in the treatment of hypercholesterolemia. This is firstly reported that monomeric compound of G. pentaphyllum planted in Hunan province has the effect of increasing LDL-C uptake in hepatocytes via inhibiting PCSK9 expression.  相似文献   

8.
The proprotein convertase PCSK9, a target for the treatment of hypercholesterolemia, is a negative regulator of the LDL receptor (LDLR) leading to its degradation in endosomes/lysosomes and up-regulation of plasma LDL-cholesterol levels. The proprotein convertases, a family of nine secretory serine proteases, are first synthesized as inactive zymogens. Except for PCSK9, all other convertases are activated following the autocatalytic excision of their inhibitory N-terminal prosegment. PCSK9 is unique since the mature enzyme exhibits a cleaved prosegment complexed with the catalytic subunit and has no protease activity towards other substrates. Similar to other convertases, we hypothesized that the in trans presence of the PCSK9 prosegment would interfere with PCSK9''s activity on the LDLR. Since the prosegment cannot be secreted alone, we engineered a chimeric protein using the Fc-region of human IgG1 fused to the PCSK9 prosegment. The expression of such Fcpro-fusion protein in HEK293 and HepG2 cells resulted in a secreted protein that binds PCSK9 and markedly inhibits its activity on the LDLR. This was observed by either intracellular co-expression of PCSK9 and Fcpro or by an extracellular in vitro co-incubation of Fcpro with PCSK9. Structure-function studies revealed that the inhibitory function of Fcpro does not require the acidic N-terminal stretch (residues 31–58) nor the C-terminal Gln152 of the prosegment. Fcpro likely interacts with the prosegment and/or catalytic subunit of the prosegment≡PCSK9 complex thereby allosterically modulating its function. Our data suggest a novel strategic approach for the design and isolation of PCSK9 inhibitors.  相似文献   

9.
Sepsis is the leading cause of death in critically ill patients. While decreased Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) function improves clinical outcomes in murine and human sepsis, the mechanisms involved have not been fully elucidated. We tested the hypothesis that lipopolysaccharide (LPS), the major Gram-negative bacteria endotoxin, is cleared from the circulation by hepatocyte Low Density Lipoprotein Receptors (LDLR)—receptors downregulated by PCSK9. We directly visualized LPS uptake and found that LPS is rapidly taken up by hepatocytes into the cell periphery. Over the course of 4 hours LPS is transported towards the cell center. We next found that clearance of injected LPS from the blood was reduced substantially in Ldlr knockout (Ldlr-/-) mice compared to wild type controls and, simultaneously, hepatic uptake of LPS was also reduced in Ldlr-/- mice. Specifically examining the role of hepatocytes, we further found that primary hepatocytes isolated from Ldlr-/- mice had greatly decreased LPS uptake. In the HepG2 immortalized human hepatocyte cell line, LDLR silencing similarly resulted in decreased LPS uptake. PCSK9 treatment reduces LDLR density on hepatocytes and, therefore, was another independent strategy to test our hypothesis. Incubation with PCSK9 reduced LPS uptake by hepatocytes. Taken together, these findings demonstrate that hepatocytes clear LPS from the circulation via the LDLR and PCSK9 regulates LPS clearance from the circulation during sepsis by downregulation of hepatic LDLR.  相似文献   

10.
LDL cholesterol (LDL-C) contributes to coronary heart disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) increases LDL-C by inhibiting LDL-C clearance. The therapeutic potential for PCSK9 inhibitors is highlighted by the fact that PCSK9 loss-of-function carriers exhibit 15–30% lower circulating LDL-C and a disproportionately lower risk (47–88%) of experiencing a cardiovascular event. Here, we utilized pcsk9−/− mice and an anti-PCSK9 antibody to study the role of the LDL receptor (LDLR) and ApoE in PCSK9-mediated regulation of plasma cholesterol and atherosclerotic lesion development. We found that circulating cholesterol and atherosclerotic lesions were minimally modified in pcsk9−/− mice on either an LDLR- or ApoE-deficient background. Acute administration of an anti-PCSK9 antibody did not reduce circulating cholesterol in an ApoE-deficient background, but did reduce circulating cholesterol (−45%) and TGs (−36%) in APOE*3Leiden.cholesteryl ester transfer protein (CETP) mice, which contain mouse ApoE, human mutant APOE3*Leiden, and a functional LDLR. Chronic anti-PCSK9 antibody treatment in APOE*3Leiden.CETP mice resulted in a significant reduction in atherosclerotic lesion area (−91%) and reduced lesion complexity. Taken together, these results indicate that both LDLR and ApoE are required for PCSK9 inhibitor-mediated reductions in atherosclerosis, as both are needed to increase hepatic LDLR expression.  相似文献   

11.
Tpt1, an essential component of the fungal and plant tRNA splicing machinery, catalyzes transfer of an internal RNA 2′-PO4 to NAD+ yielding RNA 2′-OH and ADP-ribose-1′,2′-cyclic phosphate products. Here, we report NMR structures of the Tpt1 ortholog from the bacterium Runella slithyformis (RslTpt1), as apoenzyme and bound to NAD+. RslTpt1 consists of N- and C-terminal lobes with substantial inter-lobe dynamics in the free and NAD+-bound states. ITC measurements of RslTpt1 binding to NAD+ (KD ∼31 μM), ADP-ribose (∼96 μM) and ADP (∼123 μM) indicate that substrate affinity is determined primarily by the ADP moiety; no binding of NMN or nicotinamide is observed by ITC. NAD+-induced chemical shift perturbations (CSPs) localize exclusively to the RslTpt1 C-lobe. NADP+, which contains an adenylate 2′-PO4 (mimicking the substrate RNA 2′-PO4), binds with lower affinity (KD ∼1 mM) and elicits only N-lobe CSPs. The RslTpt1·NAD+ binary complex reveals C-lobe contacts to adenosine ribose hydroxyls (His99, Thr101), the adenine nucleobase (Asn105, Asp112, Gly113, Met117) and the nicotinamide riboside (Ser125, Gln126, Asn163, Val165), several of which are essential for RslTpt1 activity in vivo. Proximity of the NAD+ β-phosphate to ribose-C1″ suggests that it may stabilize an oxocarbenium transition-state during the first step of the Tpt1-catalyzed reaction.  相似文献   

12.
13.
14.
Plasma C‐reactive protein (CRP) concentration is associated positively with cardiovascular risk, including dyslipidemia. We suggested a regulating role of CRP on pro‐protein convertase subtilisin/kexin type 9 (PCSK9), a key regulator of low‐density lipoprotein (LDL) metabolism, and demonstrated the PCSK9 as a pathway linking CRP and LDL regulation. Firstly, experiments were carried out in the presence of human CRP on the protein and mRNA expression of PCSK9 and LDL receptor (LDLR) in human hepatoma cell line HepG2 cells. Treatment with CRP (10 μg/ml) enhanced significantly the mRNA and protein expression of PCSK9 and suppressed the expression of LDLR. Of note, a late return of LDLR mRNA levels occurred at 12 hrs, while the LDLR protein continued to decrease at 24 hrs, suggesting that the late decrease in LDLR protein levels was unlikely to be accounted for the decrease in LDL mRNA. Secondly, the role of PCSK9 in CRP‐induced LDLR decrease and the underlying pathways were investigated. As a result, the inhibition of PCSK9 expression by small interfering RNA (siRNA) returned partly the level of LDLR protein and LDL uptake during CRP treatment; CRP‐induced PCSK9 increase was inhibited by the p38MAPK inhibitor, SB203580, resulting in a significant rescue of LDLR protein expression and LDL uptake; the pathway was involved in hepatocyte nuclear factor 1α (HNF1α) but not sterol responsive element‐binding proteins (SREBPs) preceded by the phosphorylation of p38MAPK. These findings indicated that CRP increased PCSK9 expression by activating p38MAPK‐HNF1α pathway, with a certain downstream impairment in LDL metabolism in HepG2 cells.  相似文献   

15.
16.
Elevated levels of lipoprotein(a) (Lp(a)) have been identified as an independent risk factor for coronary heart disease. Plasma Lp(a) levels are reduced by monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9). However, the mechanism of Lp(a) catabolism in vivo and the role of PCSK9 in this process are unknown. We report that Lp(a) internalization by hepatic HepG2 cells and primary human fibroblasts was effectively reduced by PCSK9. Overexpression of the low density lipoprotein (LDL) receptor (LDLR) in HepG2 cells dramatically increased the internalization of Lp(a). Internalization of Lp(a) was markedly reduced following treatment of HepG2 cells with a function-blocking monoclonal antibody against the LDLR or the use of primary human fibroblasts from an individual with familial hypercholesterolemia; in both cases, Lp(a) internalization was not affected by PCSK9. Optimal Lp(a) internalization in both hepatic and primary human fibroblasts was dependent on the LDL rather than the apolipoprotein(a) component of Lp(a). Lp(a) internalization was also dependent on clathrin-coated pits, and Lp(a) was targeted for lysosomal and not proteasomal degradation. Our data provide strong evidence that the LDLR plays a role in Lp(a) catabolism and that this process can be modulated by PCSK9. These results provide a direct mechanism underlying the therapeutic potential of PCSK9 in effectively lowering Lp(a) levels.  相似文献   

17.
The suppressor of cytokine signaling (SOCS) proteins are negative regulators of the JAK/STAT pathway activated by proinflammatory cytokines, including the tumor necrosis factor-α (TNF-α). SOCS3 is also implicated in hypertriglyceridemia associated to insulin resistance. Proprotein convertase subtilisin kexin type 9 (PCSK9) levels are frequently found to be positively correlated to insulin resistance and plasma very low density lipoprotein (VLDL) triglycerides concentrations. The present study aimed to investigate the possible role of TNF-α and JAK/STAT pathway on de novo lipogenesis and PCSK9 expression in HepG2 cells. TNF-α induced both SOCS3 and PCSK9 in a concentration-dependent manner. This effect was inhibited by transfection with siRNA anti-STAT3, suggesting the involvement of the JAK/STAT pathway. Retroviral overexpression of SOCS3 in HepG2 cells (HepG2SOCS3) strongly inhibited STAT3 phosphorylation and induced PCSK9 mRNA and protein, with no effect on its promoter activity and mRNA stability. Consistently, siRNA anti-SOCS3 reduced PCSK9 mRNA levels, whereas an opposite effect was observed with siRNA anti-STAT3. In addition, HepG2SOCS3 express higher mRNA levels of key enzymes involved in the de novo lipogenesis, such as fattyacid synthase, stearoyl-CoA desaturase (SCD)-1, and apoB. These responses were associated with a significant increase of SCD-1 protein, activation of sterol regulatory element-binding protein-1c (SREBP-1), accumulation of cellular triglycerides, and secretion of apoB. HepG2SOCS3 show lower phosphorylation levels of insulin receptor substrate 1 (IRS-1) Tyr896 and Akt Ser473 in response to insulin. Finally, insulin stimulation produced an additive effect with SOCS3 overexpression, further inducing PCSK9, SREBP-1, fatty acid synthase, and apoB mRNA. In conclusion, our data candidate PCSK9 as a gene involved in lipid metabolism regulated by proinflammatory cytokine TNF-α in a SOCS3-dependent manner.  相似文献   

18.

Objective

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a circulating protein that promotes degradation of the low density lipoprotein (LDL) receptor. Mutations that block PCSK9 secretion reduce LDL-cholesterol and the incidence of myocardial infarction (MI). However, it remains unclear whether elevated plasma PCSK9 associates with coronary atherosclerosis (CAD) or more directly with rupture of the plaque causing MI.

Methods and Results

Plasma PCSK9 was measured by ELISA in 645 angiographically defined controls (<30% coronary stenosis) and 3,273 cases of CAD (>50% stenosis in a major coronary artery) from the Ottawa Heart Genomics Study. Because lipid lowering medications elevated plasma PCSK9, confounding association with disease, only individuals not taking a lipid lowering medication were considered (279 controls and 492 with CAD). Replication was sought in 357 controls and 465 with CAD from the Emory Cardiology Biobank study. PCSK9 levels were not associated with CAD in Ottawa, but were elevated with CAD in Emory. Plasma PCSK9 levels were elevated in 45 cases with acute MI (363.5±140.0 ng/ml) compared to 398 CAD cases without MI (302.0±91.3 ng/ml, p = 0.004) in Ottawa. This finding was replicated in the Emory study in 74 cases of acute MI (445.0±171.7 ng/ml) compared to 273 CAD cases without MI (369.9±139.1 ng/ml, p = 3.7×10−4). Since PCSK9 levels were similar in CAD patients with or without a prior (non-acute) MI, our finding suggests that plasma PCSK9 is elevated either immediately prior to or at the time of MI.

Conclusion

Plasma PCSK9 levels are increased with acute MI.  相似文献   

19.

Background

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted inhibitor of the low-density lipoprotein (LDL) receptor and an important regulator of LDL metabolism. Elevated PCSK9 levels have been associated with cardiovascular risk. The purpose of this study was to investigate how ezetimibe and simvastatin, alone and in combination, affect PCSK9 circulating concentrations.

Methods

A single center, randomized, open-label parallel 3-group study in healthy men (mean age 32±9 years, body mass index 25.7±3.2 kg/m2) was performed. Each group of 24 subjects was treated for 14 days with either simvastatin 40 mg/d, ezetimibe 10 mg/d, or with both drugs. Multivariate analysis was used to investigate parameters influencing the change in PCSK9 concentrations under treatment.

Results

The baseline plasma PCSK9 concentrations in the total cohort were 52±20 ng/mL with no statistically significant differences between the groups. They were increased by 68±85% by simvastatin (P = 0.0014), by 10±38% by ezetimibe (P = 0.51) and by 67±91% by simvastatin plus ezetimibe (P = 0.0013). The increase in PCSK9 was inversely correlated with baseline PCSK9 concentrations (Spearman’s R = –0.47, P<0.0001) and with the percent change in LDL cholesterol concentrations (Spearman’s R = –0.30, P<0.01). In multivariate analyses, only baseline PCSK9 concentrations (β = –1.68, t = –4.04, P<0.0001), percent change in LDL cholesterol from baseline (β = 1.94, t = 2.52, P = 0.014), and treatment with simvastatin (P = 0.016), but not ezetimibe (P = 0.42), significantly influenced changes in PCSK9 levels. Parameters without effect on PCSK9 concentration changes were age, body mass index, body composition, thyroid function, kidney function, glucose metabolism parameters, adipokines, markers of cholesterol synthesis and absorption, and molecular markers of cholesterol metabolism.

Conclusions

Ezetimibe does not increase circulating PCSK9 concentrations while simvastatin does. When added to simvastatin, ezetimibe does not cause an incremental increase in PCSK9 concentrations. Changes in PCSK9 concentrations are tightly regulated and mainly influenced by baseline PCSK9 levels and changes in LDL cholesterol.

Trial Registration

ClinicalTrials.gov NCT00317993  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号