首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xenopus frogs have a prominent binocular field that develops as a consequence of the migration of the eyes during the remodeling of the head during and after metamorphosis. In the optic tectum, a topographic representation of the ipsilateral eye develops during this same period. It is relayed indirectly, via the nucleus isthmi. In the early stages of binocular development, the topographic matching of the ipsilateral input to the retinotectal input from the contralateral eye is largely governed by chemical cues, but the ultimate determinant of the ipsilateral map is binocular visual input. Visual input is such a dominant factor that abnormal visual input resulting from unilateral eye rotation can induce isthmotectal axons to alter their trajectories dramatically, even shifting their terminal zones from one pole of the tectum to the other. This plasticity normally is high only during a 3-4-month critical period of late tadpole-early juvenile life, but the critical period can be extended indefinitely by dark-rearing. N-methyl-D-aspartate (NMDA) receptors are involved in this process; plasticity can be blocked or promoted by chronic treatment with NMDA antagonists or agonists, respectively. Cholinergic nicotinic receptors on retinotectal axons are likely to play an essential role as well. Modifications in the polysialylation of neural cell adhesion molecule are correlated with the state of plasticity. The circuitry underlying binocular plasticity is not yet fully understood but has proved not to be a simple convergence of ipsilateral and contralateral inputs onto the same targets.  相似文献   

2.
Many parts of the visual system contain topographic maps of the visual field. In such structures, the binocular portion of the visual field is generally represented by overlapping, matching projections relayed from the two eyes. One of the developmental factors which helps to bring the maps from the two eyes into register is visual input. The role of visual input is especially dramatic in the frog, Xenopus laevis. In tadpoles of this species, the eyes initially face laterally and have essentially no binocular overlap. At metamorphosis, the eyes begin to move rostrodorsally; eventually, their visual fields have a 170 degree region of binocular overlap. Despite this major change in binocular overlap, the maps from the ipsilateral and contralateral eyes to the optic tectum normally remain in register throughout development. This coordination of the two projections is disrupted by visual deprivation. In dark-reared Xenopus, the contralateral projection is nearly normal but the ipsilateral map is highly disorganized. The impact of visual input on the ipsilateral map also is shown by the effect of early rotation of one eye. Examination of the tectal lobe contralateral to the rotated eye reveals that both the contralateral and the ipsilateral maps to that tectum are rotated, even though the ipsilateral map originates from the normal eye. Thus, the ipsilateral map has changed orientation to remain in register with the contralateral map. Similarly, the two maps on the other tectal lobe are in register; in this case, both projections are normally oriented even though the ipsilateral map is from the rotated eye. The discovery that the ipsilateral eye's map reaches the tectum indirectly, via a relay in the nucleus isthmi, has made it possible to study the anatomical changes underlying visually dependent plasticity. Retrograde and anterograde tracing with horseradish peroxidase have shown that eye rotation causes isthmotectal axons to follow abnormal trajectories. An axon's route first goes toward the tectal site where it normally would arborize but then changes direction to reach a new tectal site. Such rearrangements bring the isthmotectal axons into proximity with retinotectal axons which have the same receptive fields. Anterograde horseradish peroxidase filling has also been used to study the trajectories and arborizations of developing isthmotectal axons. The results show that the axons enter the tectum before the onset of eye migration but do not begin to branch profusely until eye movement begins to create a zone of binocular space.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
A hallmark of mammalian neural circuit development is the refinement of initially imprecise connections by competitive activity-dependent processes. In the developing visual system retinal ganglion cell (RGC) axons from the two eyes undergo activity-dependent competition for territory in the dorsal lateral geniculate nucleus (dLGN). The direct contributions of synaptic transmission to this process, however, remain unclear. We used a genetic approach to reduce glutamate release selectively from ipsilateral-projecting RGCs and found that their release-deficient axons failed to exclude competing axons from the ipsilateral eye territory in the dLGN. Nevertheless, the release-deficient axons consolidated and maintained their normal amount of dLGN territory, even in the face of fully active competing axons. These results show that during visual circuit refinement glutamatergic transmission plays a direct role in excluding competing axons from inappropriate target regions, but they argue that consolidation and maintenance of axonal territory are largely insensitive to alterations in synaptic activity levels.  相似文献   

4.
In Bilateria, many axons cross the midline of the central nervous system, forming well-defined commissures. Whereas in mammals the functions of commissures in the forebrain and in the visual system are well established, functions at other axial levels are less clearly understood. Here, we have dissected the function of several hindbrain commissures using genetic methods. By taking advantage of multiple Cre transgenic lines, we have induced site-specific deletions of the Robo3 receptor. These lines developed with the disruption of specific commissures in the sensory, motor, and sensorimotor systems, resulting in severe and permanent functional deficits. We show that mice with severely reduced commissures in rhombomeres 5 and 3 have abnormal lateral eye movements and auditory brainstem responses, respectively, whereas mice with a primarily uncrossed climbing fiber/Purkinje cell projection are strongly ataxic. Surprisingly, although rerouted axons remain ipsilateral, they still project to their appropriate neuronal targets. Moreover, some Cre;Robo3 lines represent potential models that can be used to study human syndromes, including horizontal gaze palsy with progressive scoliosis (HGPPS). To our knowledge, this study is one of the first to link defects in commissural axon guidance with specific cellular and behavioral phenotypes.  相似文献   

5.
Supernumerary compound eyes in Drosophila melanogaster produced by the extra eye (ee) mutation were analyzed with regard to their morphology, physiology, and neural projections. Electron and light microscopy revealed that large extra eyes often possess the normal complement of compound-eye cell types and that these cells usually have standard fine structure. In addition, the array of photoreceptor cell rhabdomeres within individual supernumerary ommatidia is standardly trapezoidal, and ommatidial subpopulations having mirror-image configurations of their rhabdomeric trapezoids are separated by an equator in extra eyes. Light stimulation of supernumerary eyes can elicit photoreceptor depolarization potentials as evidenced by electroretinographic recordings from them. In addition, extra-eye photoreceptor cells have a functional pupillary response to light stimulation. Although the supernumerary eyes can be functionally and anatomically standard, examination of serial, silver-stained sections of extra-eye heads has shown that their photoreceptor axons seldom innervate the brain. This situation obtains even in a case in which the normal, ipsilateral compound eye was removed by the eyeless mutation. In contrast, rare supernumerary antennae occasionally found in ee stocks have receptor cells whose axons innervate ventral brain. In addition to duplications of cuticular epithelia, extra glial cells, muscle fibers, and ocellar interneurons are sometimes found in extra-eye bearing flies. Discussion of these results focuses on a polarity guidance hypothesis which models the growth of adult photoreceptor axons into the brain during normal development.  相似文献   

6.
Freshwater planarians can regenerate a brain, including eyes, from the anterior blastema, and coordinately form an optic chiasm during eye and brain regeneration. To investigate the role of the netrin- and slit-signaling systems during optic chiasm formation, we cloned three receptor genes (Djunc5A, Djdcc and DjroboA) expressed in visual neurons and their ligand genes (DjnetB and Djslit) and analyzed their functions by RNA interference (RNAi). Although each of DjroboA(RNAi), Djunc5A(RNAi) and DjnetB(RNAi) showed a weak phenotype and Djslit(RNAi) showed a severe defect of eye formation, we did not observe any defect of crossing of visual axons over the midline among single knockdown planarians. However, among double knockdown planarians, some of DjnetB(RNAi);DjroboA(RNAi) and Djunc5A(RNAi);DjroboA(RNAi) showed complete disconnection between the visual axons from the two sides, suggesting that some combination of netrin- and robo-mediated signals may be required for crossing over the midline. Finally, we carefully investigated the distribution patterns of cells expressing DjNetB protein, DjnetB, and Djslit at the early stage of regeneration, and found that visual axons projected along a path sandwiched between DjNetB protein and Djslit-positive cells. These results suggest that two different collaborative or combinatory signals may be required for midline crossing at the early stage of chiasm formation during eye and brain regeneration.  相似文献   

7.
Summary In the noctuid moth Spodoptera exempta, the distribution of visual pigments within the fused rhabdoms of the compound eyes was investigated by electron microscopy. Each ommatidium regularly contains eight receptor cells belonging to three morphological types: one distal, six medial, and one basal cell (Meinecke 1981); four different visual pigments — absorption maxima at approximately 355, 465, 515, and 560 nm — are known to occur within the eye (Langer et al. 1979). The compound eyes were illuminated in situ by use of monochromatic light of different wavelengths. This illumination produced a wide scale of structural changes in the microvilli of the rhabdomeres of individual cells. Preparation of eyes by freeze-substitution revealed the structural changes in the rhabdomeres to be effects of light occurring in vivo.The degree of structural changes may be considerably different in rhabdomeres within the same ommatidium; it was found to depend on the wavelength and the duration of illumination, the intensity received by the ommatidia as well as the spectral sensitivity of the receptor cells. Therefore, it was possible to estimate the spectral sensitivities of the morphological types of receptor cells. Generally, all medial cells are green receptors and all basal cells red receptors; distal cells are blue receptors in about two-thirds of the ommatidia, while in the remaining third of them distal cells are sensitive to ultraviolet light.Supported by Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 114 (Bionach)  相似文献   

8.
Summary Intracellular responses to illumination have been recorded separately from the retinula cells and from their axons in the compound eyes of the giant water bug Lethocerus. The basic response in both places consists of an initial transient depolarisation followed by a plateau (Fig. 2). No action potentials were seen in either axons or retinula cells.The responses are graded according to the intensity of the stimulus, to its position within the visual field of the cells and to the plane of polarization of the light (Figs. 3, 4). The angle of acceptance (dark-adapted eyes) measured in either retinula cells or axons is 9°. Similarly, the average value of the sensitivity ratio to light polarised at orthogonal planes is 31 in both places.Experiments designed to reveal a presumed spike initiation region of the cells by reducing damage to the eye failed to reveal impulses. It is concluded that the receptor potential spreads electrotonically in the axon to the first synaptic region which lies up to 2 mm away. The values of membrane constants which would be required for conduction without severe decrement over such a distance are within the range measured in other systems.  相似文献   

9.
Pax genes play a pivotal role in development of the vertebrate visual system. Pax6 is the master control gene for eye development: ectopic expression of Pax6 in Xenopus laevis and Drosphila melanogaster leads to the formation of differentiated eyes on the legs or wings. Pax6 is involved in formation of ganglion cells of the retina, as well as cells of the lens, iris and cornea. In addition Pax6 may play a role in axon guidance in the visual system. Pax2 regulates differentiation of the optic disk through which retinal ganglion cell axons exit the eye. Furthermore, Pax2 plays a critical role in development of the optic chiasm and in the guidance of axons along the contralateral or ipsilateral tracts of the optic nerve to visual targets in the brain. During development Pax7 is expressed in neuronal cells of one of the major visual targets in the brain, the optic tectum/superior colliculus. Neurons expressing Pax7 migrate towards the pia and concentrate in the stratum griseum superficiale (SGFS), the target site for retinal axons. Together, expression of Pax2, 6 and 7 may guide axons during formation of functional retinotectal/collicular projections. Highly regulated Pax gene expression is also observed in mature animals. Moreover, evidence suggests that Pax genes are important for regeneration of the visual system. We are currently investigating Pax gene expression in species that display a range of outcomes of optic nerve regeneration. We predict that such information will provide valuable insights for the induction of successful regeneration of the optic nerve and of other regions of the central nervous system in mammals including man.  相似文献   

10.
Each visual unit (ommatidium) of the compound eye of the honey bee contains nine retinula cells, six of which end as axons in the first synaptic ganglion, the lamina, and three in the second optic ganglion, the medulla. A technique allowing light- and electron microscopy to be performed on the same silver-impregnated sections has made it possible to follow all types of retinula axons of one ommatidium to their terminals in order to study the shape of the terminal branches with their position in the cartridge. 1. The axons of retinula cells 1-6 (numbered according to Menzel and Snyder, 1974) end as three different types of short visual fibres (svf) in the lamina; the axons of retinula cells 7-9 run through the lamina to terminate in the medulla and are known as long visual fibres (lvf). Retinula cells of each type are identified by the location of their cell bodies and by the direction of their microvilli. The retinula cells 1 and 4 (group I according to Gribakin, 1967) end as svf type 1 with three tassel-like branches in stratum B of the first synaptic region. The pair of cells 3, 6 and the pair 2, 5 (group II) end in the first synaptic region in stratum A. Cells 3 and 6 have forked endings, svf type 2, whereas cells 2 and 5 have tapered endings, svf type 3. The remaining retinula cells 7, 8 and 9 have long fibres. Nos. 7 and 8 (group III) have tapered endings and are termed lvf types 1 and 2, respectively. The 9th cell is the lvf type 3 with a highly branched ending. 2. The nine axons in the bundle from one ommatidium have relative positions which do not change from the proximal retina to the monopolar cell body layer. 3. By following silver-stained retinula cells and their corresponding axons, it is possible to describe mirror-image arrangements of fibres in the axon bundles in different parts of the eye. This correlation of numbered retinula cells with specific axon types, together with the highly organized pattern in an axon bundle, allows the correlation between histological and physiological findings on polarization and colour perception.  相似文献   

11.
Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm   总被引:11,自引:0,他引:11  
In animals with binocular vision, retinal ganglion cell (RGC) axons either cross or avoid the midline at the optic chiasm. Here, we show that ephrin-Bs in the chiasm region direct the divergence of retinal axons through the selective repulsion of a subset of RGCs that express EphB1. Ephrin-B2 is expressed at the mouse chiasm midline as the ipsilateral projection is generated and is selectively inhibitory to axons from ventrotemporal (VT) retina, where ipsilaterally projecting RGCs reside. Moreover, blocking ephrin-B2 function in vitro rescues the inhibitory effect of chiasm cells and eliminates the ipsilateral projection in the semiintact mouse visual system. A receptor for ephrin-B2, EphB1, is found exclusively in regions of retina that give rise to the ipsilateral projection. EphB1 null mice exhibit a dramatically reduced ipsilateral projection, suggesting that this receptor contributes to the formation of the ipsilateral retinal projection, most likely through its repulsive interaction with ephrin-B2.  相似文献   

12.
Single Golgi impregnated visual cells and their axons were treated from the retina to the first synaptic layer (lamina) in serial electron microscopic sections. This analysis of the retina-lamina projection was undertaken in the upper dorso-median eye region which is known to be involved in the perception of polarized light. For identification of individual visual cells and their fibres a numbering system was used which relates the number of each of the nine visual cells within one retinula to the transverse axis of the rhabdom (TRA) (Fig. 1). Because of the twist of the retinula along its course to the basement membrane (Fig. 6), individual visual cells change their position relative to any eye-constant co-ordinate system. Each axon bundle originating from one 9-celled retinula performs a 180 degrees-rotation before entering the lamina (Fig. 2). The direction of rotation (clockwise or counter-clockwise), which may differ even between adjacent bundles, is related to the two mirror-image types of rhabdoms in the corresponding retinulae and is opposite to the direction of rhabdom twist. Thus, even in small groups of the in total 5500 ommatidia in the eye of the bee, two types of retinulae exist which can be characterized by the geometry of the rhabdoms as well as by the direction of rotation of the retinulae and the axon bundles (Fig. 1). Visual cell numbers 1, 2, and 9, the microvilli of which are oriented in the direction of TRA, form three long visual fibres terminating in the second synaptic layer (medulla). In cross sections of laminar pseudocartridges they appear as the smallest fibre profiles arranged in a symmetrical line of the pseudocartridge bundle (=the transverse axis of the pseudocartridge; TPA) (Fig. 4). The remaining six fibres (cell numbers 3-8) only project to the lamina (short visual fibres; svf's). Two of them (cell numbers 5 and 6), which are the largest cells in the proximal retinula and have their microvilli perpendicularly arranged to TRA (Fig. 1), give rise to the two thickest axons of the underlaying pseudocartridge. In cross sections, t he connecting line of these two axons is orthogonally oriented to TPA (Fig. 5). A model was developed, in which all long visual fibres originate from ultraviolet receptors and in which the polarization sensitivity of the basal ninth cell is enhanced by the twist of the rhabdom. Finally, this model is discussed in light of behavioral experiments revealing the ultraviolet receptors as the only cells involved in the detection of polarized light.  相似文献   

13.
During development of the mammalian eye, the first retinal ganglion cells (RGCs) that extend to the brain are located in the dorsocentral (DC) retina. These RGCs extend to either ipsilateral or contralateral targets, but the ipsilateral projections do not survive into postnatal periods. The function and means of disappearance of the transient ipsilateral projection are not known. We have followed the course of this transient early ipsilateral cohort of RGCs, paying attention to how far they extend, whether they enter targets and if so, which ones, and the time course of their disappearance. The DC ipsilateral RGC axons were traced using DiI labeling at E13.5 and E15.5 to compare the proportion of ipsi‐ versus contralateral projections during the first period of growth. In utero electroporation of E12.5 retina with GFP constructs was used to label axons that could be visualized at succeeding time points into postnatal ages. Our results show that the earliest ipsilateral axons grow along the cellular border of the brain, and are segregated from the laterally positioned contralateral axons from the same retinal origin. In agreement with previous reports, although many early RGCs extend ipsilaterally, after E16 their number rapidly declines. Nonetheless, some ipsilateral axons from the DC retina enter the superior colliculus and arborize minimally, but very few enter the dorsal lateral geniculate nucleus and those that do extend only short branches. While the mechanism of selective axonal disappearance remains elusive, these data give further insight into establishment of the visual pathways. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1385–1401, 2015  相似文献   

14.
During neurogenesis, markers of the cholinergic system are present in the eye and visual cortex of vertebrates. In adult vertebrates, a role for these molecules, including muscarinic acetylcholine receptors (mAChRs), in eye growth non-accommodative regulation is also known. In order to understand the biological mechanisms triggered by the cholinergic system in these events, we analysed the effects of a cholinergic agonist (10(-4) M carbachol) and an antagonist (10(-4) M atropine) of the muscarinic receptors, on early chick development. To establish if the cholinergic system also plays a role in the regulation of early neurogenetic signals, the drug treatments were made at stage 5-6 HH, during the formation of the cephalic process. Specific effects on forehead, and in particular on eye development were found; carbachol treated embryos presented huge and well pigmented eyes, significantly different from controls. The eyes of atropine-exposed embryos presented anomalies with different phenotypes ranging from strongly affected features to normal-like appearance. Generally, the eyes were smaller as compared to the controls, with a number of anomalies, also in the normal-like phenotype, including retina and lens defects. In these structures, distribution of cholinesterase activities was checked by histochemical methods, and the amount of cells undergoing nuclear disgregation was revealed by DAPI staining. We propose that the drugs affected the known nervous and pre-nervous functions of the cholinergic markers, such as cell signalling during primary induction, and regulation of cell death by ACh receptors.  相似文献   

15.
Only few electron microscopic studies exist on the structure of the main eyes (anterior median eyes, AME) of web spiders. The present paper provides details on the anatomy of the AME in the funnel-web spider Agelena labyrinthica. The retina consists of two separate regions with differently arranged photoreceptor cells. Its central part has sensory cells with rhabdomeres on 2, 3, or 4 sides, whereas those of the ventral retina have only two rhabdomeres on opposite sides. In addition, the rhabdomeres of the ventral retina are arranged in a specific way: Whereas in the most ventral part they form long tangential rows, those towards the center are detached and are arranged radially. All sensory cells are wrapped by unpigmented pigment cell processes. In agelenid spiders the axons of the sensory cells exit from the middle of the cell body; their fine structure and course through the eye cup is described in detail. In the central part of the retina efferent nerve fibres were found forming synapses along the distal region of the receptor cells. A muscle is attached laterally to each eye cup that allows mainly rotational movements of the eyes. The optical performance (image resolution) of these main eyes with relatively few visual cells is discussed.  相似文献   

16.
Summary Intra-ocular deposition of horseradish peroxidase was used to visualize optic tract projections in normal and congenitally monophthalmic catfish and Xenopus. In neither species was evidence for an increased ipsilateral visual component found in congenitally one-eyed specimens. This indicates that competition between axons from both eyes is not an important mechanism for fiber distribution in the chiasm during ontogeny. Furthermore, it suggests that enhanced ipsilateral components, previously noted in unilaterally enucleated fish and anurans, are caused by debris of degenerated axons.  相似文献   

17.
Summary Drosophila have three types of photoreceptors in their compound eyes: R1–6, R7, and R8. In addition they have simple eyes, ocelli, with another type of photoreceptor. The role of each type of receptor and the possible interaction of their inputs were examined in an innate visual preference task, fast walking phototaxis. Flies were found to be attracted to light, i.e., positively phototactic. We compared the strength of the photopositive response and the spectral preference of normal fly strains and mutant fly strains lacking functional ocelli, R1–6, or R7, singly or in combination. Electroretinographic measures were used to confirm the specificity of deficits in visual mutant strains and the normal functioning of intact receptors.The strength of the photopositive response was strong, as indicated by the high correlation between increases in the intensity of the variable stimulus and increasing numbers of flies attracted toward it. Nearly all strains with or without intact receptor types showed high correlations whether the constant intensity stimulus offered as the alternative choice was bright 467 nm light (Figs. 1 and 2) or dim 572 nm light (Figs. 3 and 4). These constant stimuli were selected so that data in relevant intensity ranges of receptor function would be obtained. An important exception to the high correlations in the intensityresponse functions occurred with flies lacking function in all receptor types except R8; their positive phototaxis was extremely weak in dim light (Fig. 3).Analyses of the phototactic spectral sensitivities (Figs. 5 and 6), as well as comparisons with known electrophysiological spectral sensitivities, were used to determine the inputs from compound eye receptors and to demonstrate central interaction of these inputs with ocellar input. Several experiments with converging evidence suggest that R7 (when present) and R8 dominate fast phototaxis in the conditions of our experiment. R1–6 is the predominant compound eye receptor type in ERG measures; however, its behavioral input is clearly demonstrated only as enhancing R8 dominance of phototaxis in experiments using a dim constant stimulus and as enhancing R7 dominance of phototaxis in experiments using a bright constant stimulus. Similarly, the presence of ocellar receptors also facilitates R8 input in dim light and R7 input in bright light. The data substantiating these respective conclusions are: (1) a lack of dim light phototaxis in a mutant strain with only R8 functional (Fig. 3); and (2) a lack of an ultraviolet (UV) maximum from R7 in bright light phototaxis in a mutant strain with only R7 and R8 functional (Fig. 5c).Generally, absence of the ocelli and R1–6 had remarkably little effect on fast phototactic behavior except for the interaction with R7 and R8 inputs. This interaction is consistent with a theory that ocelli serve to modulate compound eye sensitivity.Abbreviations ERG electroretinogram - PDA prolonged depolarizing afterpotential - R (1–6, 7, 8) retinular cell(s) - UV ultraviolet We thank K. Frayer, F. Garfinkel, K. Hansen, M. Johnson, R. Srygley, and G. Sullivan for technical assistance; K. Hansen was instrumental in running the experiments at extremely dim conditions. Supported by grants NSF-BNS-76-11921 and NIH-1-RO1-EY-02487-01A1 (to W.S.S.). Experiments reported in this paper were included in a dissertation (Karin G. Hu) submitted in partial fulfillment of the requirements of the Ph.D. degree to the Department of Psychology, The Johns Hopkins University, Baltimore, Maryland 21218. We thank members of the Graduate Board Dissertation Examining Committee for their comments: Drs. E. Blass, R. DeVoe, K. Muller and W. Sofer.  相似文献   

18.
In the mammalian visual system, retinal ganglion cell axons terminate within the LGN in a series of alternating eye-specific layers. These layers are not present initially during development. In the cat they emerge secondarily following a prenatal period in which originally intermixed inputs from the two eyes gradually segregate from each other to give rise to the characteristic set of layers by birth. Many lines of evidence suggest that activity-dependent competitive interactions between ganglion cell axons from the two eyes for LGN neurons play an important role in the final patterning of retinogeniculate connections. Studies of the branching patterns of individual ganglion cell axons suggest that during the period when inputs from the two eyes are intermixed, axons from one eye send side branches into territory later occupied exclusively by axons from the other eye. Ultrastructural studies indicate that these branches in fact are sites of synaptic contacts, which are later eliminated since the side branches disappear as axons form their mature terminal arbors in appropriate territory. In vitro microelectrode recordings from LGN neurons indicate that they can receive convergent synaptic excitation from electrical stimulation of the optic nerves before but not after the eye-specific layers form, suggesting that at least some of the synaptic contacts seen at the ultrastructural level are functonal. Finally, experiments in which tetrodotoxin was infused intracranially during the two week period during which the eye-specific layers normally form demonstrate that it is possible to prevent, or at least delay, the formation of the layers. Accordingly, individual axons fail to develop their restricted terminal arbor branching pattern and instead branch widely throughout the LGN. These results indicate that all of the machinery necessary for synaptic function and competition is present during fetal life. Moreover, it is highly likely that neuronal activity is required for the formation of the eye-specific layers. If so, then activity would have to be present in the form of spontaneously generated action potentials, since vision is not possible at these early ages. Thus, the functioning of the retinogeniculate system many weeks before it is put to the use for which it is ultimately designed may contribute to the final patterning of connections present in the adult.  相似文献   

19.
The Eph family of receptor tyrosine kinases and their ligands the ephrins play an essential role in the targeting of retinal ganglion cell axons to topographically correct locations in the optic tectum during visual system development. The African claw-toed frog Xenopus laevis is a popular animal model for the study of retinotectal development because of its amenability to live imaging and electrophysiology. Its visual system undergoes protracted growth continuing beyond metamorphosis, yet little is known about ephrin and Eph expression patterns beyond stage 39 when retinal axons first arrive in the tectum. We used alkaline phosphatase fusion proteins of EphA3, ephrin-A5, EphB2, and ephrin-B1 as affinity probes to reveal the expression patterns of ephrin-As, EphAs, ephrin-Bs, and EphBs, respectively. Analysis of brains from stage 40 to adult frog revealed that ephrins and Eph receptors are expressed throughout development. As observed in other species, staining for ephrin-As displayed a high caudal to low rostral expression pattern across the tectum, roughly complementary to the expression of EphAs. In contrast with the prevailing model, EphBs were found to be expressed in the tectum in a high dorsal to low ventral gradient in young animals. In animals with induced binocular tectal innervation, ocular dominance bands of alternating input from the two eyes formed in the tectum; however, ephrin-A and EphA expression patterns were unmodulated and similar to those in normal frogs, confirming that the segregation of axons into eye-specific stripes is not the consequence of a respecification of molecular guidance cues in the tectum.  相似文献   

20.
1. Medulla interneurons of the optic lobe of P. americana were studied to determine their spectral properties. These neurons exhibited tonic firing which changed with monochromatic broadfield illumination of the ipsilateral eye. The response patterns of these neurons were analyzed by inferring their relation to the ultraviolet (UV) and green (G) photoreceptor groups of the eye. Their anatomy was described after injection of Lucifer yellow. 2. Broadband neurons received either excitatory or inhibitory input from both UV and G receptors. These neurons were not strictly sensitive to luminosity levels and had large cell bodies in the central rind of the medulla and wide dendritic arbors in the medulla neuropil. 3. Narrow band neurons received input from predominantly one receptor type. Their spectral sensitivity curves were more finely tuned than those of the primary receptors presumably due to neural interactions within the optic lobe. 4. Color opponent neurons were inhibited by UV and excited by G inputs in their sustained response. Under certain conditions, some of these neurons also showed G inhibition. These neurons suggested the presence of a subsystem involved in color vision. 5. Broadband, narrow band and color opponent properties were seen in some single neurons when tested over a 5-6 log unit range of intensity. The responses of some of these neurons changed when stimulus duration was increased. These findings indicated that functional classification for these neurons was dependent on stimulus intensity and duration. 6. Polarizational sensitivity was tested in preliminary experiments. Two neurons responded to the movement and direction of polarized light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号