首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteus mirabilis can grow anaerobically on the fermentable substrate, glucose. When the glucose medium was supplemented with an electron acceptor, growth doubled. However, the organism failed to grow anaerobically on the oxidizable substrate glycerol unless the medium was supplemented with an external electron acceptor. Dimethyl sulfoxide (DMSO), trimethylamine N-oxide (TMAO), nicotinamide N-oxide (NAMO), and nitrate (NO3) can serve this function. Cell-free extracts ofP. mirabilis can reduce these compounds in the presence of various electron donors. In order to determine whether the same or different terminal reductase(s) are involved in the reduction of these compounds, we isolated mutants unable to grow on glycerol/DMSO medium. When these mutants were tested on glycerol medium containing TMAO, NAMO, and NO3 as electron acceptors, it was found that there were two groups. Group I mutants were unable to grow with DMSO, TMAO, and NAMO, while their growth was unaffected with NO3. Group II mutants were unable to grow on any electron acceptor including NO3. Enzyme assays using reduced benzyl viologen with both groups of mutants were in agreement with growth studies. On the basis of these results, we conclude that the same terminal reductase is involved in the reduction of DMSO, TMAO, and NAMO (group I) and that the additional loss of NO3 reductase in group II mutants is probably owing to a defect in the synthesis or insertion of molybdenum cofactor.  相似文献   

2.
Escherichia coli can use dimethyl sulfoxide (DMSO) as an electron acceptor during anaerobic growth on the oxidizable substrate, glycerol. During growth, the DMSO is reduced to dimethyl sulfide (DMS). For the reduction of DMSO, NADH, formate, lactate, reduced benzyl viologen, reduced methyl viologen, and dithionite can serve as electron donors. The terminal reductase and the dehydrogenases linking the various electron donors to the electron transport chain were found to be membrane bound. Chlorate-resistant mutants (chl) were unable to grow and reduce DMSO. However, in the case of thechlD mutant, growth and DMSO reduction can be restored by growth in the presence of high concentrations of molybdate. Mutants ofE. coli blocked in menaquinone (vitamin K2) biosynthesis—menB, menC, andmenD—were unable to grow with DMSO as an electron acceptor, even though the terminal reductase is present in these mutants. Both growth and DMSO reduction could be restored in these mutants by growth in the presence of the menaquinone intermediates,o-succinylbenzoate and 1,4-dihydroxy-2-naphthoate, depending on the metabolic block of the mutant. Thus menaquinone is involved in electron transport during DMSO reduction.  相似文献   

3.
Proton translocation coupled to dimethyl sulfoxide (DMSO) reduction was examined in Escherichia coli HB101 grown anaerobically on glycerol and DMSO. Rapid acidification of the medium was observed when an anaerobic suspension of cells, preincubated with glycerol, was pulsed with DMSO, methionine sulfoxide, nitrate, or trimethylamine N-oxide. The DMSO-induced acidification was sensitive to the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (60 microM) and was inhibited by the quinone analog 2-n-heptyl-4-hydroxy-quinoline-N-oxide (5.6 microM). Neither sodium azide nor potassium cyanide inhibited the DMSO response. An apparent----H+/2e- ratio of 2.9 was obtained for DMSO reduction with glycerol as the reductant. Formate and H2(g), but not lactate, could serve as alternate electron donors for DMSO reduction. Cells grown anaerobically on glycerol and fumarate displayed a similar response to pulses of DMSO, methionine sulfoxide, nitrate, and trimethylamine N-oxide with either glycerol or H2(g) as the electron donor. However, fumarate pulses did not result in acidification of the suspension medium. Proton translocation coupled to DMSO reduction was also demonstrated in membrane vesicles by fluorescence quenching. The addition of DMSO to hydrogen-saturated everted membrane vesicles resulted in a carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone-sensitive fluorescence quenching of quinacrine dihydrochloride. The data indicate that reduction of DMSO by E. coli is catalyzed by an anaerobic electron transport chain, resulting in the formation of a proton motive force.  相似文献   

4.
Summary A nitrate reductase from the thermophilic acidophilic alga, Cyanidium caldarium, was studied. The enzyme utilises the reduced forms of benzyl viologen and flavins as well as both NADPH2 and NADH2 as electron donors to reduce nitrate.Heat treatment has an activating effect on the benzyl viologen (FMNH2, FADH2) nitrate reductase. At 50°C the activation of the enzyme is complete in about 20 min of exposure, whereas at higher temperatures (until 75°C) it is virtually an instantaneous phenomenon. The observed increase in activity is very low in extracts from potassium nitrate grown cells, whereas it is 5 or more fold in extracts from ammonium sulphate supplied cells. The benzyl viologen nitrate reductase is stable at 60°C and is destroyed at 75°C after 3 min; the NADPH2 nitrate reductase is destroyed at 60°C. The pH optimum for both activities was found in the range 7.8–8.2.Ammonium nitrate grown cells possess a very low level of nitrate reductase: when they are transferred to a nitrate medium a rapid synthesis of enzyme occurs. By contrast, when cells with fully induced activity are supplied with ammonia, a rapid loss of NADPH2 and benzyl viologen nitrate reductase occurs; however, activity measured with heated extracts shows that the true level of benzyl viologen nitrate reductase is as high as before ammonium addition. It is suggested that the presence of ammonia causes a rapid inactivation but no degradation of the enzyme.Cycloheximide inhibits the formation of the enzyme; the drug is without effect on the loss of nitrate reductase activity induced by ammonium. The nitrate reductase is reactivated in vivo by the removal of the ammonium, in the absence as well as in the presence of cycloheximide.  相似文献   

5.
The participation of distinct formate dehydrogenases and cytochrome components in nitrate reduction by Escherichia coli was studied. The formate dehydrogenase activity present in extracts prepared from nitrate-induced cells of strain HfrH was active with various electron acceptors, including methylene blue, phenazine methosulfate, and benzyl viologen. Certain mutants which are unable to reduce nitrate had low or undetectable levels of formate dehydrogenase activity assayed with methylene blue or phenazine methosulfate as electron acceptor. Of nine such mutants, five produced gas when grown anaerobically without nitrate and possessed a benzyl viologen-linked formate dehydrogenase activity, suggesting that distinct formate dehydrogenases participate in the nitrate reductase and formic hydrogenlyase systems. The other four mutants formed little gas when grown anaerobically in the absence of nitrate and lacked the benzyl viologen-linked formate dehydrogenase as well as the methylene blue or phenazine methosulfate-linked activity. The cytochrome b(1) present in nitrate-induced cells was distinguished by its spectral properties and its genetic control from the major cytochrome b(1) components of aerobic cells and of cells grown anaerobically in the absence of nitrate. The nitrate-specific cytochrome b(1) was completely and rapidly reduced by 1 mm formate but was not reduced by 1 mm reduced nicotinamide adenine dinucleotide; ascorbate reduced only part of the cytochrome b(1) which was reduced by formate. When nitrate was added, the formate-reduced cytochrome b(1) was oxidized with biphasic kinetics, but the ascorbate-reduced cytochrome b(1) was oxidized with monophasic kinetics. The inhibitory effects of n-heptyl hydroxyquinoline-N-oxide on the oxidation of cytochrome b(1) by nitrate provided evidence that the nitrate-specific cytochrome is composed of two components which have different redox potentials but identical spectral properties. We conclude from these studies that nitrate reduction in E. coli is mediated by the sequential operation of a specific formate dehydrogenase, two specific cytochrome b(1) components, and nitrate reductase.  相似文献   

6.
Escherichia coli strain LCB2048 is a double mutant defective in the synthesis of the two membrane-associated nitrate reductases A and Z. This strain can grow anaerobically on a non-fermentable carbon source, glycerol, in the presence of nitrate even in media supplemented with high concentrations of tungstate. This growth was totally dependent upon a highly active, periplasmic nitrate reductase (Nap). Due to the presence of a previously unreported narL mutation, synthesis of the periplasmic nitrate reductase by this strain was induced during anaerobic growth by nitrate. We have also demonstrated that methyl viologen is an ineffective electron donor to Nap: its use leads to an underestimation of the contribution of Nap activity to the rate of nitrate reduction in vivo.  相似文献   

7.
During anaerobic nitrate respiration Bacillus subtilis reduces nitrate via nitrite to ammonia. No denitrification products were observed. B. subtilis wild-type cells and a nitrate reductase mutant grew anaerobically with nitrite as an electron acceptor. Oxygen-sensitive dissimilatory nitrite reductase activity was demonstrated in cell extracts prepared from both strains with benzyl viologen as an electron donor and nitrite as an electron acceptor. The anaerobic expression of the discovered nitrite reductase activity was dependent on the regulatory system encoded by resDE. Mutation of the gene encoding the regulatory Fnr had no negative effect on dissimilatory nitrite reductase formation.  相似文献   

8.
Effects of artificial electron donors to deliver reducing power on enzymic denitrification were investigated using nitrate reductase and nitrite reductase obtained fromOchrobactrum antropi. The activity of nitrite reductase in the soluble portion was almost the same as that in the precipitated portion of the cell extract. Nitrate removal efficiency was higher with benzyl viologen than with methyl viologen or NADH as an artificial electron donor. The turn-over numbers of nitrate and nitrite reductase were 14.1 and 1.9 μmol of nitrogen reduced/min·mg cell extracts, respectively when benzyl viologen was used as an electron donor.  相似文献   

9.
Nitrate reduction to N2O was investigated in batch cultures of Shewanella putrefaciens MR-1, MR-4, and MR-7. All three strains reduced nitrate to nitrite to N2O, and this reduction was coupled to growth, whereas ammonium accumulation was very low (0 to 1 micromol liter-1). All S. putrefaciens isolates were also capable of reducing nitrate aerobically; under anaerobic conditions, nitrite levels were three- to sixfold higher than those found under oxic conditions. Nitrate reductase activities (31 to 60 micromol of nitrite min-1 mg of protein-1) detected in intact cells of S. putrefaciens were equal to or higher than those seen in Escherichia coli LE 392. Km values for nitrate reduction ranged from 12 mM for MR-1 to 1.3 mM for MR-4 with benzyl viologen as an artifical electron donor. Nitrate and nitrite reductase activities in cell-free preparations were demonstrated in native gels by using reduced benzyl viologen. Detergent treatment of crude and membrane extracts suggested that the nitrate reductases of MR-1 and MR-4 are membrane bound. When the nitrate reductase in MR-1 was partially purified, three subunits (90, 70, and 55 kDa) were detected in denaturing gels. The nitrite reductase of MR-1 is also membrane bound and appeared as a 60-kDa band in sodium dodecyl sulfate-polyacrylamide gels after partial purification.  相似文献   

10.
Nitrate reduction to N2O was investigated in batch cultures of Shewanella putrefaciens MR-1, MR-4, and MR-7. All three strains reduced nitrate to nitrite to N2O, and this reduction was coupled to growth, whereas ammonium accumulation was very low (0 to 1 micromol liter-1). All S. putrefaciens isolates were also capable of reducing nitrate aerobically; under anaerobic conditions, nitrite levels were three- to sixfold higher than those found under oxic conditions. Nitrate reductase activities (31 to 60 micromol of nitrite min-1 mg of protein-1) detected in intact cells of S. putrefaciens were equal to or higher than those seen in Escherichia coli LE 392. Km values for nitrate reduction ranged from 12 mM for MR-1 to 1.3 mM for MR-4 with benzyl viologen as an artifical electron donor. Nitrate and nitrite reductase activities in cell-free preparations were demonstrated in native gels by using reduced benzyl viologen. Detergent treatment of crude and membrane extracts suggested that the nitrate reductases of MR-1 and MR-4 are membrane bound. When the nitrate reductase in MR-1 was partially purified, three subunits (90, 70, and 55 kDa) were detected in denaturing gels. The nitrite reductase of MR-1 is also membrane bound and appeared as a 60-kDa band in sodium dodecyl sulfate-polyacrylamide gels after partial purification.  相似文献   

11.
A soluble nitrate reductase from the bacterium Acinetobacter calcoaceticus grown on nitrate has been characterized. The reduction of nitrate to nitrite is mediated by an enzyme of 96000 molecular weight that can use as electron donors either viologen dyes chemically reduced with dithionite or enzymatically reduced with NAD(P)H, through specific diaphorases which utilize viologens as electron acceptors. Nitrate reductase activity is molybdenum-dependent as shown by tungstate antagonistic experiments and is sensitive to -SH reagents and metal chelators such as KCN.The enzyme synthesis is repressed by ammonia. Moreover, nitrate reductase activity undergoes a quick inactivation either by dithionite and temperature or by dithionite in the presence of small amounts of nitrate. Cyanate prevents this inactivating process and can restore the activity once the inactivation had occurred, thus suggesting that an interconversion mechanism may participate in the regulation of Acinetobacter nitrate reductase.Abbreviations EDTA ethylenediaminetetraacetate - BV benzyl viologen - MV methyl viologen - MW molecular weight - NEM N-ethylmaleimide - p-HMB p-hydroxymercuribenzoate - DCPIP 2,6-dichlorophenol-indophenol - FMN flavin mononucleotide - FAD flavin adenine dinucleotide - KCNO potassium cyanate  相似文献   

12.
Methylenetetrahydrofolate reductase in Clostridium formicoaceticum has been purified to a specific activity of 140 mumol min-1 mg-1 when assayed at 37 degrees C, pH 7.2, in the direction of oxidation of 5-methyltetrahydrofolate with benzyl viologen as electron acceptor. The purified enzyme is judged to be homogeneous by polyacrylamide disc-gel electrophoresis and gel filtration. The enzyme which is an octamer has a molecular weight of about 237,000 and consists of four each of two different subunits having the molecular weights 26,000 and 35,000. The octameric enzyme contains per mol 15.2 +/- 0.3 iron, 2.3 +/- 0.2 zinc, 19.5 +/- 1.3 acid-labile sulfur, and 1.7 FAD. The UV-visible absorbance spectrum has a peak at 385 nm and a shoulder at 430 nm and is that of a flavoprotein containing iron-sulfur centers. The reductase, which is sensitive to oxygen, must be handled anaerobically and is stabilized by 2 mM dithionite. It catalyzes the reduction of methylene blue, menadione, benzyl viologen, rubredoxin, and FAD with 5-methyltetrahydrofolate and the oxidation of reduced ferredoxin and FADH2 with 5,10-methylenetetrahydrofolate. No activity was observed with pyridine nucleotides. It is suggested that the physiologically important reaction catalyzed by the enzyme is the reduced ferredoxin-dependent reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate.  相似文献   

13.
The addition of nitrate to cultures of Spirillum itersonii incubated under low aeration produced a diauxic growth pattern in which the second exponential phase was preceded by the appearance of nitrite in the medium. The organism also grew anaerobically in the presence of nitrate. Nitrate reductase activity could be demonstrated in cell-free extracts by use of reduced methyl viologen as the electron donor. The enzyme was located in the supernatant fraction after centrifugation of extracts for 2 hr at 40,000 x g, and it sedimented as a single peak when centrifuged in a sucrose gradient. Nitrate reductase activity was found in cells grown with low aeration without nitrate, but was increased about twofold by addition of nitrate. Enzyme activity was negligible in cells grown with high aeration. The proportion of soluble cytochrome c was increased two- to threefold in cells grown with nitrate. The specific activities of nitrate reductase and soluble cytochrome c rose when nitrate or nitrite was added to cell suspensions incubated with low aeration; nitrite was more effective than nitrate during the early stages of incubation. A nitrate reductase-negative mutant synthesized increased amounts of soluble cytochrome c in response to nitrate or to nitrite in the cell suspension system. It is concluded that enhanced synthesis of soluble cytochrome c does not require the presence of a functional nitrate reductase.  相似文献   

14.
15.
Selenite reduction in Rhodobacter sphaeroides f. sp. denitrificans was observed under photosynthetic conditions, following a 100-h lag period. This adaptation period was suppressed if the medium was inoculated with a culture previously grown in the presence of selenite, suggesting that selenite reduction involves an inducible enzymatic pathway. A transposon library was screened to isolate mutants affected in selenite reduction. Of the eight mutants isolated, two were affected in molybdenum cofactor synthesis. These moaA and mogA mutants showed an increased duration of the lag phase and a decreased rate of selenite reduction. When grown in the presence of tungstate, a well-known molybdenum-dependent enzyme (molybdoenzyme) inhibitor, the wild-type strain displayed the same phenotype. The addition of tungstate in the medium or the inactivation of the molybdocofactor synthesis induced a decrease of 40% in the rate of selenite reduction. These results suggest that several pathways are involved and that one of them involves a molybdoenzyme. Although addition of nitrate or dimethyl sulfoxide (DMSO) to the medium increased the selenite reduction activity of the culture, neither the periplasmic nitrate reductase NAP nor the DMSO reductase is the implicated molybdoenzyme, since the napA and dmsA mutants, with expression of nitrate reductase and DMSO reductase, respectively, eliminated, were not affected by selenite reduction. A role for the biotine sulfoxide reductase, another characterized molybdoenzyme, is unlikely, since its overexpression in a defective strain did not restore the selenite reduction activity.  相似文献   

16.
Dimethyl sulfoxide (DMSO) reductase of Escherichia coli is a membrane-bound, terminal anaerobic electron transfer enzyme composed of three nonidentical subunits. The DmsAB subunits are hydrophilic and are localized on the cytoplasmic side of the plasma membrane. DmsC is the membrane-intrinsic polypeptide, proposed to anchor the extrinsic subunits. We have constructed a number of strains lacking portions of the chromosomal dmsABC operon. These mutant strains failed to grow anaerobically on glycerol minimal medium with DMSO as the sole terminal oxidant but exhibited normal growth with nitrate, fumarate, and trimethylamine N-oxide, indicating that DMSO reductase is solely responsible for growth on DMSO. In vivo complementation of the mutant with plasmids carrying various dms genes, singly or in combination, revealed that the expression of all three subunits is essential to restore anaerobic growth. Expression of the DmsAB subunits without DmsC results in accumulation of the catalytically active dimer in the cytoplasm. The dimer is thermolabile and catalyzes the reduction of various substrates in the presence of artificial electron donors. Dimethylnaphthoquinol (an analog of the physiological electron donor menaquinone) was oxidized only by the holoenzyme. These results suggest that the membrane-intrinsic subunit is necessary for anchoring, stability, and electron transport. The C-terminal region of DmsB appears to interact with the anchor peptide and facilitates the membrane assembly of the catalytic dimer.  相似文献   

17.
Selenite reduction in Rhodobacter sphaeroides f. sp. denitrificans was observed under photosynthetic conditions, following a 100-h lag period. This adaptation period was suppressed if the medium was inoculated with a culture previously grown in the presence of selenite, suggesting that selenite reduction involves an inducible enzymatic pathway. A transposon library was screened to isolate mutants affected in selenite reduction. Of the eight mutants isolated, two were affected in molybdenum cofactor synthesis. These moaA and mogA mutants showed an increased duration of the lag phase and a decreased rate of selenite reduction. When grown in the presence of tungstate, a well-known molybdenum-dependent enzyme (molybdoenzyme) inhibitor, the wild-type strain displayed the same phenotype. The addition of tungstate in the medium or the inactivation of the molybdocofactor synthesis induced a decrease of 40% in the rate of selenite reduction. These results suggest that several pathways are involved and that one of them involves a molybdoenzyme. Although addition of nitrate or dimethyl sulfoxide (DMSO) to the medium increased the selenite reduction activity of the culture, neither the periplasmic nitrate reductase NAP nor the DMSO reductase is the implicated molybdoenzyme, since the napA and dmsA mutants, with expression of nitrate reductase and DMSO reductase, respectively, eliminated, were not affected by selenite reduction. A role for the biotine sulfoxide reductase, another characterized molybdoenzyme, is unlikely, since its overexpression in a defective strain did not restore the selenite reduction activity.  相似文献   

18.
Nitrate reductase of Mitsuokella multiacidus (formerly Bacteroides multiacidus) was solublized from the membrane fraction with 1% sodium deoxycholate and purified 40-fold by immunoaffinity chromatography on the antibody-Affi-Gel 10 column. The preparation showed a major band (86% of total protein) with enzyme activity and a minor band on polyacrylamide gel after disc electrophoresis in the presence of 0.1% Triton X-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave a major band, the relative mobility of which corresponded to a molecular weight of 160,000, and two minor bands. The molecular weight of the enzyme was determined to be 160,000 by gel filtration on Bio-Gel A-1.5 m in the presence of 0.1% deoxycholate. Molybdenum cofactor was detected in the enzyme by fluorescence spectroscopy and by complementation of nitrate reductase from the nit-1 mutant of Neurospora crassa. The M. multiacidus enzyme catalyzed reduction of nitrate, chlorate, and bromate using methyl viologen as an electron donor. The maximal activity was found at pH 6.2-7.5 for nitrate reduction. Either methyl or benzyl viologen served well as the electron donor, but FAD, FMN, and horse heart cytochrome c were not effective. Ferredoxin from Clostridium pasteurianum supplied electron to the nitrate reductase. The purified enzyme had Km values of 0.13 mM, 0.12 mM, and 0.22 mM for nitrate, methyl viologen, and ferredoxin, respectively. The enzyme activity was inhibited by cyanide (85% at 1 mM), azide (88% at 0.1 mM), and thiocyanate (75% at 10 mM).  相似文献   

19.
Two symbiotic species, Photobacterium leiognathi and Vibrio fischeri, and one non-symbiotic species, Vibrio harveyi, of the Vibrionaceae were tested for their ability to grow by anaerobic respiration on various electron acceptors, including trimethylamine N-oxide (TMAO) and dimethylsulphoxide (DMSO), compounds common in the marine environment. Each species was able to grow anaerobically with TMAO, nitrate or fumarate, but not with DMSO, as an electron acceptor. Cell growth under microaerophilic growth conditions resulted in elevated levels of TMAO reductase, nitrate reductase and fumarate reductase activity in each strain, whereas growth in the presence of the respective substrate for each enzyme further elevated enzyme activity. TMAO reductase specific activity was the highest of all the reductases. Interestingly, the bacteria-colonized light organs from the two squids, Euprymna scolopes and Euprymna morsei, and the light organ of the ponyfish, Leiognathus equus, also had high levels of TMAO reductase enzyme activity, in contrast to non-symbiotic tissues. The ability of these bacterial symbionts to support cell growth by respiration with TMAO may conceivably eliminate the competition for oxygen needed for both bioluminescence and metabolism.  相似文献   

20.
The linkage between the enzyme system catalysing formate hydrogenlyase and reductases involved in anaerobic respiration in intact cells of anaerobically grown Proteus mirabilis was studied. Reduction of nitrate and fumarate by molecular hydrogen or formate was possible under all growth conditions; reduction of tetrathionate and thiosulphate occurred only in cells harvested at late growth phase from a pH-regulated batch culture and not in cells harvested at early growth phase or in cells grown in pH-auxostat culture. Under all conditions, cells possessed the enzyme tetrathionate reductase. We conclude that linkage between tetrathionate reductase (catalysing also reduction of thiosulphate) and the formate hydrogenlyase chain is dependent on growth conditions. During reduction of high-potential oxidants such as fumarate, tetrathionate (when possible) or the artificial electron acceptor methylene blue by formate, there was no simultaneous H2 evolution due to the formate hydrogenlyase reaction. H2 production started only after complete reduction of methylene blue or fumarate, in the case of methylene blue after a lag phase without gas production. In preparations with a low fumarate reduction activity this was accompanied by an acceleration in CO2 production. During reduction of thiosulphate (a low-potential oxidant) or of tetrathionate in the presence of benzyl viologen (a low-potential mediator) by formate, H2 was evolved simultaneously. From this we conclude that formate hydrogenlyase is regulated by a factor that responds to the redox state of any electron acceptor couple present such that lyase activity is blocked when the acceptor couple is oxidised to too great an extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号