首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A better understand the ecology of microbes and their role in the global ecosystem could be achieved if traditional ecological theories can be applied to microbes. In ecology organisms are defined as specialists or generalists according to the breadth of their niche. Spatial distribution is often used as a proxy measure of niche breadth; generalists have broad niches and a wide spatial distribution and specialists a narrow niche and spatial distribution. Previous studies suggest that microbial distribution patterns are contrary to this idea; a microbial generalist genus (Desulfobulbus) has a limited spatial distribution while a specialist genus (Methanosaeta) has a cosmopolitan distribution. Therefore, we hypothesise that this counter-intuitive distribution within generalist and specialist microbial genera is a common microbial characteristic. Using molecular fingerprinting the distribution of four microbial genera, two generalists, Desulfobulbus and the methanogenic archaea Methanosarcina, and two specialists, Methanosaeta and the sulfate-reducing bacteria Desulfobacter were analysed in sediment samples from along a UK estuary. Detected genotypes of both generalist genera showed a distinct spatial distribution, significantly correlated with geographic distance between sites. Genotypes of both specialist genera showed no significant differential spatial distribution. These data support the hypothesis that the spatial distribution of specialist and generalist microbes does not match that seen with specialist and generalist large organisms. It may be that generalist microbes, while having a wider potential niche, are constrained, possibly by intrageneric competition, to exploit only a small part of that potential niche while specialists, with far fewer constraints to their niche, are more capable of filling their potential niche more effectively, perhaps by avoiding intrageneric competition. We suggest that these counter-intuitive distribution patterns may be a common feature of microbes in general and represent a distinct microbial principle in ecology, which is a real challenge if we are to develop a truly inclusive ecology.  相似文献   

2.
The biogeochemical gradients that will develop across the interface between a highly alkaline cementitious geological disposal facility for intermediate level radioactive waste and the geosphere are poorly understood. In addition, there is a paucity of information about the microorganisms that may populate these environments and their role in biomineralization, gas consumption and generation, metal cycling, and on radionuclide speciation and solubility. In this study, we investigated the phylogenetic diversity of indigenous microbial communities and their potential for alkaline metal reduction in samples collected from a natural analogue for cementitious radioactive waste repositories, the hyperalkaline Allas Springs (pH up to 11.9), Troodos Mountains, Cyprus. The site is situated within an ophiolitic complex of ultrabasic rocks that are undergoing active low-temperature serpentinization, which results in hyperalkaline conditions. 16S rRNA cloning and sequencing showed that phylogenetically diverse microbial communities exist in this natural high pH environment, including Hydrogenophaga species. This indicates that alkali-tolerant hydrogen-oxidizing microorganisms could potentially colonize an alkaline geological repository, which is predicted to be rich in molecular H2, as a result of processes including steel corrosion and cellulose biodegradation within the wastes. Moreover, microbial metal reduction was confirmed at alkaline pH in this study by enrichment microcosms and by pure cultures of bacterial isolates affiliated to the Paenibacillus and Alkaliphilus genera. Overall, these data show that a diverse range of microbiological processes can occur in high pH environments, consistent with those expected during the geodisposal of intermediate level waste. Many of these, including gas metabolism and metal reduction, have clear implications for the long-term geological disposal of radioactive waste.  相似文献   

3.
Soil fungi, protists, and animals (i.e., the eukaryome) play a critical role in key ecosystem functions in terrestrial ecosystems. Yet, we lack a holistic understanding of the processes shaping the global distribution of the eukaryome. We conducted a molecular analysis of 193 composite soil samples spanning the world's major biomes. Our analysis showed that the importance of selection processes was higher in the community assemblage of smaller-bodied and wider niche breadth organisms. Soil pH and mean annual precipitation were the primary determinants of the community structure of eukaryotic microbes and animals, respectively. We further found contrasting latitudinal diversity patterns and strengths for soil eukaryotic microbes and animals. Our results point to a potential link between body size and niche breadth of soil eukaryotes and the relative effect of ecological processes and environmental factors in driving their biogeographic patterns.  相似文献   

4.
The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA''s is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7×10−2 hr−1 (SE±2.9×10−3). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA''s during the construction and operational phase of the facility.  相似文献   

5.

Background

Soil phosphorus availability declines during long-term ecosystem development on stable land surfaces due to a gradual loss of phosphorus in runoff and transformation of primary mineral phosphate into secondary minerals and organic compounds. These changes have been linked to a reduction in plant biomass as ecosystems age, but the implications for belowground organisms remain unknown.

Methods

We constructed a phosphorus budget for the well-studied 120,000 year temperate rainforest chronosequence at Franz Josef, New Zealand. The budget included the amounts of phosphorus in plant biomass, soil microbial biomass, and other soil pools.

Results

Soil microbes contained 68–78 % of the total biomass phosphorus (i.e. plant plus microbial) for the majority of the 120,000 year chronosequence. In contrast, plant phosphorus was a relatively small pool that occurred predominantly in wood. This points to the central role of the microbial biomass in determining phosphorus availability as ecosystems mature, yet also indicates the likelihood of strong competition between plants and saprotrophic microbes for soil phosphorus.

Conclusions

This novel perspective on terrestrial biogeochemistry challenges our understanding of phosphorus cycling by identifying soil microbes as the major biological phosphorus pool during long-term ecosystem development.  相似文献   

6.
Intermediate-level radioactive waste (ILW), which dominates the radioactive waste inventory in the United Kingdom on a volumetric basis, is proposed to be disposed of via a multibarrier deep geological disposal facility (GDF). ILW is a heterogeneous wasteform that contains substantial amounts of cellulosic material encased in concrete. Upon resaturation of the facility with groundwater, alkali conditions will dominate and will lead to the chemical degradation of cellulose, producing a substantial amount of organic co-contaminants, particularly isosaccharinic acid (ISA). ISA can form soluble complexes with radionuclides, thereby mobilising them and posing a potential threat to the surrounding environment or ‘far field''. Alkaliphilic microorganisms sampled from a legacy lime working site, which is an analogue for an ILW-GDF, were able to degrade ISA and couple this degradation to the reduction of electron acceptors that will dominate as the GDF progresses from an aerobic ‘open phase'' through nitrate- and Fe(III)-reducing conditions post closure. Furthermore, pyrosequencing analyses showed that bacterial diversity declined as the reduction potential of the electron acceptor decreased and that more specialised organisms dominated under anaerobic conditions. These results imply that the microbial attenuation of ISA and comparable organic complexants, initially present or formed in situ, may play a role in reducing the mobility of radionuclides from an ILW-GDF, facilitating the reduction of undue pessimism in the long-term performance assessment of such facilities.  相似文献   

7.
Understanding the changes in plant–microbe interactions is critically important for predicting ecosystem functioning in response to human-induced environmental changes such as nitrogen (N) addition. In this study, the effects of a century-long fertilization treatment (> 150 years) on the networks between plants and soil microbial functional communities, detected by GeoChip, in grassland were determined in the Park Grass Experiment at Rothamsted Research, UK. Our results showed that plants and soil microbes have a consistent response to long-term fertilization—both richness and diversity of plants and soil microbes are significantly decreased, as well as microbial functional genes involved in soil carbon (C), nitrogen (N) and phosphorus (P) cycling. The network-based analyses showed that long-term fertilization decreased the complexity of networks between plant and microbial functional communities in terms of node numbers, connectivity, network density and the clustering coefficient. Similarly, within the soil microbial community, the strength of microbial associations was also weakened in response to long-term fertilization. Mantel path analysis showed that soil C and N contents were the main factors affecting the network between plants and microbes. Our results indicate that century-long fertilization weakens the plant–microbe networks, which is important in improving our understanding of grassland ecosystem functions and stability under long-term agriculture management.  相似文献   

8.
为探究放射性及其伴生污染对铀矿区附近土壤微生物群落功能多样性的影响,采集退役铀矿冶周围不同辐射值的土壤为研究对象,通过测定其土壤理化性质、土壤可培养微生物计数及Biolog-ECO微孔板培养,分析土壤放射性污染程度及理化性质对土壤微生物群落功能多样性和数量的影响。结果表明,矿区放射性污染土壤中重金属含量普遍较高,尤其是铅已超出管控标准。随着辐射值的增加,土壤中可培养微生物数量显著下降,特别是放线菌和真菌的数量;微生物群落功能多样性指数、物种丰富度指数、优势度、均一性指数显著下降;对碳源利用也逐渐下降,尤其是对酚酸类和胺类碳源,利用率分别下降25.8%、29.7%。RDA分析发现放射性核素是该区域驱动土壤微生物群落代谢发生变化的主要因素。铀矿区放射性污染及伴随的重金属污染明显改变土壤微生物群落结构,抑制了土壤微生物群落的代谢活性,造成土壤微生物群落功能多样性下降。  相似文献   

9.
The physicochemical conditions, composition of microbial communities, and the rates of anaerobic processes in the deep sand horizons used as a repository for liquid radioactive wastes (LRW) at the Siberian Chemical Combine (Seversk, Tomsk oblast), were studied. Formation waters from the observation wells drilled into the horizons used for the radioactive waste disposal were found to be inhabited by microorganisms of different physiological groups, including aerobic organotrophs, anaerobic fermentative, denitrifying, sulfate-reducing, and methanogenic bacteria. The density of microbial population, as determined by cultural methods, was low and usually did not exceed 104 cells/ml. Enrichment cultures of microorganisms producing gases (hydrogen, methane, carbon dioxide, and hydrogen sulfide) and capable of participation in the precipitation of metal sulfides were obtained from the waters of the disposal site. The contemporary processes of sulfate reduction and methanogenesis were assayed; the rates of these terminal processes of organic matter destruction were found to be low. The denitrifying bacteria from the deep repository were capable of reducing the nitrates contained in the wastes, provided sources of energy and biogenic elements were available. Biosorption of radionuclides by the biomass of aerobic bacteria isolated from groundwater was demonstrated. The results obtained give us insight into the functional structure of the microbial community inhabiting the waters of repository horizons. This study indicates that the numbers and activity of microbial cells are low both inside and outside the zone of radioactive waste dispersion, in spite of the long period of waste discharge.  相似文献   

10.
Since polymeric materials do not decompose easily, disposal of waste polymers is a serious environmental concern. Widespread studies on the biodegradation of rubbers have been carried out in order to overcome the environmental problems associated with rubber waste. This report provides an overview on the microbial degradation of natural and synthetic rubbers. Rubber degrading microbes, bacteria and fungi, are ubiquitous in the environment especially soil. The qualitative data like plate assay, scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and Sturm test indicated that both natural and synthetic rubbers can be degraded by microorganisms. It has confirmed that the enzymes latex clearing protein (Lcp) and rubber oxygenase A (RoxA) are responsible for the degradation of natural and synthetic rubbers. Lcp was obtained from Gram-positive bacterium Streptomyces sp. strain K30 and RoxA from Gram-negative bacterium Xanthomonas sp. strain 35Y. Analysis of degradation products of natural and synthetic rubbers indicated the oxidative cleavage of double bonds in polymer backbone. Aldehydes, ketones and other carbonyl groups were detected as degradation products from cultures of various rubber degrading strains. This review emphasizes the importance of biodegradation in environmental biotechnology for waste rubber disposal.  相似文献   

11.
Radionuclides (RNs) generated by nuclear and civil industries are released in natural ecosystems and may have a hazardous impact on human health and the environment. RN-polluted environments harbour different microbial species that become highly tolerant of these elements through mechanisms including biosorption, biotransformation, biomineralization and intracellular accumulation. Such microbial–RN interaction processes hold biotechnological potential for the design of bioremediation strategies to deal with several contamination problems. This paper, with its multidisciplinary approach, provides a state-of-the-art review of most research endeavours aimed to elucidate how microbes deal with radionuclides and how they tolerate ionizing radiations. In addition, the most recent findings related to new biotechnological applications of microbes in the bioremediation of radionuclides and in the long-term disposal of nuclear wastes are described and discussed.  相似文献   

12.
塑料广泛应用于人类的生活中,其中约80%的塑料垃圾被填埋,最终成为陆地和海洋垃圾。由于管理与处置不善,这些废弃物造成了巨大的环境污染,目前回收再利用是较好的处置方式,但对某些塑料废弃物并没有妥善的处置方式。生物降解作为环境友好的处置方式,具有巨大的应用潜力。本文对聚对苯二甲酸乙二醇酯、聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯和聚氨酯这6种常用塑料的降解微生物及生物降解机制进行了总结,对目前微生物降解塑料存在的问题进行了分析,并提出了促进微生物降解塑料应用的途径,为生物降解塑料菌株和降解酶的开发应用、降解机制研究提供理论参考。  相似文献   

13.
The disposal of used cutting fluid from the machining of uranium is problematical. Biodegradation offers the potential to convert this material into forms amenable to disposal as low level radioactive waste. The real bonus of biodegradation for radioactive applications crucially depends on the degree of mineralisation achieved. In non-radioactive trials using a consortium of bacteria selected from used cutting fluid, only 33% of the organic carbon was converted to carbon dioxide, even though 90% of the principal component (hydrocarbons) was biodegraded. Intermediate degradation products (identified as naphthenic acids) accumulated. Downstream processing of the biotreated fluid by ultrafiltration and adsorption onto activated charcoal produced a waste stream that would qualify as aqueous radioactive waste. Separated biomass was immobilised in a cement matrix that would qualify as solid radioactive waste, albeit in a volume which would make the overall process inefficient. Future work to optimise the process is proposed.  相似文献   

14.

While a number of studies have shown that a close association exists between microorganisms and varnished rocks, there is little hard evidence to support the existence of either specific desert varnish communities, or any role these microbes might play in the genesis of the varnish layers. To this end, we analyzed fatty acid methyl esters (FAMEs) of samples collected from the Mojave desert of southern California to compare the microbial community structure of desert varnish with the adjacent desert soil. These analyses indicated prokaryotic and fungal communities in both desert varnish and soil samples. FAMEs specific to gram-positive bacteria were found more often, and in greater abundance in varnish samples than in adjacent soils. This may represent a higher preservation potential of gram-positive bacteria fatty acids in varnish, a source area of varnish microorganisms dominated by gram-positive bacteria, or a varnish community dominated by gram-positive microorganisms. Heterogeneity in fatty acids was documented between varnished rocks and soils from different localities, as well as between samples collected from the same locality. This heterogeneity suggests that there are significant differences in the community structure of the microbial fauna found in varnish samples compared to the adjacent soil, and that desert varnish in the Mojave desert is not characterized by a unique and ubiquitous microbial community. These results suggest that the varnish is not a homogeneous and unique environment for biota, and provide no support for the hypothesis that the varnish layers are biogenic in origin.  相似文献   

15.
The Canadian Nuclear Fuel Waste Management Program is developing methods for the safe disposal of both used nuclear fuel and fuel recycle waste. The disposal strategy is based on interim storage of the used fuel, immobilization of either used fuel or recycle waste, and disposal, deep in a stable geological formation in the Canadian Shield. The disposal concept proposes a multibarrier system to inhibit the release of the radioactive waste from the disposal vault. The principal components of the multibarrier system are (i) the waste form in which the radionuclides are immobilized, (ii) engineered barriers including high integrity containers, buffers and backfills designed to retard the movement of groundwaters in the disposal vault, and (iii) the natural barrier provided by the massive geological formation itself. The research programs to investigate this concept are discussed briefly. Several different waste forms are being developed for the immobilization of high-level fuel recycle waste, including glass, glass-ceramics and crystalline materials. Dissolution of these materials in groundwater is the only likely scenario that could lead to radionuclide release. The factors that influence the aqueous dissolution behaviour of these materials are reviewed.  相似文献   

16.
Plant phenology is known to depend on many different environmental variables, but soil microbial communities have rarely been acknowledged as possible drivers of flowering time. Here, we tested separately the effects of four naturally occurring soil microbiomes and their constituent soil chemistries on flowering phenology and reproductive fitness of Boechera stricta, a wild relative of Arabidopsis. Flowering time was sensitive to both microbes and the abiotic properties of different soils; varying soil microbiota also altered patterns of selection on flowering time. Thus, soil microbes potentially contribute to phenotypic plasticity of flowering time and to differential selection observed between habitats. We also describe a method to dissect the microbiome into single axes of variation that can help identify candidate organisms whose abundance in soil correlates with flowering time. This approach is broadly applicable to search for microbial community members that alter biological characteristics of interest.  相似文献   

17.
水热增加下黑土细菌群落共生网络特征   总被引:2,自引:0,他引:2  
李东  肖娴  孙波  梁玉婷 《微生物学报》2021,61(6):1715-1727
黑土是有机质含量高且肥沃的土壤类型之一,气候变化会显著改变黑土中微生物群落的结构,同时影响群落间的潜在相互作用关系。[目的] 揭示水热增加对黑土中的细菌群落结构及潜在互作关系的影响。[方法] 基于土壤移置试验,采用16S rRNA高通量测序解析农田黑土(原位黑土、水热增加1和水热增加2)中的细菌群落结构对水热增加的响应;使用CoNet构建微生物群落共生网络,识别共生网络中的枢纽微生物;利用结构方程模型、相关性分析探究水热条件变化下土壤性质、微生物交互作用、多样性之间的直接、间接关系。[结果] 黑土中的微生物以疣微菌、变形杆菌、酸性杆菌和放线菌为主。水热增加下土壤微生物共生网络的拓扑性质发生显著变化,网络中表征微生物潜在竞争关系的负连线随着水热增加而显著增加。气候因素通过改变微生物潜在相互作用影响了群落水平分类多样性。物种竞争增强可能直接导致了土壤有机碳含量的降低。[结论] 水热增加会显著改变黑土中微生物之间的潜在交互作用,枢纽微生物的响应更加敏感。  相似文献   

18.
Non-target organisms are globally exposed to herbicides. While many herbicides – for example, glyphosate – were initially considered safe, increasing evidence demonstrates that they have profound effects on ecosystem functions via altered microbial communities. We provide a comprehensive framework on how herbicide residues may modulate ecosystem-level outcomes via alteration of microbiomes. The changes in soil microbiome are likely to influence key nutrient cycling and plant–soil processes. Herbicide-altered microbiome affects plant and animal performance and can influence trophic interactions such as herbivory and pollination. These changes are expected to lead to ecosystem and even evolutionary consequences for both microbes and hosts. Tackling the threats caused by agrochemicals to ecosystem functions and services requires tools and solutions based on a comprehensive understanding of microbe-mediated risks.  相似文献   

19.
Evidence that plants differ in their ability to take up both organic (ON) and inorganic (IN) forms of nitrogen (N) has increased ecologists’ interest on resource-based plant competition. However, whether plant uptake of IN and ON responds to differences in soil microbial community composition and/or functioning has not yet been explored, despite soil microbes playing a key role in N cycling. Here, we report results from a competition experiment testing the hypothesis that soil microbial communities differing in metabolic activity as a result of long-term differences to grazing exposure could modify N uptake of Eriophorum vaginatum L. and Nardus stricta L. These graminoids co-occur on nutrient-poor, mountain grasslands where E. vaginatum decreases and N. stricta increases in response to long-term grazing. We inoculated sterilised soil with soil microbial communities from continuously grazed and ungrazed grasslands and planted soils with both E. vaginatum and N. stricta, and then tracked uptake of isotopically labelled NH4 + (IN) and glycine (ON) into plant tissues. The metabolically different microbial communities had no effect on N uptake by either of the graminoids, which might suggest functional equivalence of soil microbes in their impacts on plant N uptake. Consistent with its dominance in soils with greater concentrations of ON relative to IN in the soluble N pool, Eriophorum vaginatum took up more glycine than N. stricta. Nardus stricta reduced the glycine proportion taken up by E. vaginatum, thus increasing niche overlap in N usage between these species. Local abundances of these species in mountain grasslands are principally controlled by grazing and soil moisture, although our results suggest that changes in the relative availability of ON to IN can also play a role. Our results also suggest that coexistence of these species in mountain grasslands is likely based on non-equilibrium mechanisms such as disturbance and/or soil heterogeneity.  相似文献   

20.
Soil bacteria produce a diverse array of antibiotics, yet our understanding of the specific roles of antibiotics in the ecological and evolutionary dynamics of microbial interactions in natural habitats remains limited. Here, we show a significant role for antibiotics in mediating antagonistic interactions and nutrient competition among locally coexisting Streptomycete populations from soil. We found that antibiotic inhibition is significantly more intense among sympatric than allopatric Streptomycete populations, indicating local selection for inhibitory phenotypes. For sympatric but not allopatric populations, antibiotic inhibition is significantly positively correlated with niche overlap, indicating that inhibition is targeted toward bacteria that pose the greatest competitive threat. Our results support the hypothesis that antibiotics serve as weapons in mediating local microbial interactions in soil and suggest that coevolutionary niche displacement may reduce the likelihood of an antibiotic arms race. Further insight into the diverse roles of antibiotics in microbial ecology and evolution has significant implications for understanding the persistence of antibiotic inhibitory and resistance phenotypes in environmental microbes, optimizing antibiotic drug discovery and developing strategies for managing microbial coevolutionary dynamics to enhance inhibitory phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号