共查询到16条相似文献,搜索用时 0 毫秒
1.
Birch seedlings (Betula pendula) were grown for four months in a greenhouse at three nutrient levels (fertilization of 0, 100 and 500 kg ha-1 monthy) and at four CO2 concentrations (350, 700, 1050 and 1400 ppm). The effect of CO2 concentration on the biomass production depended on the nutrient status. When mineralization of the soil material was the only source of nutrients (0 kg ha-1), CO2 enhancement reduced the biomass production slightly, whereas the highest production increase occurred at a fertilization of 100 kg ha-1, being over 100% between 350 and 700 ppm CO2. At 500 kg ha-1 the production increase was smaller, and the production decreased beyond a CO2 concentration of 700 ppm. The CO2 concentration had a slight effect on the biomass distribution, the leaves accounting for the highest proportion at the lowest CO2 concentration (350 ppm). An increase in nutrient status led to a longer growth period and increased the nutrient concentrations in the plants, but the CO2 concentration had no effect on the growth rhythm and higher CO2 reduced the nutrient concentrations. 相似文献
2.
The rate of glycolate excretion in Euglena gracilis Z and some microalgae grown at the atmospheric level of CO2 was determined using amino-oxyacetate (AOA). The extracellular O2 concentration was kept at 240 M by bubbling the incubation medium with air. Glycolate, the main excretion product, was excreted by Euglena at 6 mol·h-1·(mg chlorophyll (Chl))-1. Excretion depended on the presence of AOA, and was saturated at 1 mM AOA. A substituted oxime formed from glyoxylate and AOA was also excreted. Bicarbonate added at 0.1 mM did not prevent the excretion of glycolate. The excretion of glycolate increased with higher O2 concentrations in the medium, and was competitively inhibited by much higher concentrations of bicarbonate. Aminooxyacetate also caused excretion of glycolate from the green algae, Chlorella pyrenoidosa, Scenedesmus obliquus and Chlamydomonas reinhardtii grown on air, at the rates of 2–7 mol·h-1·(mg Chl)-1 in the presence of 0.2–0.6 mM dissolved inorganic carbon, but the cyanobacterium, Anacystis nidulans, grown in the same way did not excrete glycolate. The efficiency of the CO2-concentrating mechanism to suppress glycolate formation is discussed on the basis of the magnitude of glycolate formation in these low-CO2-grown cells.Abbreviations AOA
aminooxyacetate
- Chl
chlorophyll
- DIC
dissolved inorganic carbon
- HPLC
high-pressure liquid chromatography
- Rubisco
ribulose-1,5-bisphosphate carboxylase/oxygenase
This is the 16th paper in a series on the metabolism of glycolate in Euglena gracilis. The 15th paper is Yokota et al. (1985c) 相似文献
3.
Biomass productivity of 350 mg DCW L−1 day−1 with a final biomass concentration of 3.15 g DCW L−1 was obtained with Neochloris oleoabundans grown in artificial wastewater at sodium nitrate and phosphate concentrations of 140 and 47 mg L−1, respectively, with undetectable levels of residual N and P in effluents. In secondary municipal wastewater effluents enriched with 70 mg N L−1, the alga achieved a final biomass concentration of 2.1 g DCW L−1 and a biomass productivity of 233.3 mg DCW L−1 day−1. While N removal was very sensitive to N:P ratio, P removal was independent of N:P ratio in the tested range. These results indicate that N. oleoabundans could potentially be employed for combined biofuel production and wastewater treatment. 相似文献
4.
The effects of CO2 enrichment and soil nutrient status on tissue quality were investigated and related to the potential effect on growth and decomposition. Two California annuals, Avena fatua and Plantago erecta, were grown at ambient and ambient plus 35 Pa atmospheric CO2 in nutrient unamended and amended serpentine soil. Elevated CO2 led to significantly increased Avena shoot nitrogen concentrations in the nutrient amended treatment. It also led to decreased lignin concentrations in Avena roots in both nutrient treatments, and in Plantago shoots and roots with nutrient addition. Concentrations of total nonstructural carbohydrate (TNC) and carbon did not change with elevated CO2 in either species. As a consequence of increased biomass accumulation, increased CO2 led to larger total pools of TNC, lignin, total carbon, and total nitrogen in Avena with nutrient additions. Doubling CO2 had no significant effect on Plantago. Given the limited changes in the compounds related to decomposibility and plant growth, effects of increased atmospheric CO2 mediated through tissue composition on Avena and Plantago are likely to be minor and depend on site fertility. This study suggests that other factors such as litter moisture, whether or not litter is on the ground, and biomass allocation among roots and shoots, are likely to be more important in this California grassland ecosystem. CO2 could influence those directly as well as indirectly. 相似文献
5.
Effect of elevated CO2 concentration on seedling growth rate and photosynthesis inHevea brasiliensis
A. S. Devakumar M. S. Shesha Shayee M. Udayakumar T. G. Prasad 《Journal of biosciences》1998,23(1):33-36
To study the effect of elevated CO2 concentration on plant growth and photosynthesis, two clones ofHevea brasiliensis were grown in polybags and exposed to elevated concentration (700±25ppm) for 60 days. There was higher biomass accumulation,
leaf area and better growth when compared to ambient air grown plantso From A/Ci curves it is clear that photosynthetic rates
increases with increase in CO2 concentrations. After 60 days of exposure to higher CO2 concentration, a decrease in the carbon assimilation rate was noticed. 相似文献
6.
Taiji Kou Jianguo Zhu Zubin Xie Toshihiro Hasegawa Katia Heiduk 《Plant and Soil》2007,299(1-2):237-249
Soil respiration in a cropland is the sum of heterotrophic (mainly microorganisms) and autotrophic (root) respiration. The
contribution of both these types to soil respiration needs to be understood to evaluate the effects of environmental change
on soil carbon cycling and sequestration. In this paper, the effects of free-air CO2 enrichment (FACE) on hetero- and autotrophic respiration in a wheat field were differentiated and evaluated by a novel split-root
growth and gas collection system. Elevated atmospheric pCO2 of approximately 200 μmol mol−1 above the ambient pCO2 significantly increased soil respiration by 15.1 and 14.8% at high nitrogen (HN) and low nitrogen (LN) application rates,
respectively. The effect of elevated atmospheric pCO2 on root respiration was not consistent across the wheat growth stages. Elevated pCO2 significantly increased and decreased root respiration at the booting-heading stage (middle stage) and the late-filling stage
(late stage), respectively, in HN and LN treatments; however, no significant effect was found at the jointing stage (early
stage). Thus, the effect of increased pCO2 on cumulative root respiration for the entire wheat growing season was not significant. Cumulative root respiration accounted
for approximately 25–30% of cumulative soil respiration in the entire wheat growing season. Consequently, cumulative microbial
respiration (soil respiration minus root respiration) increased by 22.5 and 21.1% due to elevated pCO2 in HN and LN, respectively. High nitrogen application significantly increased root respiration at the late stage under both
elevated pCO2 and ambient pCO2; however, no significant effects were found on cumulative soil respiration, root respiration, and microbial respiration.
These findings suggest that heterotrophic respiration, which is influenced by increased substrate supplies from the plant
to the soil, is the key process to determine C emission from agro-ecosystems with regard to future scenarios of enriched pCO2. 相似文献
7.
Evaluation of soil respiration and soil CO2 concentration in a lowland moist forest in Panama 总被引:2,自引:0,他引:2
T. A. Kursar 《Plant and Soil》1989,113(1):21-29
Soil gas exchange was investigated in a lowland moist forest in Panama. Soil water table level and soil redox potentials indicate that the soils are not waterlogged. Substantial microspatial variation exists for soil respiration and soil CO2 concentration. During the rainy season, soil CO2 at 40 cm below the surface accumulates to 2.3%–4.6% and is correlated with rainfall during the previous two weeks. Temporal changes in soil CO2 are rapid, large and share similar trends between sampling points. Possible effects of soil CO2 changes on plant growth or phenology are discussed. 相似文献
8.
R. C. Leegood 《Photosynthesis research》1985,6(3):247-259
The regulatory properties of enzymes of the pathway of CO2 fixation are discussed in relation to changes in regulatory parameters with changing light, CO2 and temperature.Paper presented at the FESPP meeting (Strasbourg 1984) 相似文献
9.
The influence of elevated CO2 concentration ([CO2]) during plant growth on the carbon:nutrient ratios of tissues depends in part on the time and space scales considered. Most
evidence relates to individual plants examined over weeks to just a few years. The C:N ratio of live tissues is found to increase,
decrease or remain the same under elevated [CO2]. On average it increases by about 15% under a doubled [CO2]. A testable hypothesis is proposed to explain why it increases in some situations and decreases in others. It includes the
notion that only in the intermediate range of N-availability will C:N of live tissues increase under elevated [CO2]. Five hypotheses to explain the mechanism of such increase in C:N are discussed; none of these options explains all the
published results. Where elevated [CO2] did increase the C:N of green leaves, that response was not necessarily expressed as a higher C:N of senesced leaves. An
hypothesis is explored to explain the observed range in the degree of propogation of a CO2 effect on live tissues through to the litter derived from them. Data on C:P ratios under elevated [CO2] are sparse and also variable. They do not yet suggest a generalising-hypothesis of responses. Although, unlike for C:N,
there is no theoretical expectation that C:P of plants would increase under elevated [CO2], the average trend in the data is of such an increase. The processes determining the C:P response to elevated [CO2] seem to be largely independent of those for C:N. Research to advance the topic should be structured to examine the components
of the hypotheses to explain effects on C:N. This involves experiments in which plants are grown over the full range of N
and of P availability from extreme limitation to beyond saturation. Measurements need to: distinguish structural from non-structural
dry matter; organic from inorganic forms of the nutrient in the tissues; involve all parts of the plant to evaluate nutrient
and C allocation changes with treatments; determine resorption factors during tissue senescence; and be made with cognisance
of the temporal and spatial aspects of the phenomena involved.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
10.
Effects of elevated CO2 on plant growth and nutrient partitioning of rice (Oryza sativa L.) at rapid tillering and physiological maturity 总被引:2,自引:0,他引:2
《Journal of Plant Interactions》2013,8(1):35-42
Abstract This work investigates the relationship between plant growth, grain yield, nutrient acquisition and partitioning in rice (Oryza sativa L.) under elevated CO2. Plants were grown hydroponically in growth chambers with a 12-h photoperiod at either 370 or 700 µmol CO2 mol?1 concentration. Plant dry mass (DM), grain yield and macro- and micronutrient concentrations of vegetative organs and grains were determined. Elevated CO2 increased biomass at tillering, and this was largely due to an increase in root mass by 160%. Elevated CO2 had no effect on total nutrient uptake (N, P, K, Mg and Ca). However, nutrient partitioning among organs was significantly altered. N partitioning to leaf blades was significantly decreased, whereas the N partitioning into the leaf sheaths and roots was increased. Nutrient use efficiency of N, P, K, and Mg in all organs was significantly increased at elevated CO2. At harvest maturity, grain yield was increased by 27% at elevated CO2 while grain (protein) concentration was decreased by a similar magnitude (28%), suggesting that critical nutrient requirements for rice might need to be reassessed with global climate change. 相似文献
11.
The effect of pH and of Mg2+ concentration on the light activated form of stromal fructose-1,6-bisphosphatase (FBPase) was studied using the enzyme rapidly extracted from illuminated spinach chloroplasts. The (fructose-1,6-bisphosphate4-)(Mg2+) complex has been identified as the substrate of the enzyme. Therefore, changes of pH and Mg2+ concentrations have an immediate effect on the activity of FBPase by shifting the pH and Mg2+ dependent equilibrium concentration of the substrate. In addition, changes of pH and Mg2+ concentration in the assay medium have a delayed effect on FBPase activity. A correlation of the activities observed using different pH and Mg2+ concentrations indicates, that the effect is not a consequence of the pH and Mg2+ concentration as such, but is caused by a shift in the equilibrium concentration of a hypothetical inhibitor fructose-1,6-bisphosphate3- (uncomplexed), resulting in a change of the activation state of the enzyme. The interplay between a rapid effect on the concentration of the substrate and a delayed effect on the activation state enables a rigid control of stromal FBPase by stromal Mg2+ concentrations and pH. Fructose-1,6-bisphosphatase is allosterically inhibited by fructose-6-phosphate in a sigmoidal fashion, allowing a fine control of the enzyme by its product.Abbreviations Fru1,6 bis P
fructose-1,6-bisphosphate
- Fru6P
fructose-6-phosphate
- FBPase
fructose-1,6-bisphosphatase
Some of these results have been included in a preliminary report (Heldt et al. 1984) 相似文献
12.
Daniel L. Potts W. Stanley Harpole Michael L. Goulden Katharine Nash Suding 《Biological invasions》2008,10(7):1073-1084
Changes in vegetation structure and composition, particularly due to the invasion of exotic species, are predicted to influence
biosphere-atmosphere exchanges of mass and energy. Invasion of Cynara cardunculus (cardoon or artichoke thistle), a perennial, non-native thistle in coastal California grasslands presently dominated by non-native
annual grasses, may alter rates of ecosystem CO2 exchange and evapotranspiration (ET). During spring and summer 2006, we compared midday maximum net ecosystem CO2 exchange (NEE) and ET among adjacent grassland plots where Cynara was present and where it was absent. Measurements of NEE supported the prediction that deeply-rooted Cynara increase midday ecosystem C-assimilation. Cynara-mediated shifts in NEE were associated with increases in ecosystem photosynthesis rather than changes in ecosystem respiration.
Furthermore, the presence of Cynara was associated with increased ET during the growing season. An increase in aboveground live biomass (a proxy for leaf area)
associated with Cynara invasion may underlie shifts in ecosystem CO2 and water vapor exchange. Following mid-growing season sampling during April, we removed Cynara from half of the Cynara-containing plots with spot applications of herbicide. Three weeks later, midday fluxes in removal plots were indistinguishable
from those in plots where Cynara was never present suggesting a lack of biogeochemical legacy effects. Similar to woody-encroachment in some semi-arid ecosystems,
Cynara invasion increases midday ecosystem CO2 assimilation and evapotranspiration rates and has the potential to increase C-storage in California coastal grasslands. 相似文献
13.
The response of barley (Hordeum vulgare L. cv. Akcent) to various photosynthetic photon flux densities (PPFDs) and elevated [CO2] [700 μmol (CO2) mol−1; EC] was studied by gas exchange, chlorophyll (Chl) a fluorescence, and pigment analysis. In comparison with barley grown under ambient [CO2] [350 μmol (CO2) mol−1; AC] the EC acclimation resulted in a decrease in photosynthetic capacity, reduced stomatal conductance, and decreased total
Chl content. The extent of acclimation depression of photosynthesis, the most pronounced for the plants grown at 730 μmol
m−2 s−1 (PPFD730), may be related to the degree of sink-limitation. The increased non-radiative dissipation of absorbed photon energy for
all EC plants corresponded to the higher de-epoxidation state of xanthophylls only for PPFD730 barley. Further, a pronounced decrease in photosystem 2 (PS2) photochemical efficiency (given as FV/FM) for EC plants grown at 730 and 1 200 μmol m−2 s−1 in comparison with AC barley was related to the reduced epoxidation of antheraxanthin and zeaxanthin back to violaxanthin
in darkness. Thus the EC conditions sensitise the photosynthetic apparatus of high-irradiance acclimated barley plants (particularly
PPFD730) to the photoinactivation of PS2.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
14.
The potential of alginate-immobilized Microcystis packed in a column for maximum removal of Cu2+ at different flow rates, biomass, and initial metal ion concentration was assessed in a continuous flow system. Although
Cu2+ removal did occur at all the flow rates tested, it was maximum (54%) at 0.75-ml min−1 flow rate, 30 μg ml−1 initial metal ion concentration and 0.016 g biomass. Cu2+ removal was influenced by inlet metal ion concentration and biomass density. An increase in the biomass concentration from
0.016 to 0.128 g resulted in an apparent increase in percentage removal but the Cu2+ adsorbed per unit dry wt. declined. When the flow rate (0.75 ml min−1) and biomass density (0.064 g) were kept constant and the inlet metal ion concentration was varied from 10 to 150 μg ml−1, a 68% removal of Cu2+ was obtained at 50 μg ml−1 initial concentration in a time duration of 15 min. The metal-laden columns were efficiently desorbed and regenerated following
elution with double distilled water (DDW) (pH 2) (89%). This was followed by 1 mm EDTA > 1 mm NTA > 0.1 mm EDTA > 1 mm HCl
> 1 mm HNO3 > 5 mm CaCl2 > DDW (pH 7.0) > 1 mm NaHCO3 > 1 mm CaCl2. Of the total (2.83 mg) adsorbed Cu2+, 1.89 mg (67%) was desorbed by DDW (pH 2) within the first 20 min of elution time. Thereafter the desorption rate slowed
down and only 22% (0.632 mg) desorption was obtained in the last 20 min. In contrast to water pH 2, the desorption of Cu2+ by 1 mm EDTA was very slow, the maximum being 8% after 40 min of elution.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
15.
Two cultivars (Katy and Erhuacao) of apricot (Prunus armeniaca L.) were evaluated under open-field and solar-heated greenhouse conditions in northwest China, to determine the effect of
photosynthetic photon flux density (PPFD), leaf temperature, and CO2 concentration on the net photosynthetic rate (P
N). In greenhouse, Katy registered 28.3 μmol m−2 s−1 for compensation irradiance and 823 μmol m−2 s−1 for saturation irradiance, which were 73 and 117 % of those required by Erhuacao, respectively. The optimum temperatures
for cvs. Katy and Erhuacao were 25 and 35 °C in open-field and 22 and 30 °C in greenhouse, respectively. At optimal temperatures,
P
N of the field-grown Katy was 16.5 μmol m−2 s−1, 21 % less than for a greenhouse-grown apricot. Both cultivars responded positively to CO2 concentrations below the CO2 saturation concentration, whereas Katy exhibited greater P
N (18 %) and higher carboxylation efficiency (91 %) than Erhuacao at optimal CO2 concentration. Both cultivars exhibited greater photosynthesis in solar-heated greenhouses than in open-field, but Katy performed
better than Erhuacao under greenhouse conditions. 相似文献
16.
Eguchi N. Fukatsu E. Funada R. Tobita H. Kitao M. Maruyama Y. Koike T. 《Photosynthetica》2004,42(2):173-178
Photosynthetic traits of two-year-old Japanese larch seedlings (Larix kaempferi Carr.) grown at elevated CO2 concentrations were studied in relation to structural changes in the needles. Seedlings were grown at two CO2 concentrations, 360 (AC) and 720 (EC) mol mol–1 at high and low nutrient supply rates, high N (HN) and low N (LN). The photosynthetic capacity fell significantly in EC+LN, but increased significantly in EC+HN. Since the mesophyll surface area exposed to intercellular space per unit leaf area (Ames/A) is correlated with the photosynthetic rate, we measured Ames/A for larch needles growing in EC. Changes of Ames/A in both EC+HN and EC+LN were very similar to the changes in photosynthetic capacity. This suggests that the changes of Ames/A in EC probably caused the changes in the photosynthetic capacity. The changes of Ames/A in EC were attributed to changes in the mesophyll cell size and mesophyll cell number. The photosynthetic capacity in EC can be explained by taking morphological and structural adaptations into account as well as biochemical factors. 相似文献