首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Most metals disperse easily in environments and can be bioconcentrated in tissues of many organisms causing risks to the health and stability of aquatic ecosystems even at low concentrations. The use of plants to phytoremediation has been evaluated to mitigate the environmental contamination by metals since they have large capacity to adsorb or accumulate these elements. In this study we evaluate Salvinia minima growth and its ability to accumulate metals. The plants were cultivated for about 60 days in different concentrations of Cd, Ni, Pb and Zn (tested alone) in controlled environmental conditions and availability of nutrients. The results indicated that S. minima was able to grow in low concentrations of selected metals (0.03 mg L?1 Cd, 0.40 mg L?1 Ni, 1.00 mg L?1 Pb and 1.00 mg L?1 Zn) and still able to adsorb or accumulate metals in their tissues when cultivated in higher concentrations of selected metals without necessarily grow. The maximum values of removal metal rates (mg m2 day?1) for each metal (Cd = 0.0045, Ni = 0.0595, Pb = 0.1423 e Zn = 0.4046) are listed. We concluded that S. minima may be used as an additional tool for metals removal from effluent.  相似文献   

2.
Patterns of resource allocation reflect the plastic strategies that result from different selective pressures imposed by the environment. However, biomass allocation can be limited by architectural restrictions that change with the plant size. Our knowledge about sex allocation in heterosporous aquatic ferns remains scarce and studies on the reproductive strategies of these plants may yield valuable information regarding the evolutionary history of heterospory. Here, we investigate resources allocation, both in number and in biomass, to produce megasporangia and microsporangia among three species of Salvinia with different body sizes. Salvinia oblongifolia, S. auriculata and S. minima were collected in temporary ponds on the floodplain of the Pandeiros River in Brazil. We counted megasporangia and microsporangia, and measured their dry mass in each ramet. We also measured the total vegetative biomass and total reproductive biomass of each ramet in each species. Resource allocation to megasporangia production is associated with the specific body size of each species. However, the allocation for microsporangia production was higher in the species with intermediate size, which probably may be related to the drought event. The total reproductive biomass of each species was not dependent on the total vegetative biomass, but despite a similar reproductive effort, species differ on which sex is prioritized in the allocation process. Our results provide the first data about the processes underlying the sex allocation of Salvinia in the floodplains. The production of sori is size dependent in each Salvinia species and is shaped by drought, an intense selective pressure in temporary wet habitats.  相似文献   

3.
The use of Salvinia minima Baker for the removal of lead (Pb) and arsenic (As) from aqueous solutions was investigated. In a first approach, the effect of different concentrations of AsO43– and Pb(II) on the growth and accumulation of these metals was studied. The plants tolerated concentrations of 20–40 μM Pb(II) and 200 μM of AsO43–. Toxic effects occurred when 20 μM of Pb(II) and 100 μM AsO43– were used. These effects included growth inhibition (decreased yield of biomass and frond area) as well as an altered frond (leaf‐like structure in ferns) appearance and tissue consistence. S. minima showed a high uptake of Pb (34 mg/g dry weight) compared to As (0.5 mg/g dry weight). The uptake of As was inhibited by phosphate. Additional kinetic studies revealed a two‐stage accumulation of both elements: a rapid first phase within the first 6–12 hours and a slow second phase up to the end of the 96‐hour experiment.  相似文献   

4.
Reductants are often used to reduce Cr(VI) in chemical treatments, yet the effects of the reductants on Cr(VI) phytoremediation are not fully understood. This study investigates the effects of different reductants on Cr(VI) phytoremediation by Ipomoea aquatica in simulated solution with 3 mg L?1 of Cr(VI), pH0 of 6, and an incubation time of 5 days. Results indicate that the applications of S2O32?, Fe0, and Fe2+ at low doses notably increased root Cr concentrations, which were obviously higher than that those in the control (Cr6+ alone). However, high reductant concentrations decreased bioaccumulation of Cr in the roots and shoots of the plant.

Statistical results indicate that Cr concentrations were significantly and negatively correlated with Fe concentrations in the roots and shoots of the plant (p < 0.05). This suggest that Fe accumulation inhibited Cr accumulation in the plant. A Cr(VI) concentration of 3 mg L?1 caused short, brown lateral roots with tip necrosis, leaf chlorosis, and noticeable shoot wilting. The leaf necrosis and shoot wilting is caused by oxidative damage of lateral roots by Cr(VI) rather than by the reactive oxygen species generated by the oxidative stress. Addition of the reductants effectively reduced these plant injuries.  相似文献   

5.
The aim of this work was to compare Cr(III) and Cr(VI) removal kinetics from water by Pistia stratiotes and Salvinia herzogii. The accumulation in plant tissues and the effects of both Cr forms on plant growth were also evaluated. Plants were exposed to 2 and 6 mg L?1 of Cr(III) or Cr(VI) during 30 days. At the end of the experiment, Cr(VI) removal percentages were significantly lower than those obtained for Cr(III) for both macrophytes. Cr(III) removal kinetics involved a fast and a slow component. The fast component was primarily responsible for Cr(III) removal while Cr(VI) removal kinetics involved only a slow process. Cr accumulated principally in the roots. In the Cr(VI) treatments a higher translocation from roots to aerial parts than in Cr(III) treatments was observed. Both macrophytes demonstrated a high ability to remove Cr(III) but not Cr(VI). Cr(III) inhibited the growth at the highest studied concentration of both macrophytes while Cr(VI) caused senescence. These results have important implications in the use of constructed wetlands for secondary industrial wastewater treatment. Common primary treatments of effluents containing Cr(VI) consists in its reduction to Cr(III). Cr(III) concentrations in these effluents are normally below the highest studied concentrations in this work.  相似文献   

6.
Abstract

A simple, fast and sensitive spectrophotometric method for the simultaneous determination of Cr(III) and Cr(VI) in effluents and contaminated waters using a UV-visible spectrophotometer, which operates with an advanced software for multicomponent analysis, is proposed. The method consists in the complexation of Cr (III) with EDTA and reaction of Cr(VI) with diphenylcarbazide (DPC). Variables, such as pH and colour stability time, were studied. The effect of concomitant ions on the simultaneous Cr(III) and Cr(VI) determination was also investigated. The sums of the chromium species concentrations obtained by the proposed method were compared with the total chromium concentrations found by electrothermal atomic absorption spectrometry. Recoveries of the chromium species between 75 and 136% were obtained for spiked samples. The linear working range for Cr(III) was 0.5-30 mg L?1, while for Cr(VI) was 0.005-0.30 mg L?1. The detection limits were 0.3 mg L?1 for Cr(III) and 0.003 mg L?1 for Cr(VI) while the quantification limits were 1.0 mg L?1 for Cr(III) and 0.01 mg L?1 for Cr(VI).  相似文献   

7.
Toxicity of the effluent generated at the Rajrappa coal mine complex under the Central Coalfields Limited (CCL, a subsidiary of Coal India Limited) in Jharkhand, India was investigated. The concentrations (mg L?1) of all the toxic metals (Fe, Mn, Ni, Zn, Cu, Pb, Cr, and Cd) in the coal mine effluent were above the safe limit suggested by the Environmental Protection Agency (EPA 2003). Among these, Fe showed the highest concentration (18.21 ± 3.865), while Cr had the lowest effluent concentration (0.15 ± 0.014). Efforts were also made to detoxify the effluent using two species of aquatic macrophytes namely “‘Salvinia molesta and Pistia stratiotes.” After 10 days of phytoremediation, S. molesta removed Pb (96.96%) > Ni (97.01%) > Cu (96.77%) > Zn (96.38%) > Mn (96.22%) > Fe (94.12%) > Cr (92.85%) > Cd (80.99%), and P. stratiotes removed Pb (96.21%) > Fe (94.34%) > Ni (92.53%) > Mn (85.24%) > Zn (79.51%) > Cr (78.57%) > Cu (74.19%) > Cd (72.72%). The impact of coal mine exposure on chlorophyll content showed a significant decrease of 42.49% and 24.54% from control values in S. molesta and P. stratiotes, respectively, perhaps due to the damage inflicted by the toxic metals, leading to the decay of plant tissues.  相似文献   

8.
In the last decade, much attention has been paid to bioremediation of Cr(VI) using various bacterial species. Cr(VI) remediation by indegeneous bacteria isolated from contaminated sites of a tannery industry located in Tamil Nadu, India, was investigated in this study. Three Cr(VI) resistant bacterial strains (TES-1, TEf-1, and TES-2) were isolated and selected based on their Cr(VI) reduction ability in minimal salt medium. Among these three bacterial strains, TES-1 was found to be most efficient in bioreduction, while TES-2 was only found to be Cr(VI) resistant and showed negligible bioreduction, whereas TEf-1 was observed to be most Cr(VI) tolerant. Potential for bioremediation of TES-1 and TEf-1 was further investigated at different concentrations of Cr(VI) in the range of 50 to 350 mg L?1. TEf-1 showed prominent synchronous growth throughout the experiment, whereas TES-1 took a longer acclimatization time. Minimum inhibitory concentrations (MIC) of Cr(VI) for TES-1 and TEf-1 were approximated as 600 mg L?1 and 750 mg L?1, respectively. The kinetic behavior of Cr(VI) reduction by TES-1 and TEf-1 exhibited zero- and first-order removal kinetics for Cr(VI), respectively. The most efficient strain TES-1 was identified as Streptomyces sp. by gene sequencing of 16S rRNA.  相似文献   

9.
The reduction of Cr(VI) to Cr(III) is a potential detoxification process. In this study, seven Pseudomonas spp. were isolated and screened for chromium reduction. Isolate P4 was able to grow in the presence of 8000 μM chromium, in spite of the fact that the isolate was not previously exposed to any metal stress. Isolate P4 was identified as Pseudomonas aeruginosa strain SRD chr3 by 16S rDNA sequence analysis. Shake flask study showed 78% reduction of 1000 μM Cr(VI) after 6 h of incubation. The optimum pH for chromium reduction by the isolate was between 6 and 8. Isolate Pseudomonas aeruginosa gave 50–80% Cr(VI) reduction even in the presence of 100 mM of Cu, Mn, Ni, and Zn and 300–800 mM NaCl in 24 h, compared with the absence of any of these metals. In a 5-L reactor, the isolate showed 84.85% reduction of Cr(VI) even at the 70th cycle, with a hydraulic retention time of 24 h from the effluent of a hard chrome plating (electroplating) industry, which contained 2100 mg L?1 hexavalent chromium. The chromate-amended soil inoculated with the isolate showed 2800 μM chromium removal from 4000 μM Cr(VI) kg?1 of soil, which corresponds to 70% removal. The isolate had the ability to degrade stimulated waste containing 10,000 μM chromium.  相似文献   

10.
Toxic effects of metals appear to be partly related to the production of reactive oxygen species (ROS), which can cause oxidative damage to cells. The ability of several redox active metals [Fe(III), Cu(II), Ag(I), Cr(III), Cr(VI)], nonredox active metals [Pb(II), Cd(II), Zn(II)], and the metalloid As(III) and As(V) to produce ROS at environmentally relevant metal concentrations was assessed. Cells of the freshwater alga Chlamydomonas reinhardtii P. A. Dang. were exposed to various metal concentrations for 2.5 h. Intracellular ROS accumulation was detected using an oxidation‐sensitive reporter dye, 5‐(and‐6)‐carboxy‐2′,7′‐dihydrodifluorofluorescein diacetate (H2DFFDA), and changes in the fluorescence signal were quantified by flow cytometry (FCM). In almost all cases, low concentrations of both redox and nonredox active metals enhanced intracellular ROS levels. The hierarchy of maximal ROS induction indicated by the increased number of stained cells compared to the control sample was as follows: Pb(II) > Fe(III) > Cd(II) > Ag(I) > Cu(II) > As(V) > Cr(VI) > Zn(II). As(III) and Cr(III) had no detectable effect. The effective free metal ion concentrations ranged from 10?6 to 10?9 M, except in the case of Fe(III), which was effective at 10?18 M. These metal concentrations did not affect algal photosynthesis. Therefore, a slightly enhanced ROS production is a general and early response to elevated, environmentally relevant metal concentrations.  相似文献   

11.
Contamination of chromium signifies one of the major threats to soil system. Phytoremediation is a promising technique to reclaim metal-contaminated soil using plants which are capable to tolerate and accumulate heavy metals within in their tissues. The experiment reported in this article was carried out with six biofuel plant species, Cyamopsis tetragonoloba, Glycine max, Avena sativa, Abelmoschus esculentus, Sesamum indicum and Guizotia abyssinica, were subjected to eight Cr concentrations (0.5, 2.5, 5, 10, 25, 50, 75 and 100?mg kg?1 soil) to investigate Cr toxicity, tolerance and accumulation. After 12?weeks of experiment, Cr phytotoxicity on morphological and biochemical parameters were evaluated. For six plant species, seed germination and most of growth parameters were significantly (p?C. tetragonoloba?>?A. sativa?>?A. esculentus?>?S. indicum?>?G. max?>?G. abyssinica. Bioconcentration factor, bioaccumulation coefficient, translocation factor and phytoremdiation ratio suggested that C. tetragonoloba, A. sativa and A. esculentus being more tolerant; having higher Cr accumulation and could be a high efficient plants for reclamation of Cr-contaminated soils.  相似文献   

12.
Abstract

The Huaihe River has suffered increasing pressure from pollutants including metals from anthropogenic activities. In this study, enrichment and fractionation behavior of trace metals were analyzed in sediment samples obtained from fish spawning area of the Huaihe River (Anhui Section) to evaluate the potential ecological risk of trace metals to aquatic organisms. Geochemical indices including enrichment factor and geo-accumulation index as well as mean probable effect concentration quotient and risk assessment code were adopted to assess the contamination degree and potential ecological toxicity. Results showed that the total contents of Cu, Pb, Zn, Cr, Cd, As, and Hg in sediment were 23.1?±?6.4, 32.3?±?11.1, 76.8?±?14.2, 84.6?±?17.2, 0.2?±?0.1, 9.0?±?3.0, and 0.031?±?0.010?mg/kg, respectively. The indexes EF and Igeo revealed slight accumulation for Pb, Zn, Cr, Cd, and As in some sampling sites. The result of Qm-PEC demonstrated that trace metals in sediment were not toxic to aquatic organisms. Most trace metals appeared to mainly associate with the residual form suggesting lower mobility whereas Cd presented a relative higher exchangeable fraction indicating a great degree of bioavailability. The result of risk assessment code (RAC) evaluation revealed that Cd poses a medium ecological risk for aquatic organisms whereas most of the other trace metals pose low risks.  相似文献   

13.
Several Lupinus species, for example, Lupinus albus, Lupinus luteus, Lupinus angustifolius, and Lupinus hispanicus were used to accumulate Mn(II), Cd(II), Pb(II), Cr(III), Cr(VI), Hg2+, and CH3Hg+ from waste waters. The influence of different species concentrations (50 and 100 mg L-1) and pH on growing behavior as well as the resulting distribution of metals in the plants were investigated. The results obtained showed that lupins were able to germinate and to grow in the presence of the metals mentioned above, even when they were present at levels as high as 50 mg L-1. Accumulation of Pb(II), Cr(III), and Cd(II) was higher in roots than in shoots. As far as mercury is concerned, the highest CH3Hg and Hg2+ accumulation was detected in roots, but fast transport toward the leaves was noticed. In contrast to mercury, the uptake of chromium seems to be influenced by the chemical form of the analyte, remaining Cr(VI) in solution. No differences in growing behavior and accumulation were observed for the four Lupinus species studied. Even though plants were exposed only a relatively short time to the metal solutions, metal concentrations of approximately 2 g/kg of dry matter were detected in the young lupins plants. The feasibility of utilizing Lupinus plants for the removal of heavy metals from wastewater was also investigated. Lupins were able to grow under extreme conditions (wastewater, pH lower than 2) and to remove 98% of the initial amount of toxic metals present in the sample.  相似文献   

14.
Phytoremediation is an efficient method for the removal of heavy metals from contaminated systems. A productive disposal of metal accumulating plants is a major concern in current scenario. In this work, Cr(VI) accumulating Tradescantia pallida plant parts were investigated for its reuse as a biosorbent for the removal of Cr(VI) ions. The effect of pH, contact time, sorbent dosage, Cr(VI) concentration and temperature was examined to optimize these process parameters. Results showed that Cr(VI) exposed/unexposed T. pallida leaf biomass could remove 94% of chromium with a sorption capacity of 64.672 mg g?1. Whereas the kinetics of Cr(VI) biosorption was well explained by the pseudo second-order kinetic model, the Langmuir model better described the data on Cr(VI) sorption isotherm compared with the Freundlich model. The changes in the free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) were found to be ?5.276 kJ mol?1, 0.391 kJ mol?1 K?1 and 11.346 kJ mol?1, respectively, which indicated the process to be spontaneous, feasible and endothermic in nature. FTIR spectra of T. pallida leaf biomass revealed the active participation of ligands, such as ?NH, amide, hydroxyl and sulphonate groups present in the biomass for Cr(VI) binding, SEM analysis revealed a porous structure of the biosorbent for an easy uptake of Cr(VI).  相似文献   

15.
Bioreduction of Cr(VI) to less toxic Cr(III) by chromate-reducing bacteria has offered an ecological and economical option for chromate detoxification. The present study reports isolation of chromate-resistant bacterial strain Cr8 from chromium slag, identified as Pseudomonas stutzeri, based on 16S rRNA gene sequencing and their potential use in Cr(VI) reduction. The reduced product associated with bacterial cell was characterized by scanning electron microscopy–energy-dispersive x-ray spectroscopy (SEM-EDS) and x-ray diffraction (XRD) analyses. At initial concentrations of 100 and 200 mg L?1 Cr(VI), P. stutzeri Cr8 reduced Cr(VI) completely within 24 h, whereas it reduced almost 1000 mg L?1 Cr(VI) at the end of 120 h. Further, soil column leaching experiments were performed and found that bacterial cells reduced Cr(VI) leachate at faster rate that almost disappeared at the end of 168 h. The leachate precipitates also revealed efficient chromate bioreduction. The remediation process utilizing P. stutzeri could be considered as a viable alternative to reduce Cr(VI) contamination, especially emanating from the overburden dumps of chromite ores and mine drainage.  相似文献   

16.
Heavy metals–organics mixture pollution is increasingly concerned and simultaneous removal of organic pollutants and heavy metals is becoming significant. In this study, a strain was isolated from the sediment of a tannery effluent outfalls, which can remove o-dichlorobenzene (o-DCB) and Cr(VI) simultaneously. The bacterial isolate was identified as Serratia marcescens by the 16S rRNA gene sequences. The strain removed about 90% of o-DCB and more than 80% of Cr(VI) at the concentration of 1.29 g L?1 o-DCB and 20 mg L?1 Cr(VI). In the presence of concomitant pollutant o-DCB, the optimal pH (8.0) and temperature (30 °C) were determined for Cr(VI) removal. Changes of the bacterial cells and intracellular black Cr(III) sediments were observed by the TEM auxiliary analysis. The results of the FTIR spectroscopy analysis indicated that hydroxyl, amide and polysaccharides were involved in the process of Cr(VI) removal.  相似文献   

17.
Floating and submerged leaves of the aquatic fern Salvinia minima were used to analyze a metabolic interconnectivity among mitochondrial alternative respiration, residual respiration (Rresp), carbohydrate metabolism and soluble phenolics (SP) accumulation occurring under Cr(VI) stress. Treatment with Cr enhanced alternative pathway capacity (APcap) and (Rresp) in both leaf types. APcap/Tresp ratio revealed an increasing relative contribution of the alternative respiration to total respiration rate under Cr(VI) treatment. Sucrose content increased in Cr-treated leaves, but glucose and starch decreased. Enzyme profile showed that sucrose synthase (SS) rather than soluble acid invertase (AI) seems to be involved in sucrose metabolism of Cr-treated plants. Accumulation of SP showed a positive correlation with both APcap and Rresp in floating leaves. Decreases of SP in submerged leaves can be explained by an increased synthesis of polymerized phenolics. Results provide important new insights about influence of alternative and residual respirations on the synthesis of phenylpropanoid-derivative compounds. This work could also represent the first communication about involvement of the Rresp in defence mechanism of S. minima against Cr(VI) toxicity.  相似文献   

18.
An aerobic mixed culture collected in the form of activated sludge was enriched for Cr(VI) reduction. An indigenous microorganism was isolated from the enriched aerobic mixed culture and identified as Pseudomonas taiwanensis. Bioremediation studies were carried out for treating Cr(VI)-contaminated wastewater using the indigenous microorganism. The kinetic studies were carried out for initial Cr(VI) concentrations ranging from 20 to 200 mg L?1. The maximum consumption of Cr(VI) obtained was 108.3 mg L?1 for an initial Cr(VI) concentration of 150 mg L?1 at a solution pH of 7.0. The effect of nutrient dosage and pH were studied to get their optimum values. The same isolated bacterial strain was also used to treat Cr(VI)-contaminated industrial wastewater collected from a local plating industry. Various growth kinetic models, such as Monod, Powell, Haldane, Luong, and Edward models, were fitted with the obtained experimental data. The obtained results for different growth kinetic models indicate that the growth kinetics of Pseudomonas taiwanensis for bioremediation of Cr(VI) can be better understood by the Luong model (R2 = .913). The rate kinetic analysis was performed using zero-order and three-half-order kinetic models. The three-half-order kinetic model was found to be suitable for the present bioremediation study.  相似文献   

19.
《Biological Control》2005,32(2):263-268
Adults from two populations (Brazil and Florida) of Cyrtobagous salviniae were bioassayed to determine if they exhibited a preference for either Salvinia minima or Salvinia molesta. Adults did not discriminate between host species in initial tests that evaluated the tertiary growth form. Further tests which compared two growth forms (primary and tertiary) as well as plant species, found that adults from the Brazil population consistently preferred larger (tertiary) plants without regard for host species. Weevils from the Florida population showed a similar, but less distinct, pattern of preference. Although adults from the Florida population survived equally well and experienced a similar pre-oviposition period on both plant species, they laid more eggs in S. molesta. Adults from the two populations differ in size: Brazil weevils were larger, which may explain their sensitivity to plant size as compared with the smaller Florida adults. Narrower rhizomes in S. minima may restrict usage of this species by the larger weevils, whereas smaller larvae may be better able to burrow in a wider range of plant sizes. Both weevil populations should be suitable biological control agents for use in programs targeting S. molesta.  相似文献   

20.
Mobilization of heavy metals around coal power plants due to improper disposal of fly ash (FA) and wastewater have led to release of pollutants into the environment. For protection of inimitable natural resources, application of economical and effective technologies is needed such as phytoremediation is cost-effective, ecofriendly and a better option for elimination of metal from contaminated sites. Twelve plant species were sampled from ash dyke of Singrauli and screened for accumulation of metals for this study. Mobilization ratio of metals from soil to plant was evaluated to determine translocation factor. CILLAS analyzer, Raman spectroscopy and SEM-EDX were used for characterization of particle size, functional groups and morphology of fly ash. Results showed mean metal concentrations in contaminated soil for Fe, Mn, Cr, Zn, Ni, Cu, Cd and Pb were 909.4, 60.6, 9.5, 134.8, 13.6, 26.7, 2.9 and 25.4 µg g?1 respectively. Enrichment factors for soil, root and shoot for a contaminated site were 1.9, 3.8 &; 4.3 for Zn and 2.7, 3.5 &; 3.8 for Cd. Six hyper-accumulators with absorption efficiency >1 viz. I. carnea, S. nigrum, S. munja, T. angustifolia, C. dactylon and P. hysterophorus were identified which may be cultivated successively to reclaim and restore damaged agricultural land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号