首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The operation of tidal flow was studied using a pilot‐scale system treating high strength piggery wastewater. Located on a farm in Staffordshire, UK, the system consisted of five wetland treatment stages vegetated with common reeds of Phragmites australis. Wastewater samples were collected from the inlet and outlet of each stage and analyzed for BOD5, COD, NH4‐N, NO3‐N, NO2‐N, SS, PO4‐P and pH. Average hydraulic and organic loadings on the system were 0.12 m3/m2 d and 240 g BOD/m2 d, respectively, which is considerably higher than the typical loadings on conventional subsurface flow systems. On average, BOD5 and COD were reduced by 82 % and 80 % from initial concentrations of 2000 mg/L and 2750 mg/L, respectively, across the whole system. The first‐order kinetics constant for BOD5 removal (KBOD in m/d) in this tidal flow system is approximately 2.5 times the rate constant obtainable in a typical horizontal flow system, demonstrating a more efficient removal of organic matter in tidal flow wetlands. The overall efficiency of the system was found to increase with time before stabilizing towards the end of a start‐up period. Straight‐line correlations were established between the loading and removal of BOD5 and COD. Contributions by individual stages to the overall treatment were analyzed. SEM images of wetland media demonstrated the formation of biofilms and microbial activities inside the matrices of the wetland system, which accounted for the degradations of organic pollutants.  相似文献   

2.
The performance of an intermittently aerated sequencing batch reactor (IASBR) technology was investigated in achieving partial nitrification, organic matter removal and nitrogen removal from separated digestate liquid after anaerobic digestion of pig manure. The wastewater had chemical oxygen demand (COD) concentrations of 11,540 ± 860 mg/L, 5-day biochemical oxygen demand (BOD5) concentrations of 2,900 ± 200 mg/L and total nitrogen (TN) concentrations of 4,041 ± 59 mg/L, with low COD:N ratios (2.9) and BOD5:COD ratios (0.25). Synthetic wastewater, simulating the separated digestate liquid with similar COD and nitrogen concentrations but BOD5 of 11,500 ± 100 mg/L, was also treated using the IASBR technology. At a mean organic loading rate of 1.15 kg COD/(m3 d) and a nitrogen loading rate of 0.38 kg N/(m3 d), the COD removal efficiency was 89.8% in the IASBR (IASBR-1) treating digestate liquid and 99% in the IASBR (IASBR-2) treating synthetic wastewater. The IASBR-1 effluent COD was mainly due to inert organic matter and can be further reduced to less than 40 mg/L through coagulation. The partial nitrification efficiency of 71–79% was achieved in the two IASBRs and one cause for the stable long-term partial nitrification was the intermittent aeration strategy. Nitrogen removal efficiencies were 76.5 and 97% in IASBR-1 and IASBR-2, respectively. The high nitrogen removal efficiencies show that the IASBR technology is a promising technology for nitrogen removal from low COD:N ratio wastewaters. The nitrogen balance analysis shows that 59.4 and 74.3% of nitrogen removed was via heterotrophic denitrification in the non-aeration periods in IASBR-1 and IASBR-2, respectively.  相似文献   

3.
Abstract

Laboratory-scale anaerobic-aerobic fluidized-bed bioreactors (FBR) with porous magnetic ceramics as support were successfully applied to treat purified terephthalic acid (PTA) wastewater. After a short 14-day start-up period, the system was stably operating. During the 40?d stable period, the system organic loading rate (OLR) increased from 6.68 to 23.87?kg chemical oxygen demand (COD)/(m3d), the effluent COD and PTA were below 90 and 30?mg/L, respectively. The FBR presented excellent COD and PTA removal efficiency with a low hydraulic retention time (HRT) value of six hours. The growth kinetic parameters suggested that the biomass in FBR possess high maximum specific growth rate (μmax?=?2.22?d?1) and good tolerance to varied OLR (Ks?=?258.67?mg COD/L).  相似文献   

4.
Summary Brewery effluent with high organic content was treated anaerobically in a 1.17 m3 reactor over five months. At 26°C, and with a HRT of 13.3 hrs and a loading rate of 4.9 kg COD/m3d, the process reduced over 89% of COD and 92% of BOD5 from the brewery effluent; both reductions could be further improved by more effective removal of suspended solids.  相似文献   

5.
Oxygen transfer capacity and removal of ammonium and organic matter were investigated in this study to evaluate the performance of a lab-scale tidal flow constructed wetland. Average oxygen supply under tidal operation (350 g m−2 d−1) was much higher than in conventional constructed wetlands (<100 g m−2 d−1), resulting in enhanced removal of BOD5 and NH4+. Theoretical oxygen demand from BOD5 removal and nitrification was approximately matched by the measured oxygen supply, which indicated aerobic consumption of BOD5 and NH4+ under tidal operation. When BOD5 removal increased from 148 g m−2 d−1 to 294 g m−2 d−1, neither exhausted oxygen from the aggregate matrix during feeding period (111 g m−2 d−1) nor effluent dissolved oxygen (DO) concentration (2.8 mg/L) changed significantly, demonstrating that the oxygen transfer potential of the treatment system had not been exceeded. However, even though DO had not been exhausted, inhibition of nitrification was observed under high BOD loading. The loss of nitrification was attributed to excessive heterotrophic biofilm growth believed to induce oxygen transfer limitations or oxygen competition in thickened biofilms.  相似文献   

6.
The purpose of this study is to evaluate the efficiency of hybrid constructed wetlands (HCWs) in a rural mountainous area. The experiment was set up in small rural community named Tidili within the region of Marrakech, Morocco. The wastewater treatment plant was composed of three vertical flow constructed wetlands (VFCWs) working in parallel, followed by two parallel horizontal-subsurface flow constructed wetlands (HFCWs), with hydraulic loading rates of 0.5 and 0.75 m3/m2.d, respectively. The two units were planted with Phragmites australis at a density of 4 plants/m2. Wastewater samples were collected at the inlet of the storage tank and at the outlet of the whole system (VFCWs, HFCWs) stages. The main removal percentages of total suspended solids (TSS), biochemical oxygen demand measured in a 5-day test (BOD5), chemical oxygen demand (COD), total nitrogen, and total phosphorus were respectively 95%, 93%, 91%, 67%, and 62%. The system showed a very high capacity to remove total coliforms, fecal coliforms, and fecal streptococci (4.46, 4.31, and 4.10 Log units, respectively). Artificial neural networks (ANNs) were used to model the quality parameters (TSS, BOD5, COD) and total coliforms and fecal streptococci. Based on the obtained results, the ANN model could be considered as an efficient tool to predict the studied phytoremediation performances using HCWs.  相似文献   

7.
Dewatered alum sludge, a widely generated by-product of drinking water treatment plants using aluminium salts as coagulants was used as main substrate in a pilot on-site constructed wetland system treating agricultural wastewater for 11 months. Treatment performance was evaluated and spreadsheet analysis was used to establish correlations between water quality variables. Results showed that removal rates (in g/m2 d) of 4.6-249.2 for 5 day biochemical oxygen demand (BOD5), 35.6-502.0 for chemical oxygen demand (COD), 2.5-14.3 for total phosphorus (TP) and 2.7-14.6 for phosphate (PO4P) were achieved. Multiple regression analysis showed that effluent BOD5 and COD can be predicted to a reasonable accuracy (R2 = 0.665 and 0.588, respectively) by using input variables which can be easily monitored in real time as sole predictor variables. This could provide a rapid and cheap alternative to such laborious and time consuming analyses and also serve as management tools for day-to-day process control.  相似文献   

8.
The aim of this project has been to study and compare the ciliate populations present in roptating biological reactors treating three different wastewaters. Wastewaters chosen were a maize mill (nejayote), a sugarcane/ethyl alcohol plant (vinasses) and a recycled paper mill (whitewaters). The initial dissolved organic contents, measured as soluble chemical oxygen demand (COD) and biochemical oxygen demand in five days (BOD5), were 2040±150 mg COD L–1 and 585±5 mg BOD5L–1 for nejayote; 2000±20 mg COD L–1 and 640±5 mg BOD5 L–1 for vinasses and 960±200 mg COD L–1 and 120±10 mg BOD5 L–1 for whitewaters. Results obtained indicate that ciliated protozoa proliferated in the different chambers of each rotating biological reactor (RBR). Saprobity indices, as a quantitative evaluation parameter, indicate that there are no universal species of ciliates associated with specific BOD5 concentrations. Therefore, the number of species of ciliates present in the effluent indicate qualitatively the efficiency of removal of pollution from the wastewaters during treatment in the rotating biological reactors.  相似文献   

9.
With the rapid development of scaled anaerobic digestion of pig manure, the generation of liquid anaerobic digestate exceeds the farmland loading capacity, causing serious environmental pollution. Three laboratory‐scale horizontal subsurface flow constructed wetlands (CWs; planted + aeration, planted, and unplanted) were set up to investigate the feasibility of liquid digestate treatment in wetlands. Treatment capacity in different wetlands was evaluated under different influent concentrations (chemical oxygen demand [COD], 5 days biochemical oxygen demand [BOD5], and nitrogen forms). The effect of aeration and effluent recirculation on organic matter and total nitrogen removal was investigated. Results showed that integrating intermittent aeration in CWs significantly improved the oxygen condition (p < 0.01) in the wetland bed and promoted BOD5 removal to 90% in aerated CWs as compared with <15% in the unaerated CWs. Meanwhile, COD removal between these three wetlands did not show any difference and varied from 52 to 72% under influent concentration of 200–820 mg/L because of the high content of hard‐degradable organic matter in the liquid digestate. Intermittent aeration resulted in high ammonium removal (>98%) although the influent loading varied from 65 to 350 mg/L. However, intermittent aeration caused nitrate accumulation of 300 mg/L and limited total nitrogen (TN) removal of 33%. To intensify the TN removal, we verified effluent recirculation to increase the removal efficiency of TN to 78%. These results not only show the potential application of CWs for treatment of high‐strength liquid anaerobic digested slurry, but also indicate the significance of intermittent aeration on the enhanced removal of organic matter and ammonium.  相似文献   

10.
This paper describes the activity period of an experimental hybrid wetland system placed in a cold climate region. The aim is to determine the efficiency of the system in reducing TSS, BOD5, COD and other pollutants. The constructed wetland consists of a fat-removal unit and a basin for the storage and the distribution of the wastewater which precedes three phytoremediation beds: the first two are parallel and they work as submerged vertical flow wetland with gravel medium for an area of 180 m2; the last is a submerged horizontal flow wetland with sand medium and an area of 360 m2. The CW was designed to process a total estimated BOD5 loading rate of about 24 g m−2 d−1, which was less than half of the average actual loading rate. The wastewater treatment did not meet the required Italian law outflow limits, most likely due to BOD5 overloading.  相似文献   

11.
The effect of hydraulic loading rate (HLR) and hydraulic retention time (HRT) on the bioremediation of municipal wastewater using a pilot scale subsurface horizontal flow constructed treatment wetland (HFCTW) vegetated with Cyprus papyrus was investigated. Different HLRs were applied to the treatment system namely 0.18, 0.10, and 0.07 m3/m2. d with corresponding HRTs of 1.8, 3.2, and 4.7 days, respectively. The flow rate was 8 m3/d, and the average organic loading rate (OLR) was 0.037 kg BOD/m3/d. Results showed that the performance of the HFCTW was linearly affected by decreasing the HLR and increasing the HRT. The highest treatment efficiency was achieved at HRT (4.7 days) and HLR (0.07 m3/m2. d). The percentage reductions of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total suspended solids (TSS) were 86%, 87%, and 80%, respectively. Satisfactory nutrient removal was obtained. Also, removal of 2–3 logs of bacterial indicators of pollution was achieved. The dry biomass of Cyperus was 7.7 kg/m2 and proved to be very efficient in nitrification processes due to high diversity of the roots that increase the treatment surface area.  相似文献   

12.
A surface water treatment system consisting of an aeration reservoir and pond (holding capacities 45,000 and 19,000 m3) and a network of 12 horizontal subsurface flow gravel-filled constructed wetland cells of different sizes (total surface area 2.08 ha) and planted with Phragmites australis, was commissioned at Heathrow Airport, London, United Kingdom, in the winter of 2002. Ongoing monitoring of the treatment system has shown significant reductions in the biochemical oxygen demand (BOD5) throughout the system with levels decreasing by up to 76.7% across the constructed wetland cells following high anti- and de-icing fluid applications. However, continued exposure to BOD5 concentrations exceeding the design target has resulted in anaerobic conditions in the wetland. The addition of nutrients to the treatment system has resulted in improved removal efficiency for elevated BOD5 loadings in the aerated reservoir from 25.5% to 47.5%, The addition of different nutrient dosing regimes to complementary pilot-scale planted and unplanted vertical flow columns showed average but statistically insignificant BOD5 removal percentage increases from 61.9 ± 21.1% to 70.8 ± 26.5%, respectively, in planted columns over a 7-day period. There is an overall improvement in the performance of the system, but operational reviews are continuing.  相似文献   

13.
This paper describes the results obtained in an experimental multi-stage system of created wetlands in Mojacar, in semiarid SE Spain, operating from June to October 1997. We compare the removal efficiency of four different series of treatments each consisting of three stages, using different flow rates of sewage, flow regimes, types of substrate and influents. Pretreated water from an anaerobic stabilization pond and treated water from the last pond of a lagoon system were used, the latter to test the system's suitability as a complementary system for removing nitrogen and phosphorus. In spite of the initial high wastewater concentrations, the effluent conforms to the strictest European norms (directive 91/271) for primary and secondary retention. A net treatment area of 2.3 m2/PE showed a high performance for SS (90–96%), COD (87%) and BOD5 removal (90%) during the early stages of operation; however, nutrient removal was lower than was expected as compared with other studies. The addition of iron to the substrate improved phosphorus retention significantly (from 55 to 66%). The decrease of the net treatment area to 1.2 m2/PE did not significantly affect the wetland performance, with the exception of COD removal (78%). Series fed with treated water from the lagoon system (1.6 m2/PE) noticeably improved the quality of the effluent (average values of 7 mg/l total-N and 3 mg/l total-P).  相似文献   

14.
污水地下渗滤系统脱氮效果及动力学过程   总被引:2,自引:0,他引:2  
李海波  李英华  孙铁珩  王鑫 《生态学报》2011,31(24):7351-7356
建立了模拟污水地下渗滤过程的中试系统,重点考察了水力负荷对系统脱氮效率的影响情况,建立了描述地下渗滤系统微生物脱氮过程的动力学模型.结果表明:地下渗滤系统脱氮效果好,抗水力负荷冲击能力强,处理最佳水力负荷0.125m3· m-2· d-1,出水中氮浓度低于《城市污水再生利用——景观环境用水水质》标准( GB/T 18921-2002).地下渗滤系统硝化过程符合一级动力学模型NE=Noe-0.4812t,温度是影响硝化速率的主要因素,两者的关系是KT=0.2218×1.035(T-20);出水硝态氮浓度与水力停留时间之间呈负指数关系,可描述为C=16.3475e-0.2548t,碳源是引起反硝化速率变化的主要因子.在基质层垂直深度65 cm处二次补加生活污水,反硝化速率常数由0.0355提高到0.0488.强调地下渗滤系统的污水净化功能而忽视其生态服务功能,是系统运行中普遍存在的认识误区,过高的水力负荷不利于硝化-反硝化反应的顺利进行.地下渗滤系统运行应采取适宜的水力负荷方式,促进硝化-反硝化作用.  相似文献   

15.
16.
Low cost treatment of polluted wastewater has become a serious challenge in most of the urban areas of developing countries. The present study was undertaken to investigate the potential of Canna lily towards removal of carbon, nitrogen, and phosphorus from wastewater under sub-tropical conditions. A constructed wetland (CW) cell supporting vegetative layer of Canna lily was used to treat wastewater having high strength of CNP. Removal of biological oxygen demand (BOD3) and chemical oxygen demand (COD) varied between 69.8–96.4% and 63.6–99.1%, respectively. C. lily could efficiently remove carbon from a difficult to degrade wastewater at COD:BOD ratio of 24.4. Simultaneous reduction in TKN and nitrate pointed to good nitrification rates, and efficient plant assimilation as the dominant nutrient removal mechanism in the present study. Suitable Indian agro-climatic conditions favored plant growth and no evident stress over the Canna plant was observed. High removal rate of 809.8 mg/m2-day for TKN, 15.0 mg/m2-day for nitrate, and 164.2 mg/m2-day for phosphate suggests for a possible use of Canna-based CW for wastewater treatment for small, rural, and remote Indian communities.  相似文献   

17.
The life-cycle greenhouse gaseous emissions and primary exergy resources consumption associated with a horizontal subsurface flow constructed wetland (HSSF) were investigated. The subject of study was a wetland for municipal wastewater treatment with a 700-person-equivalent capacity. The effects of two types of emergent aquatic macrophytes (Phragmites australis and Schoenoplectus californicus) and seasonality on greenhouse gas (GHG) gas emissions, the environmental remediation cost (ERC) and the specific environmental remediation cost (SERC) were assessed. The results indicate that GHG emissions per capita (12–22 kgCO2eq/p.e/yr) and primary exergy resources consumed (24–27 MJ/m3) for the HSSF are lower than those of a conventional wastewater treatment plant (67.9 kgCO2eq/p.e/yr and 96 MJ/m3). The SERC varied between 176 and 216 MJ/kg biological oxygen demand (BOD5) removal, which should be further reduced by 20% for an improved BOD5 removal efficiency above 90%. The low organic matter removal efficiency is associated with a high organic load and low bacterial development. Seasonality has a marked effect on the organic removal efficiency and the SERC, but the macrophyte species does not.  相似文献   

18.
Phenol is a commonly found organic pollutant in industrial wastewaters. Its ecotoxicological significance is well known and, therefore, the compound is often required to be removed prior to discharge. In this study, plant-bacterial synergism was established in floating treatment wetlands (FTWs) in an attempt to maximize the removal of phenol from contaminated water. A common wetland plant, Typha domingensis, was vegetated on a floating mat and augmented with three phenol-degrading bacterial strains, Acinetobacter lwofii ACRH76, Bacillus cereus LORH97, and Pseudomonas sp. LCRH90, to develop FTWs for the remediation of water contaminated with phenol. All of the strains are known to have phenol-reducing properties, and grow well in FTWs. Results showed that T. domingensis was able to remove a small amount of phenol from the contaminated water; however, bacterial augmentation enhanced the removal potential significantly, i.e., 0.146 g/m2/day vs. 0.166 g/m2/day, respectively. Plant biomass also increased in the presence of bacterial consortia; and inoculated bacteria displayed successful colonization/survival in the rhizosphere, root interior and shoot interior of the plant. Similarly, highest reduction in chemical oxygen demand (COD), biochemical oxygen demand (BOD5), and total organic carbon (TOC) was achieved by the combined application of plants and bacteria. The study demonstrates that the plant-bacterial synergism in a FTW may be a more effective approach for the remediation of phenol-contaminated water.  相似文献   

19.
In Egypt, disposing of partially treated or untreated domestic and industrial wastewater into agricultural drains deteriorates their water quality. A growing interest in effective low-cost treatment of polluted water and wastewater has resulted in many studies on constructed wetlands.This study evaluates free water surface constructed wetlands (by far the largest application project is named “Lake Manzala Engineered Wetland [Egypt]”) utilized to improve the water quality in Bahr El Baqar drain, which is located at the northeastern edge of the Nile Delta. This drain discharges its water into Manzala Lake, which in turn has many fishing activities and is connected to the Mediterranean Sea. The full capacity of the constructed wetland system is 25,000 m3/day. Three various flow rate wetlands were investigated; five wetland beds of high flow rate of 0.344 m3/m2-day, five wetland beds of low flow rate of 0.048 m3/m2-day and reciprocated cells of flow of 500 m3/day.The concentrations of different contaminants along the constructed wetlands system were measured to determine the treatment efficiency. The effluent was compared with the Egyptian standards of water quality in agricultural drains (Law 48/1982). Due to the high percentage of the agricultural water drain, the concentrations of contaminants in the influent were relatively low. The percentages of removal for the different contaminants were BOD5: 52%, COD: 50%, TSS: 87%, TDS: 32%, NH4-N: 66%, PO4: 52%, Fe: 51%, Cu: 36%, Zn: 47% and Pb: 52%. The natural vegetation considerably increased the value of dissolved oxygen in the treated effluent. There were little differences in the removal efficiency between the high and low flow rates beds in the system.  相似文献   

20.
An on-site pilot-scale static granular bed reactor (SGBR) system was evaluated for treating wastewater from a slaughterhouse in Iowa. The study evaluated SGBR reactor suitability for slaughterhose wastewater having high particulate COD concentration (7.9 ± 4.3 g COD/L) at 0.3–1.4 m3/m2/day of the surface loading rates. High organic removal efficiency (over 95% of TSS and VSS removal) was obtained due to the consistent treatability of SGBR system during operation at HRTs of 48, 36, 30, 24, and 20 h. The average effluent TSS, VSS, COD, soluble COD, and BOD5 concentrations were 84, 71, 301,197, and 87 mg/L, respectively. An effective backwash procedure was performed once every 7–14 days to waste a portion of the accumulated solids in the system. This procedure limited the increase in hydraulic head loss and maintained the system stability. COD removal efficiencies greater than 95% were achieved at organic loading rates ranging from 0.77 to 12.76 kg/m3/day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号