首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of nitracrine (1-nitro-9-(3,3-N,N-dimethylaminopropylamino)acridine on DNA of cultured HeLa cells were studied. DNA strand breakage and interstrand cross-linking as well as DNA-protein cross-linking were measured by means of an alkaline elution technique and were compared with the cytotoxic effect of the drug. Interstrand cross-links were not detectable in the concentration range that inhibited cell growth up to 99%. DNA single-strand breaks were found when cells were treated with highly cytotoxic doses of the drug. DNA breakage was not reparable and exhibited a tendency to increase during incubation after drug removal. The only chromatin lesion induced by sublethal doses of nitracrine were DNA-protein cross-links which persisted for 24 h after drug treatment. It is concluded that DNA breaks represent degraded DNA from dying cells, whereas DNA-protein cross-links are specific cellular lesions, which may be responsible for the cell-killing effect of nitracrine.  相似文献   

2.
Induction of DNA single-strand breaks (ssb), their resealing and cytotoxicity by tert-butyl hydroperoxide (t-BuOOH) were investigated in cultured Chinese hamster V79 cells. The effect of the depletion of cellular glutathione (GSH), iron chelation and induction of metallothionein (MT) on these parameters was studied. t-BuOOH in a concentration range of 0.02-0.5 mM induced DNA ssb in a dose-dependent fashion. Strand breakage increased as a function of time up to 1 h. Divalent iron chelator o-phenanthroline suppressed markedly the induction of DNA ssb while the trivalent iron chelator desferrioxamine had no effect. GSH-depletion increased cytotoxicity of t-BuOOH. In contrast, the depletion of GSH did not affect the efficiency of formation of DNA ssb by t-BuOOH and the rate of resealing of the DNA damage. The induction of MT did not influence the efficiency of formation of DNA ssb by t-BuOOH. In summary, while GSH depletion and MT induction affected the formation of DNA ssb and cytotoxicity differently divalent iron was required for both. Therefore, appears likely that DNA breakage and cytotoxicity by t-BuOOH are caused by independent mechanisms.  相似文献   

3.
Oxidative damage in DNA. Lack of mutagenicity by thymine glycol lesions   总被引:10,自引:0,他引:10  
Thymine glycol (5,6-dihydroxy-5,6-dihydrothymine) is a base damage common to oxidative mutagens and the major stable radiolysis product of thymine in DNA. We assessed the mutagenic potential of thymine glycols in single-stranded bacteriophage DNA during transfection of Escherichia coli wild-type and umuC strains. cis-Thymine glycols were induced in DNA by reaction with the chemical oxidant, osmium tetroxide (OsO4); modification of thymines was quantitated by using anti-thymine glycol antibody. Inactivation of transfecting molecules showed that one lethal hit corresponded to 1.5 to 2.1 thymine glycols per phage DNA in normal cells, whereas conditions of W-reactivation (SOS induction) reversed 60 to 80% of inactivating events. Forward mutations in the lacI and lacZ' (alpha) genes of f1 and M13 hybrid phage DNAs were induced in OsO4-treated DNA in a dose-dependent manner, in both wild-type and umuC cells. Sequence analysis of hybrid phage mutants revealed that mutations occurred preferentially at cytosine sites rather than thymine sites, indicating that thymine glycols were not the principal pre-mutagenic lesions in the single-stranded DNA. A mutagenic specificity for C----T transitions was confirmed by OsO4-induced reversion of mutant lac phage. Pathways for mutagenesis at derivatives of oxidized cytosine are discussed.  相似文献   

4.
The potential reactivity and structural properties of oxiranes (epoxides) are advantageous when considering polymers for medical devices. However, epoxy compounds are widely known to have genotoxic properties. The objective of the study was to evaluate the cytotoxicity and primary DNA damage effects induced by oxiranes and siloranes, silicon containing oxiranes. The siloranes, Ph-Sil, Tet-Sil, and Sil-Mix and the oxiranes Cyracure UVR-6105 and 1,3-bis[2-(2-oxiranylmethyl) phenoxy]pentane (OMP-5) were dissolved in organic solvents and dilutions containing less than 0.5% solvent were used in biological assays. The concentration that reduced the viability of 50% (TC(50)) of L929 cells was measured using the MTT assay and guided the selection of subtoxic doses for evaluation of DNA damage. Ph-Sil was more cytotoxic than OMP-5, Cyracure UVR-6105 and Sil-Mix. However, the TC(50) value of Tet-Sil could not be determined due to its poor solubility. DNA damage was evaluated in the sister chromatid exchange (SCE) assay with CHO cells, and the alkaline comet assay with L929 cells. In contrast to the siloranes, the oxiranes exhibited significant increases (p>0.05) in SCE frequencies and DNA migration relative to their solvent controls. Our findings support previous reports that siloranes have low genotoxic potential and can be suitable components for development of biomaterials.  相似文献   

5.
The potential reactivity and structural properties of oxiranes (epoxides) are advantageous when considering polymers for medical devices. However, epoxy compounds are widely known to have genotoxic properties. The objective of the study was to evaluate the cytotoxicity and primary DNA damage effects induced by oxiranes and siloranes, silicon containing oxiranes. The siloranes, Ph-Sil, Tet-Sil, and Sil-Mix and the oxiranes Cyracure™ UVR-6105 and 1,3-bis[2-(2-oxiranylmethyl) phenoxy]pentane (OMP-5) were dissolved in organic solvents and dilutions containing less than 0.5% solvent were used in biological assays. The concentration that reduced the viability of 50% (TC50) of L929 cells was measured using the MTT assay and guided the selection of subtoxic doses for evaluation of DNA damage. Ph-Sil was more cytotoxic than OMP-5, Cyracure™ UVR-6105 and Sil-Mix. However, the TC50 value of Tet-Sil could not be determined due to its poor solubility. DNA damage was evaluated in the sister chromatid exchange (SCE) assay with CHO cells, and the alkaline comet assay with L929 cells. In contrast to the siloranes, the oxiranes exhibited significant increases (p > 0.05) in SCE frequencies and DNA migration relative to their solvent controls. Our findings support previous reports that siloranes have low genotoxic potential and can be suitable components for development of biomaterials.  相似文献   

6.
We have determined the effect of extended glutathione (GSH) depletion on cis-diamminedichloroplatinum(II) (DDP) cytotoxicity in parent and DDP-resistant human ovarian carcinoma cells. Cells were exposed to 50 microM buthionine sulfoximine (BSO) for 48 h and exposed to DDP for the last 24 h of this time. This treatment protocol sensitized 2008 cells to DDP. The dose modification factor (DMF) defined as IC50 control cells/IC50 GSH depleted cells was 1.6 +/- 0.5 (N = 9). DDP-resistant cells selected by acute, high dose DDP exposure were also sensitized by this treatment; the DMF in the 3-6-fold resistant 2008/DDP cells was 2.4 +/- 1.2 (N = 9). The sensitization was not significantly greater in the resistant cells than in the parent cells (P greater than 0.05). When the rebound of GSH following BSO exposure was reexamined, the GSH levels were found to rise rapidly following trypsinizing and plating. BSO treatment following DDP exposure had no effect on DDP cytotoxicity in 2008 and 2008/DDP cells. These results indicate that simply depleting GSH prior to DDP exposure is not sufficient for sensitizing these cells to DDP. In contrast to the potentiation of nitrogen mustard cytotoxicity, exposure to GSH depletion must be maintained during DDP treatment for enhancement of DDP cytotoxicity to occur.  相似文献   

7.
The effect of glutathione depletion on cellular toxicity of cadmium was investigated in a subpopulation (T27) of human lung carcinoma A549 cells with coordinately high glutathione levels and Cd++-resistance. Cellular glutathione levels were depleted by exposing the cells to diethyl maleate or buthionine sulfoximine. Depletion was dose-dependent. Exposure of the cells to 0.5 mM diethyl maleate for 4 hours or to 10 mM buthionine sulfoximine for 8 hours eliminated the threshold for Cd++ cytotoxic effect and deccreased the LD50S. Cells that were pretreated with 0.5 mM diethyl maleate or 10 mM buthionine sulfoximine and then exposed to these same concentrations of diethyl maleate or buthionine sulfoximine during the subsequent assay for colony forming efficiency produced no colonies, reflecting an enhanced sensitivity to these agents at low cell density. Diethyl maleate was found to be more cytotoxic than buthionine sulfoximine. Synergistic cytotoxic effects were observed in the response of diethyl maleate pretreated cells exposed to Cd++. Thus the results demostrated that depletion of most cellular glutathione in A549-T27 cells prior to Cd++ exposure sensitizes them to the agent's cytotoxic effects. Glutathione thus may be involved in modulating the early cellular Cd++ cytotoxic response. Comparison of reduced glutathione levels and of Cd++ cytotoxic responses in buthionine sulfoximine-treated A549-T27 cells with those levels in other, untreated normal and tumor-derived cells suggests that the higher level of glutathione in A549-T27 is not the sole determinant of its higher level of Cd++ resistance.Abbreviations BSO DL-buthionine-(R,S)-sulfoximine - DEM diethyl maleate - DMSO dimethyl sulfoxide - GSH reduced glutathione - MT metallothionein  相似文献   

8.
Treatment of mammalian cells with buthionine sulphoximine (BSO) or diethyl maleate (DEM) results in a decrease in the intracellular GSH (glutathione) and non-protein-bound SH (NPSH) levels. The effect of depletion of GSH and NPSH on radiosensitivity was studied in relation to the concentration of oxygen during irradiation. Single- and double-strand breaks (ssb and dsb) and cell killing were used as criteria for radiation damage. Under aerobic conditions, BSO and DEM treatment gave a small sensitization of 10-20 per cent for the three types of radiation damage. Also under severely hypoxic conditions (0.01 microM oxygen in the medium) the sensitizing effect of both compounds on the induction of ssb and dsb and on cell killing was small (0-30 per cent). At somewhat higher concentrations of oxygen (0.5-10 microM) however, the sensitization amounted to about 90 per cent for the induction of ssb and dsb and about 50 per cent for cell killing. These results strengthen the widely accepted idea that intracellular SH-compounds compete with oxygen and other electron-affinic radiosensitizers with respect to reaction with radiation-induced damage, thus preventing the fixation of DNA damages by oxygen. These results imply that the extent to which SH-compounds affect the radiosensitivity of cells in vivo depends strongly on the local concentration of oxygen.  相似文献   

9.
Mitomycin C (MMC), a quinone-containing antitumor drug, has been shown to alkylate DNA and to form DNA cross-links. The ability of MMC to alkylate O6-guanine and to form interstrand cross-links (ISC) has been studied using Mer+ and Mer- human embryonic cells. Mer+ (IMR-90) cells have been reported to contain an O6-alkylguanine transferase enzyme and are, in general, more resistant to alkylating agents than the Mer- (VA-13) cell line, which is deficient in the repair of O6-lesions in DNA. Studies reported here show that MMC is more cytotoxic to VA-13 cells compared to IMR-90 cells. The alkaline elution technique was used to quantify MMC-induced ISC, and double strand breaks (DSB) in these cells. The drug-dependent formation of DSB was significantly lower in IMR-90 cells than in VA-13 cells. In contrast, no significant difference in cross-linking could be detected at the end of 2-h drug treatment. Although a small increase in cross-link frequency was observed in the VA-13 cell line relative to the IMR-90 cell line 6 h post drug treatment, it is not clear whether monoalkylated adducts at the O6-position are formed, and contribute to cross-link formation for differential cytotoxicity in VA-13 cells. Electron spin resonance and spin-trapping technique were used to detect the formation of hydroxyl radical from MMC-treated cells. Our studies show that MMC significantly stimulated the formation of hydroxyl radical in VA-13 cells, but not in the IMR-90 cells. The formation of the hydroxyl radical was inhibited by superoxide dismutase (SOD) and catalase. In addition, the presence of these enzymes partially protected VA-13 cells from MMC toxicity but not IMR-90 cells. Further studies indicated that the decreased free radical formation and resistance to MMC may be due to the increased activities of catalase and glutathione transferase in the IMR-90 cell line. These results suggest that MMC-dependent DNA damage (alkylation and DNA DSB) and the stimulation of oxy-radical formation may play critical roles in the determination of MMC-induced cell killing.  相似文献   

10.
The chemotherapeutic, doxorubicin, is currently used empirically in the treatment of AIDS- related Kaposi's sarcoma (AIDS-KS). Although often employed in a chemotherapeutic cocktail (doxorubicin, bleomycin, vincristine) single-agent therapy has recently been attempted with liposome encapsulated doxorubicin. Although doxorubicin's mechanism of action against AIDS-KS is unknown, we hypothesized that doxorubicin's ability to undergo redox cycling is associated with its clinical efficacy. The current study was conducted to investigate the effects of doxorubicin on selected xenobiotic-associated biochemical responses of three cellular populations: KS lesional cells, nonlesional cells from the KS donors, and fibroblasts obtained from HIV- aged matched men. Our results show that during doxorubicin challenge, there are strong positive correlations between cellular glutathione (GSH) levels and viability (r = 0.94), NADPH levels and viability (r = 0.93), and GSH and NADPH levels (r = 0.93), and demonstrate that as a consequence of their abilities to maintain cellular thiol redox pools HIV- donor cells are significantly less susceptible to doxorubicin's cytotoxic effects relative to AIDS-KS cells. Additional studies further supported the contribution of reduced thiols in mediating doxorubicin tolerance. While pretreatment with the GSH precursor, N-acetylcysteine was cytoprotective for all cell groups during doxorubicin challenge, GSH depletion markedly enhanced doxorubicin's cytotoxic effects. Studies to investigate the effects of a hydroxyl scavenger and iron chelator during doxorubicin challenge showed moderate cytoprotection in the AIDS-KS cells but deleterious effects in the HIV control cells. Inactivation of the longer lived membrane generated ROI in the cytoprotective deficient AIDS-KS cells, as well as an impairment of endogenous defenses in the HIV- donor control cells, may account for these scavenger and chelator associated findings. In summary, our findings show that doxorubicin mediates, at least in part, its AIDS-KS cellular cytotoxic effects by a redox related mechanism, and provides a biochemical rationale for doxorubicin's clinical efficacy in AIDS-KS treatment.  相似文献   

11.
The mutagenicity of the mycotoxin patulin was assessed by the thymidine kinase mutation assay, which is based on point mutations and deletions. Patulin was mutagenic in cultured mouse lymphoma cells and the mutagenicity was significantly increased in cells pretreated with buthionine sulfoximine, which reduces intracellular glutathione levels. Presented at the 26th Mykotoxin-Workshop in Herrsching, Germany, May 17–19, 2004 Financial support Deutsche Forschungsgemeinschaft (Grant Me 574/14-2)  相似文献   

12.
Lipid peroxidation-mediated cytotoxicity and DNA damage in U937 cells   总被引:7,自引:0,他引:7  
Park JE  Yang JH  Yoon SJ  Lee JH  Yang ES  Park JW 《Biochimie》2002,84(12):1198-1205
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. In the present study, we evaluated lipid peroxidation-mediated cytotoxicity and oxidative DNA damage in U937 cells. Upon exposure of U937 cells to tert-butylhydroperoxide (t-BOOH) and 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH), which induce lipid peroxidation in membranes, the cells exhibited a reduction in viability and an increase in the endogenous production of reactive oxygen species (ROS), as measured by the oxidation of 2',7'-dichlorodihydrofluorescein. In addition, a significant decrease in the intracellular GSH level and the activities of major antioxidant enzymes were observed. We also observed lipid peroxidation-mediated oxidative DNA damage, reflected by an increase in 8-OH-dG level and loss of the ability of DNA to renature. When the cells were pretreated with the antioxidant N-acetylcysteine (NAC) or the spin trap alpha-phenyl-N-t-butylnitrone (PBN), lipid peroxidation-mediated cytotoxicity in U937 cells was protected. This effect seems to be due to the ability of NAC and PBN to reduce ROS generation induced by lipid peroxidation. These results suggest that lipid peroxidation resulted in a pro-oxidant condition of U937 cells by the depletion of GSH and inactivation of antioxidant enzymes, which consequently leads to a decrease in survival and oxidative damage to DNA. The results indicate that the peroxidation of lipid is probably one of the important intermediary events in oxidative stress-induced cellular damage.  相似文献   

13.
Transitional cell carcinoma (TCC), which is the most common type of bladder cancer, shows resistance to chemotherapeutic agents due to the overexpression of drug efflux pumps. In this study, the effects of feselol, a sesquiterpene coumarin extracted from Ferula badrakema, on cisplatin cytotoxicity were investigated in 5637 cells, a TCC subline. Cell viability and DNA lesion were evaluated by thiazolyl blue tetrazolium bromide and comet assays, respectively. Feselol had no significant cytotoxic effect in 5637 cells but at 32 microg/mL it increased the cytotoxicity of 1 microg/mL cisplatin by 37% after 24 h. Furthermore, the comet assay revealed that DNA damage induced by cisplatin in 5637 cells is enhanced by 31% when used in combination with feselol. Therefore, feselol might be considered as an effective reversal agent for future in vivo and clinical studies.  相似文献   

14.
Recent studies have described lipid peroxidation to be an early and sensitive consequence of cadmium exposure, and free radical scavengers and antioxidants have been reported to attenuate cadmium-induced toxicity. These observations suggest that cadmium produces reactive oxygen species that may mediate many of the untoward effects of cadmium. Therefore, the effects of cadmium (II) chloride on reactive oxygen species production were examined following a single oral exposure (0.50 LD50) by assessing hepatic mitochondrial and microsomal lipid peroxidation, glutathione content in the liver, excretion of urinary lipid metabolites, and the incidence of hepatic nuclear DNA damage. Increases in lipid peroxidation of 4.0- and 4.2-fold occurred in hepatic mitochondria and microsomes, respectively, 48 h after the oral administration of 44 mg cadmium (II) chloride/kg, while a 65% decrease in glutathione content was observed in the liver. The urinary excretion of malondialdehyde (MDA), formaldehyde (FA), acetaldehyde (ACT), and acetone (ACON) were determined at 0–96 h after Cd administration. Between 48 and 72 h posttreatment maximal excretion of the four urinary lipid metabolites was observed with increases of 2.2- to 3.6-fold in cadmium (II) chloride-treated rats. Increases in DNA single-strand breaks of 1.7-fold were observed 48 h after administration of cadmium. These results support the hypothesis that cadmium induces production of reactive oxygen species, which may contribute to the tissue-damaging effects of this metal ion.  相似文献   

15.
D E Berry  L H Chang  S M Hecht 《Biochemistry》1985,24(13):3207-3214
Bleomycin is hypothesized to cause cell growth inhibition and cell death via DNA cleavage. We have attempted to determine if net DNA cleavage is directly related to growth inhibition by measuring whether both parameters vary in parallel. Of primary importance to these studies was use of several bleomycin congeners. We have shown that these congeners vary in their abilities both to inhibit cell growth and to cause DNA damage. Bleomycin B2, tallysomycin, and phleomycin were the most potent growth inhibitors, and bleomycin B2 caused the most DNA damage. N-Acetylbleomycin A2 was inactive in both assays. The net amount of DNA damage measured at two levels of growth inhibition was compared for each congener and was found to vary widely among the congeners. Similarly, the degree of growth inhibition at a given level of submaximal DNA damage was found to vary widely when individual congeners were compared to each other. Hence, growth inhibition and net DNA damage due to bleomycin are not directly correlated with each other when individual congeners are compared to each other.  相似文献   

16.
Mitochondrial glutathione depletion by glutamine in growing tumor cells   总被引:3,自引:0,他引:3  
The effect of L-glutamine (Gln) on mitochondrial glutathione (mtGSH) levels in tumor cells was studied in vivo in Ehrlich ascites tumor (EAT)-bearing mice. Tumor growth was similar in mice fed a Gln-enriched diet (GED; where 30% of the total dietary nitrogen was from Gln) or a nutritionally complete elemental diet (SD). As compared with non-tumor-bearing mice, tumor growth caused a decrease of blood Gln levels in mice fed an SD but not in those fed a GED. Tumor cells in mice fed a GED showed higher glutaminase and lower Gln synthetase activities than did cells isolated from mice fed an SD. Cytosolic glutamate concentration was 2-fold higher in tumor cells from mice fed a GED ( approximately 4 mM) than in those fed an SD. This increase in glutamate content inhibited GSH uptake by tumor mitochondria and led to a selective depletion of mitochondrial GSH (mtGSH) content (not found in mitochondria of normal cells such as lymphocytes or hepatocytes) to approximately 57% of the level found in tumor mitochondria of mice fed an SD. In tumor cells of mice fed a GED, 6-diazo-5-norleucine- or L-glutamate-gamma-hydrazine-induced inhibition of glutaminase activity decreased cytosolic glutamate content and restored GSH uptake by mitochondria to the rate found in EAT cells of mice fed an SD. The partial loss of mtGSH elicited by Gln did not affect generation of reactive oxygen intermediates (ROIs) or mitochondrial functions (e.g., intracellular peroxide levels, O(2)(-)(*) generation, mitochondrial membrane potential, mitochondrial size, adenosine triphosphate and adenosine diphosphate contents, and oxygen consumption were found similar in tumor cells isolated from mice fed an SD or a GED); however, mitochondrial production ROIs upon TNF-alpha stimulation was increased. Our results demonstrate that glutamate derived from glutamine promotes an inhibition of GSH transport into mitochondria, which may render tumor cells more susceptible to oxidative stress-induced mediators.  相似文献   

17.
The role of glutathione (GSH) in cellular protection mechanisms in round spermatids from hamsters was studied. Isolated spermatids were largely depleted of GSH by treating the cells for 2 h with the GSH conjugating agent diethyl maleate (DEM). This treatment resulted in a 90% decrease of the cellular GSH content, but did not affect the ATP content. Exposure of isolated spermatids to cumene hydroperoxide (CHP), a compound which is detoxicated by the GSH redox cycle, showed that the cytotoxicity of the peroxide was markedly potentiated by GSH depletion of the cells. The cytotoxicity was reflected by the cellular ATP content. A decrease of the ATP content of the GSH-depleted spermatids was observed at 5-6-fold lower CHP concentrations, as compared to control cells. An increased cytotoxicity in GSH-depleted cells was also observed using 1-chloro-2,4-dinitrobenzene (CDNB), which is a reactive compound that is detoxicated by glutathione conjugation. The induction of single-strand DNA breaks by gamma radiation was 3-5-fold higher in GSH-depleted spermatids as compared to control cells. This radiation-induced damage was estimated under hypoxic conditions (500 p.p.m. O2 in N2). GSH depletion did not affect the repair of single-strand DNA breaks following the irradiation. The present results indicate that cellular GSH has an important function in the defence mechanisms of round spermatids against peroxides, electrophilic xenobiotics and radiation-induced DNA damage.  相似文献   

18.
DNA damage and DNA repair in cultured human cells exposed to chromate   总被引:1,自引:0,他引:1  
DNA damage and DNA repair have been observed in cultured human skin fibroblasts exposed to potassium chromate but not to a chromic glycine complex. DNA repair synthesis (unscheduled incorporation of [3H]thymidine (TdR)) was measured in cells during or following exposure to chromate and was significant for chromate concentrations above 10(-6) M. Maximal DNA repair was observed at about 10(-4) M chromate. DNA repair capacity was found to be saturated at this concentration. Chromate was stable for at least 8 h in culture medium and produced approximately a linear increase in repair with duration of exposure. DNA damage as determined by alkaline sucrose gradient sedimentation was detected after treatment for 1.5 h with 5 . 10(-4) M chromate. Exposure to 10(-7) M chromate solution for 7 days inhibited colony formation while acute (1 h) treatment was toxic at 5 . 10(-6) M. The chromic glycine complex was toxic above 10(-3) M for a 1-week exposure but was not observably toxic after a 1-h treatment. These results indicate that chromate and not chromic compounds may be the carcinogenic form for man. The nature of the ultimate carcinogen is discussed. These findings illustrate the utility of the DNA repair technique to study the effects on human cells of inorganic carcinogens and mutagens.  相似文献   

19.
Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants   总被引:1,自引:0,他引:1  
Tobacco (Nicotiana tabacum L. var. xanthi) seedlings were treated with aqueous solutions of lead nitrate (Pb2+) at concentrations ranging from 0.4 mM to 2.4 mM for 24 h and from 25 microM to 200 microM for 7 days. The DNA damage measured by the comet assay was high in the root nuclei, but in the leaf nuclei a slight but significant increase in DNA damage could be demonstrated only after a 7-day treatment with 200 microM Pb2+. In tobacco plants growing for 6 weeks in soil polluted with Pb2+ severe toxic effects, expressed by the decrease in leaf area, and a slight but significant increase in DNA damage were observed. The tobacco plants with increased levels of DNA damage were severely injured and showed stunted growth, distorted leaves and brown root tips. The frequency of somatic mutations in tobacco plants growing in the Pb2+-polluted soil did not significantly increase. Analytical studies by inductively coupled plasma optical emission spectrometry demonstrate that after a 24-h treatment of tobacco with 2.4 mM Pb2+, the accumulation of the heavy metal is 40-fold higher in the roots than in the above-ground biomass. Low Pb2+ accumulation in the above-ground parts may explain the lower levels or the absence of Pb2+-induced DNA damage in leaves.  相似文献   

20.
The mechanism of action of two tetrahydrobenzopsoralenquinones: 4-methyl-tetrahydrobenzopsoralenquinone (compound 3) and 4-hydroxymethyltetrahydrobenzopsoralenquinone (compound 4) was studied in mammalian cells. These agents differ structurally from earlier benzo and tetrahydrobenzopsoralen derivatives 4-hydroxymethylbenzopsoralen (compound 1) and 4-hydroxymethyltetrahydrobenzopsoralen (compound 2) by the replacement of the benzopyranone with a quinonepyranone. In this study, we evaluated the antiproliferative activity of such derivatives in normal human lymphocytes and CHO cells cultivated in vitro. Compound 4 showed a noticeable antiproliferative activity. Studying the induction of chromosomal aberrations and of SCEs, we demonstrated that compound 4 has a clastogenic effect on mammalian cells. By means of DNA filter elution and protein precipitation techniques we evaluated the DNA damage produced by the tested compounds. Some experiments performed in presence of a DNA synthesis inhibitor showed that ongoing DNA synthesis is involved in cell killing by derivative 4. All data obtained suggest that compound 4 can interfere with the activity of topoisomerase II. Catalytic studies carried out with purified topoisomerase II and bacteriophage DNA confirmed this hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号