首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The extent of host-specific genetic variation for two life-history traits, egg to adult developmental time and viability, and one morphological trait closely tied to fitness, adult thorax size, was exposed by employing a nested half-sib/full-sib breeding design with Baja and mainland populations of Drosophila mojavensis recently extracted from nature. This study was motivated by the presence of substantial variation in life histories among populations of D. mojavensis that use the fermenting tissues of particular species of columnar cacti for feeding and breeding in the Sonoran Desert. Full-sib progeny from all sire-dam crosses were split into cultures of agria cactus, Stenocereus gummosus, and organ pipe cactus, S. thurberi, to examine patterns of genotype-by-environment interaction for these fitness components. Baja flies expressed shorter egg-to-adult developmental times, higher viabilities, and smaller body sizes than mainland flies consistent with previous studies. Significant sire and dam components of variance were exposed for developmental time and thorax size. Genotype-by-environment interactions were significant at the level of dams for developmental time and nearly significant for viability (P = 0.09). Narrow- and broad-sense heritabilities were influenced by host cactus, sex, and population. No strong pattern of genetic correlation emerged among fitness components suggesting that host-range expansion has not been accompanied by formation of coadapted life histories, yet the ability to estimate genetic correlations and their standard errors was compromised by the unbalanced nature of the data set. Genetic correlations in performance across cacti were slightly positive, evidence for ecological generalism among populations explaining the observed pattern of multiple host cactus use within the species range of D. mojavensis.  相似文献   

2.
Previous studies have suggested that all populations of cactophilic Drosophila mojavensis prefer pitaya agria cactus, Stenocereus gummosus, over all other potential hosts for feeding and breeding, including populations that inhabit areas where no agria grows. We sampled five geographically isolated populations of D. mojavensis from nature to assess host choice within and between populations. Host choice tests were performed in a laboratory olfactometer by allowing adult D. mojavensis to choose between plumes of synthetic volatile cocktails of two widespread host cacti. Overall, each population showed significant preference for agria volatiles with one exception: a mainland Sonora population that uses organ pipe cactus in nature exhibited preference for organ pipe volatiles, suggesting a possible shift in host preference. The degree of preference for agria volatiles was greatest in a population from southern California that use California barrel cactus as a host. Since southern Californian populations of D. mojavensis are thought to be derived from those in Baja California, preference for agria volatiles is considered a retained ancestral trait. Three populations from Baja California and mainland Mexico that use agria in the wild expressed lower, but similar preferences for agria volatiles. Because populations of D. mojavensis are ancestral to those in mainland Mexico, Arizona, and California, the shift from agria to alternate hosts has not been accompanied by strong changes in host preference behavior.  相似文献   

3.
4.
We carried out a three‐tiered genetic analysis of egg‐to‐adult development time and viability in ancestral and derived populations of cactophilic Drosophila mojavensis to test the hypothesis that evolution of these life‐history characters has shaped premating reproductive isolation in this species. First, a common garden experiment with 11 populations from Baja California and mainland Mexico and Arizona reared on two host species revealed significant host plant X region and population interactions for viability and development time, evidence for host plant adaptation. Second, replicated line crosses with flies reared on both hosts revealed autosomal, X chromosome, cytoplasmic, and autosome X cactus influences on development time. Viability differences were influenced by host plants, autosomal dominance, and X chromosomal effects. Many of the F1, F2, and backcross generations showed evidence of heterosis for viability. Third, a QTL analysis of male courtship song and epicuticular hydrocarbon variation based on 1688 Baja × mainland F2 males also revealed eight QTL influencing development time differences. Mainland alleles at six of these loci were associated with longer development times, consistent with population‐level differences. Eight G × E interactions were also detected caused by longer development times of mainland alleles expressed on a mainland host with smaller differences among Baja genotypes reared on the Baja host plant. Four QTL influenced both development time and epicuticular hydrocarbon differences associated with courtship success, and there was a significant QTL‐based correlation between development time and cuticular hydrocarbon variation. Thus, the regional shifts in life histories that evolved once D. mojavensis invaded mainland Mexico from Baja California by shifting host plants were genetically correlated with variation in cuticular hydrocarbon‐based mate preferences.  相似文献   

5.
Divergent selection between environments can result in changes to the behavior of an organism. In many insects, volatile compounds are a primary means by which host plants are recognized and shifts in plant availability can result in changes to host preference. Both the plant substrate and microorganisms can influence this behavior, and host plant choice can have an impact on the performance of the organism. In Drosophila mojavensis, four geographically isolated populations each use different cacti as feeding and oviposition substrates and identify those cacti by the composition of the volatile odorants emitted. Behavioral tests revealed D. mojavensis populations vary in their degree of preference for their natural host plant. Females from the Mojave population show a marked preference for their host plant, barrel cactus, relative to other cactus choices. When flies were given a choice between cacti that were not their host plant, the preference for barrel and organ pipe cactus relative to agria and prickly pear cactus was overall lower for all populations. Volatile headspace composition is influenced by the cactus substrate, microbial community, and substrate‐by‐microorganism interactions. Differences in viability, developmental time, thorax length, and dry body weight exist among populations and depend on cactus substrate and population‐by‐cactus interactions. However, no clear association between behavioral preference and performance was observed. This study highlights a complex interplay between the insect, host plant, and microbial community and the factors mediating insect host plant preference behavior.  相似文献   

6.
Starch gel electrophoresis revealed that the alcohol dehydrogenase (ADH-2) locus was polymorphic in two populations (from Agua Caliente, California and the Grand Canyon, Arizona) of cactophilic Drosophila mojavensis that utilize barrel cactus (Ferocactus acanthodes) as a host plant. Electromorphs representing products of a slow (S) and a fast (F) allele were found in adult flies. The frequency of the slow allele was 0.448 in flies from Agua Caliente and 0.659 in flies from the Grand Canyon. These frequencies were intermediate to those of the low (Baja California peninsula, Mexico) and high (Sonora, Mexico and southern Arizona) frequency Adh-2S populations of D. mojavensis that utilize different species of host cacti.  相似文献   

7.
Summary It has been hypothesized that reproductive character displacement has evolved in mainland Sonora, Mexico populations of cactophilicD. mojavensis due to the presence of a sympatric sibling speciesD. arizonae. In laboratory tests using ancestral Baja California populations and derived, sympatric mainland populations, asymmetrical sexual isolation has been observed among populations ofD. mojavensis where mainland females discriminate against Baja males. Effects of different pre-adult rearing environments on adult mating behaviour were assessed by comparing fermenting cactus tissues like those used in nature for breeding with laboratory media because previous studies have employed synthetic growth media for fly growth and development. Significant behavioural isolation was evident in all cases when larvae were reared on laboratory food, but was non-significant when flies were reared on fermenting cactus, except for the cactus used by most mainland populations, consistent with previous studies. Time to copulation of Baja females was greater than mainland females over all substrates, but male time to copulation did not differ between populations. Time to copulation for both sexes was significantly greater when flies were reared on laboratory food with one exception. The degree of behavioural isolation was weakly correlated with time to copulation across food types (Spearman rank correlation = 0.58,p = 0.099). Therefore, use of laboratory media in this and previous studies exaggerated adult pre-mating isolation and time to copulation in comparison to natural breeding substrates. These experiments suggest that a change in host substrates by saprophagous insects (where chemical differences exist between hosts) may have subtle effects on mating behaviour in a manner which promotes low levels of sexual isolation as a by-product of their utilization of a particular substrate during larval development. ForD. mojavensis, these results suggest that over evolutionary time, radiation into a new environment (from Baja to the mainland) allowed utilization of new host plants that may have incidentally promoted the sexual isolation patterns that have been observed within this species.See Etges (1992) for the first paper in this series.  相似文献   

8.
Summary Variation in life histories among populations of cactophilicDrosophila mojavensis has been hypothesized to be a by-product of a shift to one of two alternate host plants. When cultured on the ancestral and a secondary host cactus, a Baja population expressed shorter development times and smaller thorax sizes than a mainland population, but viability did not differ. Comparisons with all reciprocal F1 and F2 crosses between populations revealed that genetic differences in development time and thorax size were largely additive. Homeostasis in these life history traits was population specific, except for viability. Homeostasis in development time was greater in the Baja population than in the other crosses, suggesting dominance for decreased homeostasis in the mainland population. Underdominance in viability homeostasis of the F1 hybrids suggested some incompatibility between populations. Homeostasis in thorax size was greater in females than in males and differed among parental populations. Maintenance of heritable differences and genetic variation for homeostasis in these traits suggested a role for cactus-specific differences in environmental uncertainty caused by variation in breeding site duration and abundance in nature.  相似文献   

9.
10.
Analysis of sexual selection and sexual isolation in Drosophila mojavensis and its relatives has revealed a pervasive role of rearing substrates on adult courtship behavior when flies were reared on fermenting cactus in preadult stages. Here, we assessed expression of contact pheromones comprised of epicuticular hydrocarbons (CHCs) from eclosion to 28 days of age in adults from two populations reared on fermenting tissues of two host cacti over the entire life cycle. Flies were never exposed to laboratory food and showed significant reductions in average CHC amounts consistent with CHCs of wild‐caught flies. Overall, total hydrocarbon amounts increased from eclosion to 14–18 days, well past age at sexual maturity, and then declined in older flies. Most flies did not survive past 4 weeks. Baja California and mainland populations showed significantly different age‐specific CHC profiles where Baja adults showed far less age‐specific changes in CHC expression. Adults from populations reared on the host cactus typically used in nature expressed more CHCs than on the alternate host. MANCOVA with age as the covariate for the first six CHC principal components showed extensive differences in CHC composition due to age, population, cactus, sex, and age × population, age × sex, and age × cactus interactions. Thus, understanding variation in CHC composition as adult D. mojavensis age requires information about population and host plant differences, with potential influences on patterns of mate choice, sexual selection, and sexual isolation, and ultimately how these pheromones are expressed in natural populations. Studies of drosophilid aging in the wild are badly needed.  相似文献   

11.
12.
13.
14.
Sexual signals in cactophilic Drosophila mojavensis include cuticular hydrocarbons (CHCs), contact pheromones that mediate female discrimination of males during courtship. CHCs, along with male courtship songs, cause premating isolation between diverged populations, and are influenced by genotype × environment interactions caused by different host cacti. CHC profiles of mated and unmated adult flies from a Baja California and a mainland Mexico population of D. mojavensis reared on two host cacti were assayed to test the hypothesis that male CHCs mediate within‐population female discrimination of males. In multiple choice courtship trials, mated and unmated males differed in CHC profiles, indicating that females prefer males with particular blends of CHCs. Mated and unmated females significantly differed in CHC profiles as well. Adults in the choice trials had CHC profiles that were significantly different from those in pair‐mated adults from no‐choice trials revealing an influence of sexual selection. Females preferred different male CHC blends in each population, but the influence of host cactus on CHC variation was significant only in the mainland population indicating population‐specific plasticity in CHCs. Different groups of CHCs mediated female choice‐based sexual selection in each population suggesting that geographical and ecological divergence has the potential to promote divergence in mate communication systems.  相似文献   

15.
Yeast communities in necroses of organpipe cactus (Stenocereus thurberi) were surveyed at 3 localities in Arizona. Quantitative analysis of random samples allows comparisons of the types and numbers of yeasts at 3 levels: within plants, between plants within a locality, and between localities. The analysis shows that the major source of variability is between plants. This pattern is identical with the pattern shown by agria cactus (Stenocereus gummosus) and is thought to be due to sampling different successional stages. No significant differences in estimates of the effective number of yeast species (ENS) in agria and organpipe samples were found. Comparisons of agria, organpipe, and prickly pear (Opuntia) cacti support the hypothesis that cactus chemistry is an important determinant of the yeast community structure which, in turn, is an important determinant of the diversity ofDrosophila species which utilize necrotic cacti as feeding and breeding substrates.  相似文献   

16.
Electromorphic variation among populations of Drosophila mojavensis, D. arizonensis and D. longicornis was examined for seven genetic loci. The average electrophoretic mobility for a population was used as the metric. D. mojavensis and D. arizonensis use larval substrates in different parts of their geographic ranges, while D. longicornis is more narrowly restricted to different species of the cactus Opuntia in different localities. There is marked electromorphic variation among populations of either D. mojavensis or D. arizonensis, and the bulk of this variation is accounted for by differences in laval substrate. There is somewhat less variation among populations of D. longicornis, and only a moderate portion of this is accounted for by larval substrate differences. There appears to be an association between the taxonomic diversity of the larval substrates and the electromorphic diversity of the Drosophila populations utilizing those substrates. Evidence is reviewed that suggests physiological mechanisms for these possibly adaptive associations.  相似文献   

17.
We performed a quantitative trait locus (QTL) analysis of epicuticular hydrocarbon variation in 1650 F2 males from crosses of Baja California and mainland Mexico populations of Drosophila mojavensis cultured on two major host cacti. Principal component (PC) analysis revealed five PCs that accounted for 82% of the total epicuticular hydrocarbon variation. Courtship trials with mainland females were used to characterize hydrocarbon profiles of mated and unmated F2 males, and logistic regression analysis showed that cactus substrates, two PCs, and a PC by cactus interaction were associated with mating success. Multiple QTLs were detected for each hydrocarbon PC and seven G × E (cactus) interactions were uncovered for the X, second, and fourth chromosomes. Males from the courtship trials and virgins were used, so "exposure to females" was included as a factor in QTL analyses. "Exposed" males expressed significantly different hydrocarbon profiles than virgins for most QTLs, particularly for the two PCs associated with mating success. Ten QTLs showed G × E (exposure) interactions with most resulting from mainland genotypes expressing altered hydrocarbon amounts when exposed to females compared to Baja genotypes. Many cactus × exposure interaction terms detected across QTL and all PCs confirmed that organ pipe-reared males expressed significantly lower hydrocarbon amounts when exposed to females than when reared on agria cactus. Epicuticular hydrocarbon variation in D. mojavensis is therefore a multigenic trait with some epistasis, multiple QTLs exhibited pleiotropy, correlated groups of hydrocarbons and cactus substrates determined courtship success, and males altered their hydrocarbon profiles in response to females.  相似文献   

18.
19.
Abstract.
  • 1 A method of separating the effects of two important determinants of body size in natural populations, temperature of larval development and level of larval nutrition, by making measurements of thorax length and wing length of adult flies is investigated.
  • 2 I show that at any given time variation in body size of Drosophila buzzatii from two sites in eastern Australia is determined primarily by variation in the quality of nutrition available to larvae.
  • 3 Throughout the year adult flies are consistently at least 25% smaller in volume than predicted for optimal nutrition at their predicted temperature of larval development.
  • 4 Nutritional stress is therefore a year-round problem for these flies.
  • 5 Measurements of adult flies emerging from individual breeding substrates (rotting cactus cladodes) show that there is substantial variation among these substrates in the nutrition available to larvae.
  • 6 This method will allow study of spatial and temporal variation in the temperature of larval substrates and in the nutritional resources available to flies in natural populations.
  相似文献   

20.
Understanding the genetic basis of adaptation to novel environments remains one of the major challenges confronting evolutionary biologists. While newly developed genomic approaches hold considerable promise for addressing this overall question, the relevant tools have not often been available in the most ecologically interesting organisms. Our study organism, Drosophila mojavensis, is a cactophilic Sonoran Desert endemic utilizing four different cactus hosts across its geographical range. Its well-known ecology makes it an attractive system in which to study the evolution of gene expression during adaptation. As a cactophile, D. mojavensis oviposits in the necrotic tissues of cacti, therefore exposing larvae and even adults to the varied and toxic compounds of rotting cacti. We have developed a cDNA microarray of D. mojavensis to examine gene expression associated with cactus host use. Using a population from the Baja California population we examined gene expression differences of third instar larvae when reared in two chemically distinct cactus hosts, agria (Stenocereus gummosus, native host) vs. organpipe (Stenocereus thurberi, alternative host). We have observed differential gene expression associated with cactus host use in genes involved in metabolism and detoxification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号